2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
30 #include <asm/uaccess.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static void ide_insl (unsigned long port, void *addr, u32 count)
54 insl(port, addr, count);
57 static void ide_outb (u8 val, unsigned long port)
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
67 static void ide_outw (u16 val, unsigned long port)
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
74 outsw(port, addr, count);
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
79 outsl(port, addr, count);
82 void default_hwif_iops (ide_hwif_t *hwif)
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
96 * MMIO operations, typically used for SATA controllers
99 static u8 ide_mm_inb (unsigned long port)
101 return (u8) readb((void __iomem *) port);
104 static u16 ide_mm_inw (unsigned long port)
106 return (u16) readw((void __iomem *) port);
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
111 __ide_mm_insw((void __iomem *) port, addr, count);
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
116 __ide_mm_insl((void __iomem *) port, addr, count);
119 static void ide_mm_outb (u8 value, unsigned long port)
121 writeb(value, (void __iomem *) port);
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
126 writeb(value, (void __iomem *) port);
129 static void ide_mm_outw (u16 value, unsigned long port)
131 writew(value, (void __iomem *) port);
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
136 __ide_mm_outsw((void __iomem *) port, addr, count);
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
141 __ide_mm_outsl((void __iomem *) port, addr, count);
144 void default_hwif_mmiops (ide_hwif_t *hwif)
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
159 EXPORT_SYMBOL(default_hwif_mmiops);
161 u32 ide_read_24 (ide_drive_t *drive)
163 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166 return (hcyl<<16)|(lcyl<<8)|sect;
169 void SELECT_DRIVE (ide_drive_t *drive)
171 if (HWIF(drive)->selectproc)
172 HWIF(drive)->selectproc(drive);
173 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
176 EXPORT_SYMBOL(SELECT_DRIVE);
178 void SELECT_INTERRUPT (ide_drive_t *drive)
180 if (HWIF(drive)->intrproc)
181 HWIF(drive)->intrproc(drive);
183 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
186 void SELECT_MASK (ide_drive_t *drive, int mask)
188 if (HWIF(drive)->maskproc)
189 HWIF(drive)->maskproc(drive, mask);
192 void QUIRK_LIST (ide_drive_t *drive)
194 if (HWIF(drive)->quirkproc)
195 drive->quirk_list = HWIF(drive)->quirkproc(drive);
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
207 (void) HWIF(drive)->INB(port);
208 (void) HWIF(drive)->INB(port);
209 (void) HWIF(drive)->INB(port);
213 * This is used for most PIO data transfers *from* the IDE interface
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->INSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
228 hwif->INSL(IDE_DATA_REG, buffer, wcount);
230 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
235 * This is used for most PIO data transfers *to* the IDE interface
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
239 ide_hwif_t *hwif = HWIF(drive);
240 u8 io_32bit = drive->io_32bit;
245 local_irq_save(flags);
246 ata_vlb_sync(drive, IDE_NSECTOR_REG);
247 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248 local_irq_restore(flags);
250 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
252 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
257 * The following routines are mainly used by the ATAPI drivers.
