2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
50 #include <asm/machvec.h>
52 #include <asm/meminit.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
74 extern void ia64_setup_printk_clock(void);
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
85 static struct resource data_resource = {
86 .name = "Kernel data",
87 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
90 static struct resource code_resource = {
91 .name = "Kernel code",
92 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
94 extern char _text[], _end[], _etext[];
96 unsigned long ia64_max_cacheline_size;
98 int dma_get_cache_alignment(void)
100 return ia64_max_cacheline_size;
102 EXPORT_SYMBOL(dma_get_cache_alignment);
104 unsigned long ia64_iobase; /* virtual address for I/O accesses */
105 EXPORT_SYMBOL(ia64_iobase);
106 struct io_space io_space[MAX_IO_SPACES];
107 EXPORT_SYMBOL(io_space);
108 unsigned int num_io_spaces;
111 * "flush_icache_range()" needs to know what processor dependent stride size to use
112 * when it makes i-cache(s) coherent with d-caches.
114 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
115 unsigned long ia64_i_cache_stride_shift = ~0;
118 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
119 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
120 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
121 * address of the second buffer must be aligned to (merge_mask+1) in order to be
122 * mergeable). By default, we assume there is no I/O MMU which can merge physically
123 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126 unsigned long ia64_max_iommu_merge_mask = ~0UL;
127 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
130 * We use a special marker for the end of memory and it uses the extra (+1) slot
132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
133 int num_rsvd_regions __initdata;
137 * Filter incoming memory segments based on the primitive map created from the boot
138 * parameters. Segments contained in the map are removed from the memory ranges. A
139 * caller-specified function is called with the memory ranges that remain after filtering.
140 * This routine does not assume the incoming segments are sorted.
143 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
145 unsigned long range_start, range_end, prev_start;
146 void (*func)(unsigned long, unsigned long, int);
150 if (start == PAGE_OFFSET) {
151 printk(KERN_WARNING "warning: skipping physical page 0\n");
153 if (start >= end) return 0;
157 * lowest possible address(walker uses virtual)
159 prev_start = PAGE_OFFSET;
162 for (i = 0; i < num_rsvd_regions; ++i) {
163 range_start = max(start, prev_start);
164 range_end = min(end, rsvd_region[i].start);
166 if (range_start < range_end)
167 call_pernode_memory(__pa(range_start), range_end - range_start, func);
169 /* nothing more available in this segment */
170 if (range_end == end) return 0;
172 prev_start = rsvd_region[i].end;
174 /* end of memory marker allows full processing inside loop body */
179 sort_regions (struct rsvd_region *rsvd_region, int max)
183 /* simple bubble sorting */
185 for (j = 0; j < max; ++j) {
186 if (rsvd_region[j].start > rsvd_region[j+1].start) {
187 struct rsvd_region tmp;
188 tmp = rsvd_region[j];
189 rsvd_region[j] = rsvd_region[j + 1];
190 rsvd_region[j + 1] = tmp;
197 * Request address space for all standard resources
199 static int __init register_memory(void)
201 code_resource.start = ia64_tpa(_text);
202 code_resource.end = ia64_tpa(_etext) - 1;
203 data_resource.start = ia64_tpa(_etext);
204 data_resource.end = ia64_tpa(_end) - 1;
205 efi_initialize_iomem_resources(&code_resource, &data_resource);
210 __initcall(register_memory);
213 * reserve_memory - setup reserved memory areas
215 * Setup the reserved memory areas set aside for the boot parameters,
216 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
217 * see include/asm-ia64/meminit.h if you need to define more.
220 reserve_memory (void)
225 * none of the entries in this table overlap
227 rsvd_region[n].start = (unsigned long) ia64_boot_param;
228 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
231 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
232 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
235 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
236 rsvd_region[n].end = (rsvd_region[n].start
237 + strlen(__va(ia64_boot_param->command_line)) + 1);
240 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
241 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
244 #ifdef CONFIG_BLK_DEV_INITRD
245 if (ia64_boot_param->initrd_start) {
246 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
247 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
252 #ifdef CONFIG_PROC_VMCORE
253 if (reserve_elfcorehdr(&rsvd_region[n].start,
254 &rsvd_region[n].end) == 0)
258 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
262 /* crashkernel=size@offset specifies the size to reserve for a crash
263 * kernel. If offset is 0, then it is determined automatically.
