2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/bitops.h>
27 #include <linux/kthread.h>
28 #include <asm/atomic.h>
31 #include <linux/raid/bitmap.h>
37 #define NR_STRIPES 256
38 #define STRIPE_SIZE PAGE_SIZE
39 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
40 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
41 #define IO_THRESHOLD 1
42 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
43 #define HASH_MASK (NR_HASH - 1)
45 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
47 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
48 * order without overlap. There may be several bio's per stripe+device, and
49 * a bio could span several devices.
50 * When walking this list for a particular stripe+device, we must never proceed
51 * beyond a bio that extends past this device, as the next bio might no longer
53 * This macro is used to determine the 'next' bio in the list, given the sector
54 * of the current stripe+device
56 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
58 * The following can be used to debug the driver
61 #define RAID5_PARANOIA 1
62 #if RAID5_PARANOIA && defined(CONFIG_SMP)
63 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
65 # define CHECK_DEVLOCK()
68 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
74 #if !RAID6_USE_EMPTY_ZERO_PAGE
75 /* In .bss so it's zeroed */
76 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
79 static inline int raid6_next_disk(int disk, int raid_disks)
82 return (disk < raid_disks) ? disk : 0;
84 static void print_raid5_conf (raid5_conf_t *conf);
86 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
88 if (atomic_dec_and_test(&sh->count)) {
89 BUG_ON(!list_empty(&sh->lru));
90 BUG_ON(atomic_read(&conf->active_stripes)==0);
91 if (test_bit(STRIPE_HANDLE, &sh->state)) {
92 if (test_bit(STRIPE_DELAYED, &sh->state))
93 list_add_tail(&sh->lru, &conf->delayed_list);
94 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
95 conf->seq_write == sh->bm_seq)
96 list_add_tail(&sh->lru, &conf->bitmap_list);
98 clear_bit(STRIPE_BIT_DELAY, &sh->state);
99 list_add_tail(&sh->lru, &conf->handle_list);
101 md_wakeup_thread(conf->mddev->thread);
103 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
104 atomic_dec(&conf->preread_active_stripes);
105 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
106 md_wakeup_thread(conf->mddev->thread);
108 atomic_dec(&conf->active_stripes);
109 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
110 list_add_tail(&sh->lru, &conf->inactive_list);
111 wake_up(&conf->wait_for_stripe);
116 static void release_stripe(struct stripe_head *sh)
118 raid5_conf_t *conf = sh->raid_conf;
121 spin_lock_irqsave(&conf->device_lock, flags);
122 __release_stripe(conf, sh);
123 spin_unlock_irqrestore(&conf->device_lock, flags);
126 static inline void remove_hash(struct stripe_head *sh)
128 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
130 hlist_del_init(&sh->hash);
133 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
135 struct hlist_head *hp = stripe_hash(conf, sh->sector);
137 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
140 hlist_add_head(&sh->hash, hp);
144 /* find an idle stripe, make sure it is unhashed, and return it. */
145 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
147 struct stripe_head *sh = NULL;
148 struct list_head *first;
151 if (list_empty(&conf->inactive_list))
153 first = conf->inactive_list.next;
154 sh = list_entry(first, struct stripe_head, lru);
155 list_del_init(first);
157 atomic_inc(&conf->active_stripes);
162 static void shrink_buffers(struct stripe_head *sh, int num)
167 for (i=0; i<num ; i++) {
171 sh->dev[i].page = NULL;
176 static int grow_buffers(struct stripe_head *sh, int num)
180 for (i=0; i<num; i++) {
183 if (!(page = alloc_page(GFP_KERNEL))) {
186 sh->dev[i].page = page;
191 static void raid5_build_block (struct stripe_head *sh, int i);
193 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
195 raid5_conf_t *conf = sh->raid_conf;
198 BUG_ON(atomic_read(&sh->count) != 0);
199 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
202 PRINTK("init_stripe called, stripe %llu\n",