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
266 ide_hwif_t *hwif = HWIF(drive);
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI || MACH_IS_Q40) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif->ata_input_data(drive, buffer, bytecount / 4);
277 if ((bytecount & 0x03) >= 2)
278 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
283 ide_hwif_t *hwif = HWIF(drive);
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI || MACH_IS_Q40) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif->ata_output_data(drive, buffer, bytecount / 4);
294 if ((bytecount & 0x03) >= 2)
295 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
298 void default_hwif_transport(ide_hwif_t *hwif)
300 hwif->ata_input_data = ata_input_data;
301 hwif->ata_output_data = ata_output_data;
302 hwif->atapi_input_bytes = atapi_input_bytes;
303 hwif->atapi_output_bytes = atapi_output_bytes;
306 void ide_fix_driveid (struct hd_driveid *id)
308 #ifndef __LITTLE_ENDIAN
313 id->config = __le16_to_cpu(id->config);
314 id->cyls = __le16_to_cpu(id->cyls);
315 id->reserved2 = __le16_to_cpu(id->reserved2);
316 id->heads = __le16_to_cpu(id->heads);
317 id->track_bytes = __le16_to_cpu(id->track_bytes);
318 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
319 id->sectors = __le16_to_cpu(id->sectors);
320 id->vendor0 = __le16_to_cpu(id->vendor0);
321 id->vendor1 = __le16_to_cpu(id->vendor1);
322 id->vendor2 = __le16_to_cpu(id->vendor2);
323 stringcast = (u16 *)&id->serial_no[0];
324 for (i = 0; i < (20/2); i++)
325 stringcast[i] = __le16_to_cpu(stringcast[i]);
326 id->buf_type = __le16_to_cpu(id->buf_type);
327 id->buf_size = __le16_to_cpu(id->buf_size);
328 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
329 stringcast = (u16 *)&id->fw_rev[0];
330 for (i = 0; i < (8/2); i++)
331 stringcast[i] = __le16_to_cpu(stringcast[i]);
332 stringcast = (u16 *)&id->model[0];
333 for (i = 0; i < (40/2); i++)
334 stringcast[i] = __le16_to_cpu(stringcast[i]);
335 id->dword_io = __le16_to_cpu(id->dword_io);
336 id->reserved50 = __le16_to_cpu(id->reserved50);
337 id->field_valid = __le16_to_cpu(id->field_valid);
338 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
339 id->cur_heads = __le16_to_cpu(id->cur_heads);
340 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
341 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
342 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
343 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
344 id->dma_1word = __le16_to_cpu(id->dma_1word);
345 id->dma_mword = __le16_to_cpu(id->dma_mword);
346 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
347 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
348 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
349 id->eide_pio = __le16_to_cpu(id->eide_pio);
350 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
351 for (i = 0; i < 2; ++i)
352 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
353 for (i = 0; i < 4; ++i)
354 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
355 id->queue_depth = __le16_to_cpu(id->queue_depth);
356 for (i = 0; i < 4; ++i)
357 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
358 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
359 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
360 id->command_set_1 = __le16_to_cpu(id->command_set_1);
361 id->command_set_2 = __le16_to_cpu(id->command_set_2);
362 id->cfsse = __le16_to_cpu(id->cfsse);
363 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
364 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
365 id->csf_default = __le16_to_cpu(id->csf_default);
366 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
367 id->trseuc = __le16_to_cpu(id->trseuc);
368 id->trsEuc = __le16_to_cpu(id->trsEuc);
369 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
370 id->mprc = __le16_to_cpu(id->mprc);
371 id->hw_config = __le16_to_cpu(id->hw_config);
372 id->acoustic = __le16_to_cpu(id->acoustic);
373 id->msrqs = __le16_to_cpu(id->msrqs);
374 id->sxfert = __le16_to_cpu(id->sxfert);
375 id->sal = __le16_to_cpu(id->sal);
376 id->spg = __le32_to_cpu(id->spg);
377 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
378 for (i = 0; i < 22; i++)
379 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
380 id->last_lun = __le16_to_cpu(id->last_lun);
381 id->word127 = __le16_to_cpu(id->word127);
382 id->dlf = __le16_to_cpu(id->dlf);
383 id->csfo = __le16_to_cpu(id->csfo);
384 for (i = 0; i < 26; i++)
385 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
386 id->word156 = __le16_to_cpu(id->word156);
387 for (i = 0; i < 3; i++)
388 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
389 id->cfa_power = __le16_to_cpu(id->cfa_power);
390 for (i = 0; i < 14; i++)
391 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
392 for (i = 0; i < 31; i++)
393 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
394 for (i = 0; i < 48; i++)
395 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
396 id->integrity_word = __le16_to_cpu(id->integrity_word);
398 # error "Please fix <asm/byteorder.h>"
404 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
405 * removing leading/trailing blanks and compressing internal blanks.