264 * By reserving this memory we guarantee that linux never set's it
265 * up as a DMA target.Useful for holding code to do something
266 * appropriate after a kernel panic.
269 char *from = strstr(boot_command_line, "crashkernel=");
270 unsigned long base, size;
272 size = memparse(from + 12, &from);
274 base = memparse(from+1, &from);
279 sort_regions(rsvd_region, n);
280 base = kdump_find_rsvd_region(size,
284 rsvd_region[n].start =
285 (unsigned long)__va(base);
287 (unsigned long)__va(base + size);
289 crashk_res.start = base;
290 crashk_res.end = base + size - 1;
294 efi_memmap_res.start = ia64_boot_param->efi_memmap;
295 efi_memmap_res.end = efi_memmap_res.start +
296 ia64_boot_param->efi_memmap_size;
297 boot_param_res.start = __pa(ia64_boot_param);
298 boot_param_res.end = boot_param_res.start +
299 sizeof(*ia64_boot_param);
302 /* end of memory marker */
303 rsvd_region[n].start = ~0UL;
304 rsvd_region[n].end = ~0UL;
307 num_rsvd_regions = n;
308 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
310 sort_regions(rsvd_region, num_rsvd_regions);
315 * find_initrd - get initrd parameters from the boot parameter structure
317 * Grab the initrd start and end from the boot parameter struct given us by
323 #ifdef CONFIG_BLK_DEV_INITRD
324 if (ia64_boot_param->initrd_start) {
325 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
326 initrd_end = initrd_start+ia64_boot_param->initrd_size;
328 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
329 initrd_start, ia64_boot_param->initrd_size);
337 unsigned long phys_iobase;
340 * Set `iobase' based on the EFI memory map or, failing that, the
341 * value firmware left in ar.k0.
343 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
344 * the port's virtual address, so ia32_load_state() loads it with a
345 * user virtual address. But in ia64 mode, glibc uses the
346 * *physical* address in ar.k0 to mmap the appropriate area from
347 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
348 * cases, user-mode can only use the legacy 0-64K I/O port space.
350 * ar.k0 is not involved in kernel I/O port accesses, which can use
351 * any of the I/O port spaces and are done via MMIO using the
352 * virtual mmio_base from the appropriate io_space[].
354 phys_iobase = efi_get_iobase();
356 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
357 printk(KERN_INFO "No I/O port range found in EFI memory map, "
358 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
360 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
361 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
363 /* setup legacy IO port space */
364 io_space[0].mmio_base = ia64_iobase;
365 io_space[0].sparse = 1;
370 * early_console_setup - setup debugging console
372 * Consoles started here require little enough setup that we can start using
373 * them very early in the boot process, either right after the machine
374 * vector initialization, or even before if the drivers can detect their hw.
376 * Returns non-zero if a console couldn't be setup.
378 static inline int __init
379 early_console_setup (char *cmdline)
383 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
385 extern int sn_serial_console_early_setup(void);
386 if (!sn_serial_console_early_setup())
390 #ifdef CONFIG_EFI_PCDP
391 if (!efi_setup_pcdp_console(cmdline))
394 #ifdef CONFIG_SERIAL_8250_CONSOLE
395 if (!early_serial_console_init(cmdline))
399 return (earlycons) ? 0 : -1;
403 mark_bsp_online (void)
406 /* If we register an early console, allow CPU 0 to printk */
407 cpu_set(smp_processor_id(), cpu_online_map);
413 check_for_logical_procs (void)
415 pal_logical_to_physical_t info;
418 status = ia64_pal_logical_to_phys(0, &info);
420 printk(KERN_INFO "No logical to physical processor mapping "
425 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
430 * Total number of siblings that BSP has. Though not all of them
431 * may have booted successfully. The correct number of siblings
432 * booted is in info.overview_num_log.