203 (unsigned long long)sh->sector);
213 for (i = sh->disks; i--; ) {
214 struct r5dev *dev = &sh->dev[i];
216 if (dev->toread || dev->towrite || dev->written ||
217 test_bit(R5_LOCKED, &dev->flags)) {
218 printk("sector=%llx i=%d %p %p %p %d\n",
219 (unsigned long long)sh->sector, i, dev->toread,
220 dev->towrite, dev->written,
221 test_bit(R5_LOCKED, &dev->flags));
225 raid5_build_block(sh, i);
227 insert_hash(conf, sh);
230 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
232 struct stripe_head *sh;
233 struct hlist_node *hn;
236 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
237 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
238 if (sh->sector == sector && sh->disks == disks)
240 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
244 static void unplug_slaves(mddev_t *mddev);
245 static void raid5_unplug_device(request_queue_t *q);
247 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
248 int pd_idx, int noblock)
250 struct stripe_head *sh;
252 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
254 spin_lock_irq(&conf->device_lock);
257 wait_event_lock_irq(conf->wait_for_stripe,
259 conf->device_lock, /* nothing */);
260 sh = __find_stripe(conf, sector, disks);
262 if (!conf->inactive_blocked)
263 sh = get_free_stripe(conf);
264 if (noblock && sh == NULL)
267 conf->inactive_blocked = 1;
268 wait_event_lock_irq(conf->wait_for_stripe,
269 !list_empty(&conf->inactive_list) &&
270 (atomic_read(&conf->active_stripes)
271 < (conf->max_nr_stripes *3/4)
272 || !conf->inactive_blocked),
274 unplug_slaves(conf->mddev)
276 conf->inactive_blocked = 0;
278 init_stripe(sh, sector, pd_idx, disks);
280 if (atomic_read(&sh->count)) {
281 BUG_ON(!list_empty(&sh->lru));
283 if (!test_bit(STRIPE_HANDLE, &sh->state))
284 atomic_inc(&conf->active_stripes);
285 if (list_empty(&sh->lru))
287 list_del_init(&sh->lru);
290 } while (sh == NULL);
293 atomic_inc(&sh->count);
295 spin_unlock_irq(&conf->device_lock);
299 static int grow_one_stripe(raid5_conf_t *conf)
301 struct stripe_head *sh;
302 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
305 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
306 sh->raid_conf = conf;
307 spin_lock_init(&sh->lock);
309 if (grow_buffers(sh, conf->raid_disks)) {
310 shrink_buffers(sh, conf->raid_disks);
311 kmem_cache_free(conf->slab_cache, sh);
314 sh->disks = conf->raid_disks;
315 /* we just created an active stripe so... */
316 atomic_set(&sh->count, 1);
317 atomic_inc(&conf->active_stripes);
318 INIT_LIST_HEAD(&sh->lru);
323 static int grow_stripes(raid5_conf_t *conf, int num)
326 int devs = conf->raid_disks;
328 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
329 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
330 conf->active_name = 0;
331 sc = kmem_cache_create(conf->cache_name[conf->active_name],
332 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
336 conf->slab_cache = sc;
337 conf->pool_size = devs;
339 if (!grow_one_stripe(conf))
344 #ifdef CONFIG_MD_RAID5_RESHAPE
345 static int resize_stripes(raid5_conf_t *conf, int newsize)
347 /* Make all the stripes able to hold 'newsize' devices.
348 * New slots in each stripe get 'page' set to a new page.
350 * This happens in stages:
351 * 1/ create a new kmem_cache and allocate the required number of
353 * 2/ gather all the old stripe_heads and tranfer the pages across
354 * to the new stripe_heads. This will have the side effect of
355 * freezing the array as once all stripe_heads have been collected,
356 * no IO will be possible. Old stripe heads are freed once their
357 * pages have been transferred over, and the old kmem_cache is
358 * freed when all stripes are done.
359 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
360 * we simple return a failre status - no need to clean anything up.
361 * 4/ allocate new pages for the new slots in the new stripe_heads.
362 * If this fails, we don't bother trying the shrink the
363 * stripe_heads down again, we just leave them as they are.
364 * As each stripe_head is processed the new one is released into
367 * Once step2 is started, we cannot afford to wait for a write,
368 * so we use GFP_NOIO allocations.