406 * It is primarily used to tidy up the model name/number fields as
407 * returned by the WIN_[P]IDENTIFY commands.
410 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
412 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
415 /* convert from big-endian to host byte order */
416 for (p = end ; p != s;) {
417 unsigned short *pp = (unsigned short *) (p -= 2);
421 /* strip leading blanks */
422 while (s != end && *s == ' ')
424 /* compress internal blanks and strip trailing blanks */
425 while (s != end && *s) {
426 if (*s++ != ' ' || (s != end && *s && *s != ' '))
429 /* wipe out trailing garbage */
434 EXPORT_SYMBOL(ide_fixstring);
437 * Needed for PCI irq sharing
439 int drive_is_ready (ide_drive_t *drive)
441 ide_hwif_t *hwif = HWIF(drive);
444 if (drive->waiting_for_dma)
445 return hwif->ide_dma_test_irq(drive);
448 /* need to guarantee 400ns since last command was issued */
452 #ifdef CONFIG_IDEPCI_SHARE_IRQ
454 * We do a passive status test under shared PCI interrupts on
455 * cards that truly share the ATA side interrupt, but may also share
456 * an interrupt with another pci card/device. We make no assumptions
457 * about possible isa-pnp and pci-pnp issues yet.
460 stat = hwif->INB(IDE_ALTSTATUS_REG);
462 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
463 /* Note: this may clear a pending IRQ!! */
464 stat = hwif->INB(IDE_STATUS_REG);
466 if (stat & BUSY_STAT)
467 /* drive busy: definitely not interrupting */
470 /* drive ready: *might* be interrupting */
474 EXPORT_SYMBOL(drive_is_ready);
477 * This routine busy-waits for the drive status to be not "busy".
478 * It then checks the status for all of the "good" bits and none
479 * of the "bad" bits, and if all is okay it returns 0. All other
480 * cases return error -- caller may then invoke ide_error().
482 * This routine should get fixed to not hog the cpu during extra long waits..
483 * That could be done by busy-waiting for the first jiffy or two, and then
484 * setting a timer to wake up at half second intervals thereafter,
485 * until timeout is achieved, before timing out.
487 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
489 ide_hwif_t *hwif = drive->hwif;
494 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
495 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
496 local_irq_set(flags);
498 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
499 if (time_after(jiffies, timeout)) {
501 * One last read after the timeout in case
502 * heavy interrupt load made us not make any
503 * progress during the timeout..
505 stat = hwif->INB(IDE_STATUS_REG);
506 if (!(stat & BUSY_STAT))
509 local_irq_restore(flags);
514 local_irq_restore(flags);
517 * Allow status to settle, then read it again.
518 * A few rare drives vastly violate the 400ns spec here,
519 * so we'll wait up to 10usec for a "good" status
520 * rather than expensively fail things immediately.
521 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
523 for (i = 0; i < 10; i++) {
525 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
535 * In case of error returns error value after doing "*startstop = ide_error()".
536 * The caller should return the updated value of "startstop" in this case,
537 * "startstop" is unchanged when the function returns 0.
539 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
544 /* bail early if we've exceeded max_failures */
545 if (drive->max_failures && (drive->failures > drive->max_failures)) {
546 *startstop = ide_stopped;
550 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
553 char *s = (err == -EBUSY) ? "status timeout" : "status error";
554 *startstop = ide_error(drive, s, stat);
560 EXPORT_SYMBOL(ide_wait_stat);
563 * ide_in_drive_list - look for drive in black/white list
564 * @id: drive identifier
565 * @drive_table: list to inspect
567 * Look for a drive in the blacklist and the whitelist tables
568 * Returns 1 if the drive is found in the table.