434 smp_num_siblings = info.overview_tpc;
435 smp_num_cpucores = info.overview_cpp;
439 static __initdata int nomca;
440 static __init int setup_nomca(char *s)
445 early_param("nomca", setup_nomca);
447 #ifdef CONFIG_PROC_VMCORE
448 /* elfcorehdr= specifies the location of elf core header
449 * stored by the crashed kernel.
451 static int __init parse_elfcorehdr(char *arg)
456 elfcorehdr_addr = memparse(arg, &arg);
459 early_param("elfcorehdr", parse_elfcorehdr);
461 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
463 unsigned long length;
465 /* We get the address using the kernel command line,
466 * but the size is extracted from the EFI tables.
467 * Both address and size are required for reservation
471 if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
474 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
475 elfcorehdr_addr = ELFCORE_ADDR_MAX;
479 *start = (unsigned long)__va(elfcorehdr_addr);
480 *end = *start + length;
484 #endif /* CONFIG_PROC_VMCORE */
487 setup_arch (char **cmdline_p)
491 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
493 *cmdline_p = __va(ia64_boot_param->command_line);
494 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
501 #ifdef CONFIG_IA64_GENERIC
505 if (early_console_setup(*cmdline_p) == 0)
509 /* Initialize the ACPI boot-time table parser */
511 # ifdef CONFIG_ACPI_NUMA
516 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
518 #endif /* CONFIG_APCI_BOOT */
522 /* process SAL system table: */
523 ia64_sal_init(__va(efi.sal_systab));
525 ia64_setup_printk_clock();
528 cpu_physical_id(0) = hard_smp_processor_id();
530 cpu_set(0, cpu_sibling_map[0]);
531 cpu_set(0, cpu_core_map[0]);
533 check_for_logical_procs();
534 if (smp_num_cpucores > 1)
536 "cpu package is Multi-Core capable: number of cores=%d\n",
538 if (smp_num_siblings > 1)
540 "cpu package is Multi-Threading capable: number of siblings=%d\n",
544 cpu_init(); /* initialize the bootstrap CPU */
545 mmu_context_init(); /* initialize context_id bitmap */
547 check_sal_cache_flush();
555 # if defined(CONFIG_DUMMY_CONSOLE)
556 conswitchp = &dummy_con;
558 # if defined(CONFIG_VGA_CONSOLE)
560 * Non-legacy systems may route legacy VGA MMIO range to system
561 * memory. vga_con probes the MMIO hole, so memory looks like
562 * a VGA device to it. The EFI memory map can tell us if it's
563 * memory so we can avoid this problem.
565 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
566 conswitchp = &vga_con;
571 /* enable IA-64 Machine Check Abort Handling unless disabled */
575 platform_setup(cmdline_p);
580 * Display cpu info for all cpu's.
583 show_cpuinfo (struct seq_file *m, void *v)
586 # define lpj c->loops_per_jiffy
587 # define cpunum c->cpu
589 # define lpj loops_per_jiffy
594 const char *feature_name;
596 { 1UL << 0, "branchlong" },
597 { 1UL << 1, "spontaneous deferral"},
598 { 1UL << 2, "16-byte atomic ops" }
600 char features[128], *cp, *sep;
601 struct cpuinfo_ia64 *c = v;
603 unsigned long proc_freq;
608 /* build the feature string: */
609 memcpy(features, "standard", 9);
611 size = sizeof(features);
613 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
614 if (mask & feature_bits[i].mask) {
615 cp += snprintf(cp, size, "%s%s", sep,
616 feature_bits[i].feature_name),
618 mask &= ~feature_bits[i].mask;
619 size = sizeof(features) - (cp - features);
622 if (mask && size > 1) {
623 /* print unknown features as a hex value */
624 snprintf(cp, size, "%s0x%lx", sep, mask);
627 proc_freq = cpufreq_quick_get(cpunum);
629 proc_freq = c->proc_freq / 1000;
643 "cpu MHz : %lu.%06lu\n"
644 "itc MHz : %lu.%06lu\n"
645 "BogoMIPS : %lu.%02lu\n",
646 cpunum, c->vendor, c->family, c->model,
647 c->model_name, c->revision, c->archrev,
648 features, c->ppn, c->number,
649 proc_freq / 1000, proc_freq % 1000,
650 c->itc_freq / 1000000, c->itc_freq % 1000000,
651 lpj*HZ/500000, (lpj*HZ/5000) % 100);
653 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
654 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
659 c->socket_id, c->core_id, c->thread_id);
667 c_start (struct seq_file *m, loff_t *pos)
670 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