370 struct stripe_head *osh, *nsh;
371 LIST_HEAD(newstripes);
372 struct disk_info *ndisks;
377 if (newsize <= conf->pool_size)
378 return 0; /* never bother to shrink */
381 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
382 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
387 for (i = conf->max_nr_stripes; i; i--) {
388 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
392 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
394 nsh->raid_conf = conf;
395 spin_lock_init(&nsh->lock);
397 list_add(&nsh->lru, &newstripes);
400 /* didn't get enough, give up */
401 while (!list_empty(&newstripes)) {
402 nsh = list_entry(newstripes.next, struct stripe_head, lru);
404 kmem_cache_free(sc, nsh);
406 kmem_cache_destroy(sc);
409 /* Step 2 - Must use GFP_NOIO now.
410 * OK, we have enough stripes, start collecting inactive
411 * stripes and copying them over
413 list_for_each_entry(nsh, &newstripes, lru) {
414 spin_lock_irq(&conf->device_lock);
415 wait_event_lock_irq(conf->wait_for_stripe,
416 !list_empty(&conf->inactive_list),
418 unplug_slaves(conf->mddev)
420 osh = get_free_stripe(conf);
421 spin_unlock_irq(&conf->device_lock);
422 atomic_set(&nsh->count, 1);
423 for(i=0; i<conf->pool_size; i++)
424 nsh->dev[i].page = osh->dev[i].page;
425 for( ; i<newsize; i++)
426 nsh->dev[i].page = NULL;
427 kmem_cache_free(conf->slab_cache, osh);
429 kmem_cache_destroy(conf->slab_cache);
432 * At this point, we are holding all the stripes so the array
433 * is completely stalled, so now is a good time to resize
436 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
438 for (i=0; i<conf->raid_disks; i++)
439 ndisks[i] = conf->disks[i];
441 conf->disks = ndisks;
445 /* Step 4, return new stripes to service */
446 while(!list_empty(&newstripes)) {
447 nsh = list_entry(newstripes.next, struct stripe_head, lru);
448 list_del_init(&nsh->lru);
449 for (i=conf->raid_disks; i < newsize; i++)
450 if (nsh->dev[i].page == NULL) {
451 struct page *p = alloc_page(GFP_NOIO);
452 nsh->dev[i].page = p;
458 /* critical section pass, GFP_NOIO no longer needed */
460 conf->slab_cache = sc;
461 conf->active_name = 1-conf->active_name;
462 conf->pool_size = newsize;
467 static int drop_one_stripe(raid5_conf_t *conf)
469 struct stripe_head *sh;
471 spin_lock_irq(&conf->device_lock);
472 sh = get_free_stripe(conf);
473 spin_unlock_irq(&conf->device_lock);
476 BUG_ON(atomic_read(&sh->count));
477 shrink_buffers(sh, conf->pool_size);
478 kmem_cache_free(conf->slab_cache, sh);
479 atomic_dec(&conf->active_stripes);
483 static void shrink_stripes(raid5_conf_t *conf)
485 while (drop_one_stripe(conf))
488 if (conf->slab_cache)
489 kmem_cache_destroy(conf->slab_cache);
490 conf->slab_cache = NULL;
493 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
496 struct stripe_head *sh = bi->bi_private;
497 raid5_conf_t *conf = sh->raid_conf;
498 int disks = sh->disks, i;
499 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
504 for (i=0 ; i<disks; i++)
505 if (bi == &sh->dev[i].req)
508 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
509 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
520 spin_lock_irqsave(&conf->device_lock, flags);
521 /* we can return a buffer if we bypassed the cache or
522 * if the top buffer is not in highmem. If there are
523 * multiple buffers, leave the extra work to
526 buffer = sh->bh_read[i];
528 (!PageHighMem(buffer->b_page)
529 || buffer->b_page == bh->b_page )
531 sh->bh_read[i] = buffer->b_reqnext;
532 buffer->b_reqnext = NULL;
535 spin_unlock_irqrestore(&conf->device_lock, flags);
536 if (sh->bh_page[i]==bh->b_page)
537 set_buffer_uptodate(bh);
539 if (buffer->b_page != bh->b_page)
540 memcpy(buffer->b_data, bh->b_data, bh->b_size);
541 buffer->b_end_io(buffer, 1);
544 set_bit(R5_UPTODATE, &sh->dev[i].flags);
546 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
547 printk(KERN_INFO "raid5: read error corrected!!\n");