571 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
573 for ( ; drive_table->id_model; drive_table++)
574 if ((!strcmp(drive_table->id_model, id->model)) &&
575 (!drive_table->id_firmware ||
576 strstr(id->fw_rev, drive_table->id_firmware)))
581 EXPORT_SYMBOL_GPL(ide_in_drive_list);
584 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
585 * We list them here and depend on the device side cable detection for them.
587 * Some optical devices with the buggy firmwares have the same problem.
589 static const struct drive_list_entry ivb_list[] = {
590 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
591 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
592 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
593 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
594 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
599 * All hosts that use the 80c ribbon must use!
600 * The name is derived from upper byte of word 93 and the 80c ribbon.
602 u8 eighty_ninty_three (ide_drive_t *drive)
604 ide_hwif_t *hwif = drive->hwif;
605 struct hd_driveid *id = drive->id;
606 int ivb = ide_in_drive_list(id, ivb_list);
608 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
612 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
615 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
618 if (ide_dev_is_sata(id))
623 * - force bit13 (80c cable present) check also for !ivb devices
624 * (unless the slave device is pre-ATA3)
626 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
630 if (drive->udma33_warned == 1)
633 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
634 "limiting max speed to UDMA33\n",
636 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
638 drive->udma33_warned = 1;
643 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
645 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
646 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
647 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
648 if (eighty_ninty_three(drive) == 0) {
649 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
650 "be set\n", drive->name);
659 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
660 * 1 : Safe to update drive->id DMA registers.
661 * 0 : OOPs not allowed.
663 int set_transfer (ide_drive_t *drive, ide_task_t *args)
665 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
666 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
667 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
668 (drive->id->dma_ultra ||
669 drive->id->dma_mword ||
670 drive->id->dma_1word))
676 #ifdef CONFIG_BLK_DEV_IDEDMA
677 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
679 if (!drive->crc_count)
680 return drive->current_speed;
681 drive->crc_count = 0;
683 switch(drive->current_speed) {
684 case XFER_UDMA_7: return XFER_UDMA_6;
685 case XFER_UDMA_6: return XFER_UDMA_5;
686 case XFER_UDMA_5: return XFER_UDMA_4;
687 case XFER_UDMA_4: return XFER_UDMA_3;
688 case XFER_UDMA_3: return XFER_UDMA_2;
689 case XFER_UDMA_2: return XFER_UDMA_1;
690 case XFER_UDMA_1: return XFER_UDMA_0;
692 * OOPS we do not goto non Ultra DMA modes
693 * without iCRC's available we force
694 * the system to PIO and make the user
695 * invoke the ATA-1 ATA-2 DMA modes.
698 default: return XFER_PIO_4;
701 #endif /* CONFIG_BLK_DEV_IDEDMA */
703 int ide_driveid_update(ide_drive_t *drive)
705 ide_hwif_t *hwif = drive->hwif;
706 struct hd_driveid *id;
707 unsigned long timeout, flags;
710 * Re-read drive->id for possible DMA mode
711 * change (copied from ide-probe.c)
714 SELECT_MASK(drive, 1);
716 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
718 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
719 timeout = jiffies + WAIT_WORSTCASE;
721 if (time_after(jiffies, timeout)) {
722 SELECT_MASK(drive, 0);
723 return 0; /* drive timed-out */
725 msleep(50); /* give drive a breather */
726 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
727 msleep(50); /* wait for IRQ and DRQ_STAT */
728 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
729 SELECT_MASK(drive, 0);
730 printk("%s: CHECK for good STATUS\n", drive->name);
733 local_irq_save(flags);
734 SELECT_MASK(drive, 0);
735 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
737 local_irq_restore(flags);
740 ata_input_data(drive, id, SECTOR_WORDS);
741 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
743 local_irq_restore(flags);
746 drive->id->dma_ultra = id->dma_ultra;
747 drive->id->dma_mword = id->dma_mword;
748 drive->id->dma_1word = id->dma_1word;
749 /* anything more ? */
752 if (drive->using_dma && ide_id_dma_bug(drive))
759 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
761 ide_hwif_t *hwif = drive->hwif;
765 // while (HWGROUP(drive)->busy)
768 #ifdef CONFIG_BLK_DEV_IDEDMA
769 if (hwif->ide_dma_on) /* check if host supports DMA */
770 hwif->dma_host_off(drive);
773 /* Skip setting PIO flow-control modes on pre-EIDE drives */
774 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
778 * Don't use ide_wait_cmd here - it will
779 * attempt to set_geometry and recalibrate,
780 * but for some reason these don't work at
781 * this point (lost interrupt).