673 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
677 c_next (struct seq_file *m, void *v, loff_t *pos)
680 return c_start(m, pos);
684 c_stop (struct seq_file *m, void *v)
688 struct seq_operations cpuinfo_op = {
696 static char brandname[MAX_BRANDS][128];
698 static char * __cpuinit
699 get_model_name(__u8 family, __u8 model)
705 memcpy(brand, "Unknown", 8);
706 if (ia64_pal_get_brand_info(brand)) {
708 memcpy(brand, "Merced", 7);
709 else if (family == 0x1f) switch (model) {
710 case 0: memcpy(brand, "McKinley", 9); break;
711 case 1: memcpy(brand, "Madison", 8); break;
712 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
715 for (i = 0; i < MAX_BRANDS; i++)
716 if (strcmp(brandname[i], brand) == 0)
718 for (i = 0; i < MAX_BRANDS; i++)
719 if (brandname[i][0] == '\0')
720 return strcpy(brandname[i], brand);
723 "%s: Table overflow. Some processor model information will be missing\n",
728 static void __cpuinit
729 identify_cpu (struct cpuinfo_ia64 *c)
732 unsigned long bits[5];
738 u64 ppn; /* processor serial number */
742 unsigned revision : 8;
745 unsigned archrev : 8;
746 unsigned reserved : 24;
752 pal_vm_info_1_u_t vm1;
753 pal_vm_info_2_u_t vm2;
755 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
757 for (i = 0; i < 5; ++i)
758 cpuid.bits[i] = ia64_get_cpuid(i);
760 memcpy(c->vendor, cpuid.field.vendor, 16);
762 c->cpu = smp_processor_id();
764 /* below default values will be overwritten by identify_siblings()
765 * for Multi-Threading/Multi-Core capable cpu's
767 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
770 identify_siblings(c);
772 c->ppn = cpuid.field.ppn;
773 c->number = cpuid.field.number;
774 c->revision = cpuid.field.revision;
775 c->model = cpuid.field.model;
776 c->family = cpuid.field.family;
777 c->archrev = cpuid.field.archrev;
778 c->features = cpuid.field.features;
779 c->model_name = get_model_name(c->family, c->model);
781 status = ia64_pal_vm_summary(&vm1, &vm2);
782 if (status == PAL_STATUS_SUCCESS) {
783 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
784 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
786 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
787 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
791 setup_per_cpu_areas (void)
793 /* start_kernel() requires this... */
794 #ifdef CONFIG_ACPI_HOTPLUG_CPU
795 prefill_possible_map();
800 * Calculate the max. cache line size.
802 * In addition, the minimum of the i-cache stride sizes is calculated for
803 * "flush_icache_range()".
805 static void __cpuinit
806 get_max_cacheline_size (void)
808 unsigned long line_size, max = 1;
809 unsigned int cache_size = 0;
810 u64 l, levels, unique_caches;
811 pal_cache_config_info_t cci;
814 status = ia64_pal_cache_summary(&levels, &unique_caches);
816 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
817 __FUNCTION__, status);
818 max = SMP_CACHE_BYTES;
819 /* Safest setup for "flush_icache_range()" */
820 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
824 for (l = 0; l < levels; ++l) {
825 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
829 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
830 __FUNCTION__, l, status);
831 max = SMP_CACHE_BYTES;
832 /* The safest setup for "flush_icache_range()" */
833 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
834 cci.pcci_unified = 1;
836 line_size = 1 << cci.pcci_line_size;
839 if (cache_size < cci.pcci_cache_size)
840 cache_size = cci.pcci_cache_size;
841 if (!cci.pcci_unified) {
842 status = ia64_pal_cache_config_info(l,
843 /* cache_type (instruction)= */ 1,
847 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
848 __FUNCTION__, l, status);
849 /* The safest setup for "flush_icache_range()" */
850 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
853 if (cci.pcci_stride < ia64_i_cache_stride_shift)
854 ia64_i_cache_stride_shift = cci.pcci_stride;
858 max_cache_size = max(max_cache_size, cache_size);
860 if (max > ia64_max_cacheline_size)
861 ia64_max_cacheline_size = max;
865 * cpu_init() initializes state that is per-CPU. This function acts
866 * as a 'CPU state barrier', nothing should get across.