548 clear_bit(R5_ReadError, &sh->dev[i].flags);
549 clear_bit(R5_ReWrite, &sh->dev[i].flags);
551 if (atomic_read(&conf->disks[i].rdev->read_errors))
552 atomic_set(&conf->disks[i].rdev->read_errors, 0);
555 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
556 atomic_inc(&conf->disks[i].rdev->read_errors);
557 if (conf->mddev->degraded)
558 printk(KERN_WARNING "raid5: read error not correctable.\n");
559 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
561 printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
562 else if (atomic_read(&conf->disks[i].rdev->read_errors)
563 > conf->max_nr_stripes)
565 "raid5: Too many read errors, failing device.\n");
569 set_bit(R5_ReadError, &sh->dev[i].flags);
571 clear_bit(R5_ReadError, &sh->dev[i].flags);
572 clear_bit(R5_ReWrite, &sh->dev[i].flags);
573 md_error(conf->mddev, conf->disks[i].rdev);
576 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
578 /* must restore b_page before unlocking buffer... */
579 if (sh->bh_page[i] != bh->b_page) {
580 bh->b_page = sh->bh_page[i];
581 bh->b_data = page_address(bh->b_page);
582 clear_buffer_uptodate(bh);
585 clear_bit(R5_LOCKED, &sh->dev[i].flags);
586 set_bit(STRIPE_HANDLE, &sh->state);
591 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
594 struct stripe_head *sh = bi->bi_private;
595 raid5_conf_t *conf = sh->raid_conf;
596 int disks = sh->disks, i;
598 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
603 for (i=0 ; i<disks; i++)
604 if (bi == &sh->dev[i].req)
607 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
608 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
615 spin_lock_irqsave(&conf->device_lock, flags);
617 md_error(conf->mddev, conf->disks[i].rdev);
619 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
621 clear_bit(R5_LOCKED, &sh->dev[i].flags);
622 set_bit(STRIPE_HANDLE, &sh->state);
623 __release_stripe(conf, sh);
624 spin_unlock_irqrestore(&conf->device_lock, flags);
629 static sector_t compute_blocknr(struct stripe_head *sh, int i);
631 static void raid5_build_block (struct stripe_head *sh, int i)
633 struct r5dev *dev = &sh->dev[i];
636 dev->req.bi_io_vec = &dev->vec;
638 dev->req.bi_max_vecs++;
639 dev->vec.bv_page = dev->page;
640 dev->vec.bv_len = STRIPE_SIZE;
641 dev->vec.bv_offset = 0;
643 dev->req.bi_sector = sh->sector;
644 dev->req.bi_private = sh;
647 dev->sector = compute_blocknr(sh, i);
650 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
652 char b[BDEVNAME_SIZE];
653 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
654 PRINTK("raid5: error called\n");
656 if (!test_bit(Faulty, &rdev->flags)) {
658 if (test_bit(In_sync, &rdev->flags)) {
659 conf->working_disks--;
661 conf->failed_disks++;
662 clear_bit(In_sync, &rdev->flags);
664 * if recovery was running, make sure it aborts.
666 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
668 set_bit(Faulty, &rdev->flags);
670 "raid5: Disk failure on %s, disabling device."
671 " Operation continuing on %d devices\n",
672 bdevname(rdev->bdev,b), conf->working_disks);
677 * Input: a 'big' sector number,
678 * Output: index of the data and parity disk, and the sector # in them.
680 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
681 unsigned int data_disks, unsigned int * dd_idx,
682 unsigned int * pd_idx, raid5_conf_t *conf)
685 unsigned long chunk_number;
686 unsigned int chunk_offset;
688 int sectors_per_chunk = conf->chunk_size >> 9;
690 /* First compute the information on this sector */
693 * Compute the chunk number and the sector offset inside the chunk
695 chunk_offset = sector_div(r_sector, sectors_per_chunk);
696 chunk_number = r_sector;
697 BUG_ON(r_sector != chunk_number);
700 * Compute the stripe number
702 stripe = chunk_number / data_disks;
705 * Compute the data disk and parity disk indexes inside the stripe
707 *dd_idx = chunk_number % data_disks;
710 * Select the parity disk based on the user selected algorithm.