784 * Select the drive, and issue the SETFEATURES command
786 disable_irq_nosync(hwif->irq);
789 * FIXME: we race against the running IRQ here if
790 * this is called from non IRQ context. If we use
791 * disable_irq() we hang on the error path. Work
797 SELECT_MASK(drive, 0);
800 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
801 hwif->OUTB(speed, IDE_NSECTOR_REG);
802 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
803 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
804 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
805 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
807 error = __ide_wait_stat(drive, drive->ready_stat,
808 BUSY_STAT|DRQ_STAT|ERR_STAT,
811 SELECT_MASK(drive, 0);
813 enable_irq(hwif->irq);
816 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
820 drive->id->dma_ultra &= ~0xFF00;
821 drive->id->dma_mword &= ~0x0F00;
822 drive->id->dma_1word &= ~0x0F00;
825 #ifdef CONFIG_BLK_DEV_IDEDMA
826 if (speed >= XFER_SW_DMA_0)
827 hwif->dma_host_on(drive);
828 else if (hwif->ide_dma_on) /* check if host supports DMA */
829 hwif->dma_off_quietly(drive);
833 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
834 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
835 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
836 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
837 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
838 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
839 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
840 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
841 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
842 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
843 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
844 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
845 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
846 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
849 if (!drive->init_speed)
850 drive->init_speed = speed;
851 drive->current_speed = speed;
856 * This should get invoked any time we exit the driver to
857 * wait for an interrupt response from a drive. handler() points
858 * at the appropriate code to handle the next interrupt, and a
859 * timer is started to prevent us from waiting forever in case
860 * something goes wrong (see the ide_timer_expiry() handler later on).
862 * See also ide_execute_command
864 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
865 unsigned int timeout, ide_expiry_t *expiry)
867 ide_hwgroup_t *hwgroup = HWGROUP(drive);
869 if (hwgroup->handler != NULL) {
870 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
872 drive->name, hwgroup->handler, handler);
874 hwgroup->handler = handler;
875 hwgroup->expiry = expiry;
876 hwgroup->timer.expires = jiffies + timeout;
877 hwgroup->req_gen_timer = hwgroup->req_gen;
878 add_timer(&hwgroup->timer);
881 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
882 unsigned int timeout, ide_expiry_t *expiry)
885 spin_lock_irqsave(&ide_lock, flags);
886 __ide_set_handler(drive, handler, timeout, expiry);
887 spin_unlock_irqrestore(&ide_lock, flags);
890 EXPORT_SYMBOL(ide_set_handler);
893 * ide_execute_command - execute an IDE command
894 * @drive: IDE drive to issue the command against
895 * @command: command byte to write
896 * @handler: handler for next phase
897 * @timeout: timeout for command
898 * @expiry: handler to run on timeout
900 * Helper function to issue an IDE command. This handles the
901 * atomicity requirements, command timing and ensures that the
902 * handler and IRQ setup do not race. All IDE command kick off
903 * should go via this function or do equivalent locking.