871 extern void __cpuinit ia64_mmu_init (void *);
872 unsigned long num_phys_stacked;
873 pal_vm_info_2_u_t vmi;
874 unsigned int max_ctx;
875 struct cpuinfo_ia64 *cpu_info;
878 cpu_data = per_cpu_init();
881 * We set ar.k3 so that assembly code in MCA handler can compute
882 * physical addresses of per cpu variables with a simple:
883 * phys = ar.k3 + &per_cpu_var
885 ia64_set_kr(IA64_KR_PER_CPU_DATA,
886 ia64_tpa(cpu_data) - (long) __per_cpu_start);
888 get_max_cacheline_size();
891 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
892 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
893 * depends on the data returned by identify_cpu(). We break the dependency by
894 * accessing cpu_data() through the canonical per-CPU address.
896 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
897 identify_cpu(cpu_info);
899 #ifdef CONFIG_MCKINLEY
901 # define FEATURE_SET 16
902 struct ia64_pal_retval iprv;
904 if (cpu_info->family == 0x1f) {
905 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
906 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
907 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
908 (iprv.v1 | 0x80), FEATURE_SET, 0);
913 /* Clear the stack memory reserved for pt_regs: */
914 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
916 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
919 * Initialize the page-table base register to a global
920 * directory with all zeroes. This ensure that we can handle
921 * TLB-misses to user address-space even before we created the
922 * first user address-space. This may happen, e.g., due to
923 * aggressive use of lfetch.fault.
925 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
928 * Initialize default control register to defer speculative faults except
929 * for those arising from TLB misses, which are not deferred. The
930 * kernel MUST NOT depend on a particular setting of these bits (in other words,
931 * the kernel must have recovery code for all speculative accesses). Turn on
932 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
933 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
936 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
937 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
938 atomic_inc(&init_mm.mm_count);
939 current->active_mm = &init_mm;
943 ia64_mmu_init(ia64_imva(cpu_data));
944 ia64_mca_cpu_init(ia64_imva(cpu_data));
946 #ifdef CONFIG_IA32_SUPPORT
950 /* Clear ITC to eliminiate sched_clock() overflows in human time. */
953 /* disable all local interrupt sources: */
954 ia64_set_itv(1 << 16);
955 ia64_set_lrr0(1 << 16);
956 ia64_set_lrr1(1 << 16);
957 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
958 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
960 /* clear TPR & XTP to enable all interrupt classes: */
961 ia64_setreg(_IA64_REG_CR_TPR, 0);
966 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
967 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
968 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
970 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
971 max_ctx = (1U << 15) - 1; /* use architected minimum */
973 while (max_ctx < ia64_ctx.max_ctx) {
974 unsigned int old = ia64_ctx.max_ctx;
975 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
979 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
980 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
982 num_phys_stacked = 96;
984 /* size of physical stacked register partition plus 8 bytes: */
985 __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
987 pm_idle = default_idle;
991 * On SMP systems, when the scheduler does migration-cost autodetection,
992 * it needs a way to flush as much of the CPU's caches as possible.
994 void sched_cacheflush(void)
996 ia64_sal_cache_flush(3);
1002 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1003 (unsigned long) __end___mckinley_e9_bundles);
1006 static int __init run_dmi_scan(void)
1011 core_initcall(run_dmi_scan);