712 switch(conf->level) {
714 *pd_idx = data_disks;
717 switch (conf->algorithm) {
718 case ALGORITHM_LEFT_ASYMMETRIC:
719 *pd_idx = data_disks - stripe % raid_disks;
720 if (*dd_idx >= *pd_idx)
723 case ALGORITHM_RIGHT_ASYMMETRIC:
724 *pd_idx = stripe % raid_disks;
725 if (*dd_idx >= *pd_idx)
728 case ALGORITHM_LEFT_SYMMETRIC:
729 *pd_idx = data_disks - stripe % raid_disks;
730 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
732 case ALGORITHM_RIGHT_SYMMETRIC:
733 *pd_idx = stripe % raid_disks;
734 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
737 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
744 switch (conf->algorithm) {
745 case ALGORITHM_LEFT_ASYMMETRIC:
746 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
747 if (*pd_idx == raid_disks-1)
748 (*dd_idx)++; /* Q D D D P */
749 else if (*dd_idx >= *pd_idx)
750 (*dd_idx) += 2; /* D D P Q D */
752 case ALGORITHM_RIGHT_ASYMMETRIC:
753 *pd_idx = stripe % raid_disks;
754 if (*pd_idx == raid_disks-1)
755 (*dd_idx)++; /* Q D D D P */
756 else if (*dd_idx >= *pd_idx)
757 (*dd_idx) += 2; /* D D P Q D */
759 case ALGORITHM_LEFT_SYMMETRIC:
760 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
761 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
763 case ALGORITHM_RIGHT_SYMMETRIC:
764 *pd_idx = stripe % raid_disks;
765 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
768 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
775 * Finally, compute the new sector number
777 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
782 static sector_t compute_blocknr(struct stripe_head *sh, int i)
784 raid5_conf_t *conf = sh->raid_conf;
785 int raid_disks = sh->disks, data_disks = raid_disks - 1;
786 sector_t new_sector = sh->sector, check;
787 int sectors_per_chunk = conf->chunk_size >> 9;
790 int chunk_number, dummy1, dummy2, dd_idx = i;
794 chunk_offset = sector_div(new_sector, sectors_per_chunk);
796 BUG_ON(new_sector != stripe);
800 switch(conf->level) {
803 switch (conf->algorithm) {
804 case ALGORITHM_LEFT_ASYMMETRIC:
805 case ALGORITHM_RIGHT_ASYMMETRIC:
809 case ALGORITHM_LEFT_SYMMETRIC:
810 case ALGORITHM_RIGHT_SYMMETRIC:
813 i -= (sh->pd_idx + 1);
816 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
821 data_disks = raid_disks - 2;
822 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
823 return 0; /* It is the Q disk */
824 switch (conf->algorithm) {
825 case ALGORITHM_LEFT_ASYMMETRIC:
826 case ALGORITHM_RIGHT_ASYMMETRIC:
827 if (sh->pd_idx == raid_disks-1)
829 else if (i > sh->pd_idx)
830 i -= 2; /* D D P Q D */
832 case ALGORITHM_LEFT_SYMMETRIC:
833 case ALGORITHM_RIGHT_SYMMETRIC:
834 if (sh->pd_idx == raid_disks-1)
840 i -= (sh->pd_idx + 2);
844 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
850 chunk_number = stripe * data_disks + i;
851 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
853 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
854 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
855 printk(KERN_ERR "compute_blocknr: map not correct\n");
864 * Copy data between a page in the stripe cache, and one or more bion
865 * The page could align with the middle of the bio, or there could be
866 * several bion, each with several bio_vecs, which cover part of the page
867 * Multiple bion are linked together on bi_next. There may be extras
868 * at the end of this list. We ignore them.
