2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
8 * This file handles the architecture-dependent parts of process handling.
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/a.out.h>
23 #include <linux/utsname.h>
24 #include <linux/time.h>
25 #include <linux/major.h>
26 #include <linux/stat.h>
28 #include <linux/mman.h>
29 #include <linux/elfcore.h>
30 #include <linux/reboot.h>
31 #include <linux/tty.h>
32 #include <linux/console.h>
35 #include <asm/uaccess.h>
36 #include <asm/system.h>
38 #include <asm/pgtable.h>
39 #include <asm/hwrpb.h>
46 * Power off function, if any
48 void (*pm_power_off)(void) = machine_power_off;
49 EXPORT_SYMBOL(pm_power_off);
54 set_thread_flag(TIF_POLLING_NRFLAG);
57 /* FIXME -- EV6 and LCA45 know how to power down
60 while (!need_resched())
73 common_shutdown_1(void *generic_ptr)
75 struct halt_info *how = (struct halt_info *)generic_ptr;
76 struct percpu_struct *cpup;
77 unsigned long *pflags, flags;
78 int cpuid = smp_processor_id();
80 /* No point in taking interrupts anymore. */
83 cpup = (struct percpu_struct *)
84 ((unsigned long)hwrpb + hwrpb->processor_offset
85 + hwrpb->processor_size * cpuid);
86 pflags = &cpup->flags;
89 /* Clear reason to "default"; clear "bootstrap in progress". */
90 flags &= ~0x00ff0001UL;
93 /* Secondaries halt here. */
94 if (cpuid != boot_cpuid) {
95 flags |= 0x00040000UL; /* "remain halted" */
97 cpu_clear(cpuid, cpu_present_map);
102 if (how->mode == LINUX_REBOOT_CMD_RESTART) {
103 if (!how->restart_cmd) {
104 flags |= 0x00020000UL; /* "cold bootstrap" */
106 /* For SRM, we could probably set environment
107 variables to get this to work. We'd have to
108 delay this until after srm_paging_stop unless
109 we ever got srm_fixup working.
111 At the moment, SRM will use the last boot device,
112 but the file and flags will be the defaults, when
113 doing a "warm" bootstrap. */
114 flags |= 0x00030000UL; /* "warm bootstrap" */
117 flags |= 0x00040000UL; /* "remain halted" */
122 /* Wait for the secondaries to halt. */
123 cpu_clear(boot_cpuid, cpu_present_map);
124 while (cpus_weight(cpu_present_map))
128 /* If booted from SRM, reset some of the original environment. */
129 if (alpha_using_srm) {
130 #ifdef CONFIG_DUMMY_CONSOLE
131 /* If we've gotten here after SysRq-b, leave interrupt
132 context before taking over the console. */
135 /* This has the effect of resetting the VGA video origin. */
136 take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
138 pci_restore_srm_config();
142 if (alpha_mv.kill_arch)
143 alpha_mv.kill_arch(how->mode);
145 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
146 /* Unfortunately, since MILO doesn't currently understand
147 the hwrpb bits above, we can't reliably halt the
148 processor and keep it halted. So just loop. */
159 common_shutdown(int mode, char *restart_cmd)
161 struct halt_info args;
163 args.restart_cmd = restart_cmd;
164 on_each_cpu(common_shutdown_1, &args, 1, 0);
168 machine_restart(char *restart_cmd)
170 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
177 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
182 machine_power_off(void)
184 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
188 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
189 saved in the context it's used. */
192 show_regs(struct pt_regs *regs)
194 dik_show_regs(regs, NULL);
198 * Re-start a thread when doing execve()
201 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
208 EXPORT_SYMBOL(start_thread);
211 * Free current thread data structures etc..
221 /* Arrange for each exec'ed process to start off with a clean slate
222 with respect to the FPU. This is all exceptions disabled. */
223 current_thread_info()->ieee_state = 0;
224 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
226 /* Clean slate for TLS. */
227 current_thread_info()->pcb.unique = 0;
231 release_thread(struct task_struct *dead_task)
236 * "alpha_clone()".. By the time we get here, the
237 * non-volatile registers have also been saved on the
238 * stack. We do some ugly pointer stuff here.. (see
241 * Notice that "fork()" is implemented in terms of clone,
242 * with parameters (SIGCHLD, 0).
245 alpha_clone(unsigned long clone_flags, unsigned long usp,
246 int __user *parent_tid, int __user *child_tid,
247 unsigned long tls_value, struct pt_regs *regs)
252 return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
256 alpha_vfork(struct pt_regs *regs)
258 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
259 regs, 0, NULL, NULL);
263 * Copy an alpha thread..
265 * Note the "stack_offset" stuff: when returning to kernel mode, we need
266 * to have some extra stack-space for the kernel stack that still exists
267 * after the "ret_from_fork". When returning to user mode, we only want
268 * the space needed by the syscall stack frame (ie "struct pt_regs").
269 * Use the passed "regs" pointer to determine how much space we need
270 * for a kernel fork().
274 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
275 unsigned long unused,
276 struct task_struct * p, struct pt_regs * regs)
278 extern void ret_from_fork(void);
280 struct thread_info *childti = task_thread_info(p);
281 struct pt_regs * childregs;
282 struct switch_stack * childstack, *stack;
283 unsigned long stack_offset, settls;
285 stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
287 stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
288 childregs = (struct pt_regs *)
289 (stack_offset + PAGE_SIZE + task_stack_page(p));
295 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
297 stack = ((struct switch_stack *) regs) - 1;
298 childstack = ((struct switch_stack *) childregs) - 1;
299 *childstack = *stack;
300 childstack->r26 = (unsigned long) ret_from_fork;
301 childti->pcb.usp = usp;
302 childti->pcb.ksp = (unsigned long) childstack;
303 childti->pcb.flags = 1; /* set FEN, clear everything else */
305 /* Set a new TLS for the child thread? Peek back into the
306 syscall arguments that we saved on syscall entry. Oops,
307 except we'd have clobbered it with the parent/child set
308 of r20. Read the saved copy. */
309 /* Note: if CLONE_SETTLS is not set, then we must inherit the
310 value from the parent, which will have been set by the block
311 copy in dup_task_struct. This is non-intuitive, but is
312 required for proper operation in the case of a threaded
313 application calling fork. */
314 if (clone_flags & CLONE_SETTLS)
315 childti->pcb.unique = settls;
321 * Fill in the user structure for an ECOFF core dump.