906 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
909 ide_hwgroup_t *hwgroup = HWGROUP(drive);
910 ide_hwif_t *hwif = HWIF(drive);
912 spin_lock_irqsave(&ide_lock, flags);
914 BUG_ON(hwgroup->handler);
915 hwgroup->handler = handler;
916 hwgroup->expiry = expiry;
917 hwgroup->timer.expires = jiffies + timeout;
918 hwgroup->req_gen_timer = hwgroup->req_gen;
919 add_timer(&hwgroup->timer);
920 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
921 /* Drive takes 400nS to respond, we must avoid the IRQ being
922 serviced before that.
924 FIXME: we could skip this delay with care on non shared
928 spin_unlock_irqrestore(&ide_lock, flags);
931 EXPORT_SYMBOL(ide_execute_command);
935 static ide_startstop_t do_reset1 (ide_drive_t *, int);
938 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
939 * during an atapi drive reset operation. If the drive has not yet responded,
940 * and we have not yet hit our maximum waiting time, then the timer is restarted
943 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
945 ide_hwgroup_t *hwgroup = HWGROUP(drive);
946 ide_hwif_t *hwif = HWIF(drive);
952 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
953 printk("%s: ATAPI reset complete\n", drive->name);
955 if (time_before(jiffies, hwgroup->poll_timeout)) {
956 BUG_ON(HWGROUP(drive)->handler != NULL);
957 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
958 /* continue polling */
962 hwgroup->polling = 0;
963 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
965 /* do it the old fashioned way */
966 return do_reset1(drive, 1);
969 hwgroup->polling = 0;
970 hwgroup->resetting = 0;
975 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
976 * during an ide reset operation. If the drives have not yet responded,
977 * and we have not yet hit our maximum waiting time, then the timer is restarted
980 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
982 ide_hwgroup_t *hwgroup = HWGROUP(drive);
983 ide_hwif_t *hwif = HWIF(drive);
986 if (hwif->reset_poll != NULL) {
987 if (hwif->reset_poll(drive)) {
988 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
989 hwif->name, drive->name);
994 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
995 if (time_before(jiffies, hwgroup->poll_timeout)) {
996 BUG_ON(HWGROUP(drive)->handler != NULL);
997 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
998 /* continue polling */
1001 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1004 printk("%s: reset: ", hwif->name);
1005 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1006 printk("success\n");
1007 drive->failures = 0;
1011 switch (tmp & 0x7f) {
1012 case 1: printk("passed");
1014 case 2: printk("formatter device error");
1016 case 3: printk("sector buffer error");
1018 case 4: printk("ECC circuitry error");
1020 case 5: printk("controlling MPU error");
1022 default:printk("error (0x%02x?)", tmp);
1025 printk("; slave: failed");
1029 hwgroup->polling = 0; /* done polling */
1030 hwgroup->resetting = 0; /* done reset attempt */
1034 static void check_dma_crc(ide_drive_t *drive)
1036 #ifdef CONFIG_BLK_DEV_IDEDMA
1037 if (drive->crc_count) {
1038 drive->hwif->dma_off_quietly(drive);
1039 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1040 if (drive->current_speed >= XFER_SW_DMA_0)
1041 (void) HWIF(drive)->ide_dma_on(drive);
1047 static void ide_disk_pre_reset(ide_drive_t *drive)
1049 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1051 drive->special.all = 0;
1052 drive->special.b.set_geometry = legacy;
1053 drive->special.b.recalibrate = legacy;
1054 if (OK_TO_RESET_CONTROLLER)
1055 drive->mult_count = 0;
1056 if (!drive->keep_settings && !drive->using_dma)
1057 drive->mult_req = 0;
1058 if (drive->mult_req != drive->mult_count)
1059 drive->special.b.set_multmode = 1;
1062 static void pre_reset(ide_drive_t *drive)
1064 if (drive->media == ide_disk)
1065 ide_disk_pre_reset(drive);
1067 drive->post_reset = 1;
1069 if (!drive->keep_settings) {
1070 if (drive->using_dma) {
1071 check_dma_crc(drive);
1074 drive->io_32bit = 0;
1078 if (drive->using_dma)
1079 check_dma_crc(drive);
1081 if (HWIF(drive)->pre_reset != NULL)
1082 HWIF(drive)->pre_reset(drive);
1084 if (drive->current_speed != 0xff)
1085 drive->desired_speed = drive->current_speed;
1086 drive->current_speed = 0xff;
1090 * do_reset1() attempts to recover a confused drive by resetting it.