870 static void copy_data(int frombio, struct bio *bio,
874 char *pa = page_address(page);
879 if (bio->bi_sector >= sector)
880 page_offset = (signed)(bio->bi_sector - sector) * 512;
882 page_offset = (signed)(sector - bio->bi_sector) * -512;
883 bio_for_each_segment(bvl, bio, i) {
884 int len = bio_iovec_idx(bio,i)->bv_len;
888 if (page_offset < 0) {
889 b_offset = -page_offset;
890 page_offset += b_offset;
894 if (len > 0 && page_offset + len > STRIPE_SIZE)
895 clen = STRIPE_SIZE - page_offset;
899 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
901 memcpy(pa+page_offset, ba+b_offset, clen);
903 memcpy(ba+b_offset, pa+page_offset, clen);
904 __bio_kunmap_atomic(ba, KM_USER0);
906 if (clen < len) /* hit end of page */
912 #define check_xor() do { \
913 if (count == MAX_XOR_BLOCKS) { \
914 xor_block(count, STRIPE_SIZE, ptr); \
920 static void compute_block(struct stripe_head *sh, int dd_idx)
922 int i, count, disks = sh->disks;
923 void *ptr[MAX_XOR_BLOCKS], *p;
925 PRINTK("compute_block, stripe %llu, idx %d\n",
926 (unsigned long long)sh->sector, dd_idx);
928 ptr[0] = page_address(sh->dev[dd_idx].page);
929 memset(ptr[0], 0, STRIPE_SIZE);
931 for (i = disks ; i--; ) {
934 p = page_address(sh->dev[i].page);
935 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
938 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
939 " not present\n", dd_idx,
940 (unsigned long long)sh->sector, i);
945 xor_block(count, STRIPE_SIZE, ptr);
946 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
949 static void compute_parity5(struct stripe_head *sh, int method)
951 raid5_conf_t *conf = sh->raid_conf;
952 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
953 void *ptr[MAX_XOR_BLOCKS];
956 PRINTK("compute_parity5, stripe %llu, method %d\n",
957 (unsigned long long)sh->sector, method);
960 ptr[0] = page_address(sh->dev[pd_idx].page);
962 case READ_MODIFY_WRITE:
963 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
964 for (i=disks ; i-- ;) {
967 if (sh->dev[i].towrite &&
968 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
969 ptr[count++] = page_address(sh->dev[i].page);
970 chosen = sh->dev[i].towrite;
971 sh->dev[i].towrite = NULL;
973 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
974 wake_up(&conf->wait_for_overlap);
976 BUG_ON(sh->dev[i].written);
977 sh->dev[i].written = chosen;
982 case RECONSTRUCT_WRITE:
983 memset(ptr[0], 0, STRIPE_SIZE);
984 for (i= disks; i-- ;)
985 if (i!=pd_idx && sh->dev[i].towrite) {
986 chosen = sh->dev[i].towrite;
987 sh->dev[i].towrite = NULL;
989 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
990 wake_up(&conf->wait_for_overlap);
992 BUG_ON(sh->dev[i].written);
993 sh->dev[i].written = chosen;
1000 xor_block(count, STRIPE_SIZE, ptr);
1004 for (i = disks; i--;)
1005 if (sh->dev[i].written) {
1006 sector_t sector = sh->dev[i].sector;
1007 struct bio *wbi = sh->dev[i].written;
1008 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1009 copy_data(1, wbi, sh->dev[i].page, sector);
1010 wbi = r5_next_bio(wbi, sector);
1013 set_bit(R5_LOCKED, &sh->dev[i].flags);
1014 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1018 case RECONSTRUCT_WRITE:
1022 ptr[count++] = page_address(sh->dev[i].page);
1026 case READ_MODIFY_WRITE:
1027 for (i = disks; i--;)
1028 if (sh->dev[i].written) {
1029 ptr[count++] = page_address(sh->dev[i].page);
1034 xor_block(count, STRIPE_SIZE, ptr);
1036 if (method != CHECK_PARITY) {
1037 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1038 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1040 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1043 static void compute_parity6(struct stripe_head *sh, int method)
1045 raid6_conf_t *conf = sh->raid_conf;
1046 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1048 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1051 qd_idx = raid6_next_disk(pd_idx, disks);
1052 d0_idx = raid6_next_disk(qd_idx, disks);
1054 PRINTK("compute_parity, stripe %llu, method %d\n",
1055 (unsigned long long)sh->sector, method);
1058 case READ_MODIFY_WRITE:
1059 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1060 case RECONSTRUCT_WRITE:
1061 for (i= disks; i-- ;)
1062 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1063 chosen = sh->dev[i].towrite;
1064 sh->dev[i].towrite = NULL;
1066 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1067 wake_up(&conf->wait_for_overlap);
1069 if (sh->dev[i].written) BUG();
1070 sh->dev[i].written = chosen;
1074 BUG(); /* Not implemented yet */
1077 for (i = disks; i--;)
1078 if (sh->dev[i].written) {
1079 sector_t sector = sh->dev[i].sector;
1080 struct bio *wbi = sh->dev[i].written;
1081 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1082 copy_data(1, wbi, sh->dev[i].page, sector);
1083 wbi = r5_next_bio(wbi, sector);
1086 set_bit(R5_LOCKED, &sh->dev[i].flags);