324 dump_thread(struct pt_regs * pt, struct user * dump)
326 /* switch stack follows right below pt_regs: */
327 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
329 dump->magic = CMAGIC;
330 dump->start_code = current->mm->start_code;
331 dump->start_data = current->mm->start_data;
332 dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
333 dump->u_tsize = ((current->mm->end_code - dump->start_code)
335 dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
337 dump->u_ssize = (current->mm->start_stack - dump->start_stack
338 + PAGE_SIZE-1) >> PAGE_SHIFT;
341 * We store the registers in an order/format that is
342 * compatible with DEC Unix/OSF/1 as this makes life easier
345 dump->regs[EF_V0] = pt->r0;
346 dump->regs[EF_T0] = pt->r1;
347 dump->regs[EF_T1] = pt->r2;
348 dump->regs[EF_T2] = pt->r3;
349 dump->regs[EF_T3] = pt->r4;
350 dump->regs[EF_T4] = pt->r5;
351 dump->regs[EF_T5] = pt->r6;
352 dump->regs[EF_T6] = pt->r7;
353 dump->regs[EF_T7] = pt->r8;
354 dump->regs[EF_S0] = sw->r9;
355 dump->regs[EF_S1] = sw->r10;
356 dump->regs[EF_S2] = sw->r11;
357 dump->regs[EF_S3] = sw->r12;
358 dump->regs[EF_S4] = sw->r13;
359 dump->regs[EF_S5] = sw->r14;
360 dump->regs[EF_S6] = sw->r15;
361 dump->regs[EF_A3] = pt->r19;
362 dump->regs[EF_A4] = pt->r20;
363 dump->regs[EF_A5] = pt->r21;
364 dump->regs[EF_T8] = pt->r22;
365 dump->regs[EF_T9] = pt->r23;
366 dump->regs[EF_T10] = pt->r24;
367 dump->regs[EF_T11] = pt->r25;
368 dump->regs[EF_RA] = pt->r26;
369 dump->regs[EF_T12] = pt->r27;
370 dump->regs[EF_AT] = pt->r28;
371 dump->regs[EF_SP] = rdusp();
372 dump->regs[EF_PS] = pt->ps;
373 dump->regs[EF_PC] = pt->pc;
374 dump->regs[EF_GP] = pt->gp;
375 dump->regs[EF_A0] = pt->r16;
376 dump->regs[EF_A1] = pt->r17;
377 dump->regs[EF_A2] = pt->r18;
378 memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
380 EXPORT_SYMBOL(dump_thread);
383 * Fill in the user structure for a ELF core dump.
386 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
388 /* switch stack follows right below pt_regs: */
389 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
424 /* Once upon a time this was the PS value. Which is stupid
425 since that is always 8 for usermode. Usurped for the more
426 useful value of the thread's UNIQUE field. */
427 dest[32] = ti->pcb.unique;
429 EXPORT_SYMBOL(dump_elf_thread);
432 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
434 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
437 EXPORT_SYMBOL(dump_elf_task);
440 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
442 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
443 memcpy(dest, sw->fp, 32 * 8);
446 EXPORT_SYMBOL(dump_elf_task_fp);
449 * sys_execve() executes a new program.
452 do_sys_execve(char __user *ufilename, char __user * __user *argv,
453 char __user * __user *envp, struct pt_regs *regs)
458 filename = getname(ufilename);
459 error = PTR_ERR(filename);
460 if (IS_ERR(filename))
462 error = do_execve(filename, argv, envp, regs);
469 * Return saved PC of a blocked thread. This assumes the frame
470 * pointer is the 6th saved long on the kernel stack and that the
471 * saved return address is the first long in the frame. This all
472 * holds provided the thread blocked through a call to schedule() ($15
473 * is the frame pointer in schedule() and $15 is saved at offset 48 by
474 * entry.S:do_switch_stack).
476 * Under heavy swap load I've seen this lose in an ugly way. So do
477 * some extra sanity checking on the ranges we expect these pointers
478 * to be in so that we can fail gracefully. This is just for ps after
483 thread_saved_pc(struct task_struct *t)
485 unsigned long base = (unsigned long)task_stack_page(t);
486 unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
488 if (sp > base && sp+6*8 < base + 16*1024) {
489 fp = ((unsigned long*)sp)[6];
490 if (fp > sp && fp < base + 16*1024)
491 return *(unsigned long *)fp;
498 get_wchan(struct task_struct *p)
500 unsigned long schedule_frame;
502 if (!p || p == current || p->state == TASK_RUNNING)
505 * This one depends on the frame size of schedule(). Do a
506 * "disass schedule" in gdb to find the frame size. Also, the
507 * code assumes that sleep_on() follows immediately after
508 * interruptible_sleep_on() and that add_timer() follows
509 * immediately after interruptible_sleep(). Ugly, isn't it?
510 * Maybe adding a wchan field to task_struct would be better,
514 pc = thread_saved_pc(p);
515 if (in_sched_functions(pc)) {
516 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
517 return ((unsigned long *)schedule_frame)[12];