1091 * Unfortunately, resetting a disk drive actually resets all devices on
1092 * the same interface, so it can really be thought of as resetting the
1093 * interface rather than resetting the drive.
1095 * ATAPI devices have their own reset mechanism which allows them to be
1096 * individually reset without clobbering other devices on the same interface.
1098 * Unfortunately, the IDE interface does not generate an interrupt to let
1099 * us know when the reset operation has finished, so we must poll for this.
1100 * Equally poor, though, is the fact that this may a very long time to complete,
1101 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1102 * we set a timer to poll at 50ms intervals.
1104 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1107 unsigned long flags;
1109 ide_hwgroup_t *hwgroup;
1111 spin_lock_irqsave(&ide_lock, flags);
1113 hwgroup = HWGROUP(drive);
1115 /* We must not reset with running handlers */
1116 BUG_ON(hwgroup->handler != NULL);
1118 /* For an ATAPI device, first try an ATAPI SRST. */
1119 if (drive->media != ide_disk && !do_not_try_atapi) {
1120 hwgroup->resetting = 1;
1122 SELECT_DRIVE(drive);
1124 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1126 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1127 hwgroup->polling = 1;
1128 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1129 spin_unlock_irqrestore(&ide_lock, flags);
1134 * First, reset any device state data we were maintaining
1135 * for any of the drives on this interface.
1137 for (unit = 0; unit < MAX_DRIVES; ++unit)
1138 pre_reset(&hwif->drives[unit]);
1140 #if OK_TO_RESET_CONTROLLER
1141 if (!IDE_CONTROL_REG) {
1142 spin_unlock_irqrestore(&ide_lock, flags);
1146 hwgroup->resetting = 1;
1148 * Note that we also set nIEN while resetting the device,
1149 * to mask unwanted interrupts from the interface during the reset.
1150 * However, due to the design of PC hardware, this will cause an
1151 * immediate interrupt due to the edge transition it produces.
1152 * This single interrupt gives us a "fast poll" for drives that
1153 * recover from reset very quickly, saving us the first 50ms wait time.
1155 /* set SRST and nIEN */
1156 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1157 /* more than enough time */
1159 if (drive->quirk_list == 2) {
1160 /* clear SRST and nIEN */
1161 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1163 /* clear SRST, leave nIEN */
1164 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1166 /* more than enough time */
1168 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1169 hwgroup->polling = 1;
1170 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1173 * Some weird controller like resetting themselves to a strange
1174 * state when the disks are reset this way. At least, the Winbond
1175 * 553 documentation says that
1177 if (hwif->resetproc != NULL) {
1178 hwif->resetproc(drive);
1181 #endif /* OK_TO_RESET_CONTROLLER */
1183 spin_unlock_irqrestore(&ide_lock, flags);
1188 * ide_do_reset() is the entry point to the drive/interface reset code.
1191 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1193 return do_reset1(drive, 0);
1196 EXPORT_SYMBOL(ide_do_reset);
1199 * ide_wait_not_busy() waits for the currently selected device on the hwif
1200 * to report a non-busy status, see comments in probe_hwif().
1202 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1208 * Turn this into a schedule() sleep once I'm sure
1209 * about locking issues (2.5 work ?).
1212 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1213 if ((stat & BUSY_STAT) == 0)
1216 * Assume a value of 0xff means nothing is connected to
1217 * the interface and it doesn't implement the pull-down
1222 touch_softlockup_watchdog();
1223 touch_nmi_watchdog();
1228 EXPORT_SYMBOL_GPL(ide_wait_not_busy);