1087 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1091 // case RECONSTRUCT_WRITE:
1092 // case CHECK_PARITY:
1093 // case UPDATE_PARITY:
1094 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1095 /* FIX: Is this ordering of drives even remotely optimal? */
1099 ptrs[count++] = page_address(sh->dev[i].page);
1100 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1101 printk("block %d/%d not uptodate on parity calc\n", i,count);
1102 i = raid6_next_disk(i, disks);
1103 } while ( i != d0_idx );
1107 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1110 case RECONSTRUCT_WRITE:
1111 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1112 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1113 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1114 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1117 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1118 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1124 /* Compute one missing block */
1125 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1127 raid6_conf_t *conf = sh->raid_conf;
1128 int i, count, disks = conf->raid_disks;
1129 void *ptr[MAX_XOR_BLOCKS], *p;
1130 int pd_idx = sh->pd_idx;
1131 int qd_idx = raid6_next_disk(pd_idx, disks);
1133 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1134 (unsigned long long)sh->sector, dd_idx);
1136 if ( dd_idx == qd_idx ) {
1137 /* We're actually computing the Q drive */
1138 compute_parity6(sh, UPDATE_PARITY);
1140 ptr[0] = page_address(sh->dev[dd_idx].page);
1141 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1143 for (i = disks ; i--; ) {
1144 if (i == dd_idx || i == qd_idx)
1146 p = page_address(sh->dev[i].page);
1147 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1150 printk("compute_block() %d, stripe %llu, %d"
1151 " not present\n", dd_idx,
1152 (unsigned long long)sh->sector, i);
1157 xor_block(count, STRIPE_SIZE, ptr);
1158 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1159 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1163 /* Compute two missing blocks */
1164 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1166 raid6_conf_t *conf = sh->raid_conf;
1167 int i, count, disks = conf->raid_disks;
1168 int pd_idx = sh->pd_idx;
1169 int qd_idx = raid6_next_disk(pd_idx, disks);
1170 int d0_idx = raid6_next_disk(qd_idx, disks);
1173 /* faila and failb are disk numbers relative to d0_idx */
1174 /* pd_idx become disks-2 and qd_idx become disks-1 */
1175 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1176 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1178 BUG_ON(faila == failb);
1179 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1181 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1182 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1184 if ( failb == disks-1 ) {
1185 /* Q disk is one of the missing disks */
1186 if ( faila == disks-2 ) {
1187 /* Missing P+Q, just recompute */
1188 compute_parity6(sh, UPDATE_PARITY);
1191 /* We're missing D+Q; recompute D from P */
1192 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1193 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1198 /* We're missing D+P or D+D; build pointer table */
1200 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1206 ptrs[count++] = page_address(sh->dev[i].page);
1207 i = raid6_next_disk(i, disks);
1208 if (i != dd_idx1 && i != dd_idx2 &&
1209 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1210 printk("compute_2 with missing block %d/%d\n", count, i);
1211 } while ( i != d0_idx );
1213 if ( failb == disks-2 ) {
1214 /* We're missing D+P. */
1215 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1217 /* We're missing D+D. */
1218 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1221 /* Both the above update both missing blocks */
1222 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1223 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1230 * Each stripe/dev can have one or more bion attached.
1231 * toread/towrite point to the first in a chain.
1232 * The bi_next chain must be in order.
1234 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1237 raid5_conf_t *conf = sh->raid_conf;
1240 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1241 (unsigned long long)bi->bi_sector,
1242 (unsigned long long)sh->sector);
1245 spin_lock(&sh->lock);
1246 spin_lock_irq(&conf->device_lock);
1248 bip = &sh->dev[dd_idx].towrite;
1249 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1252 bip = &sh->dev[dd_idx].toread;
1253 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1254 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1256 bip = & (*bip)->bi_next;
1258 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1261 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1265 bi->bi_phys_segments ++;
1266 spin_unlock_irq(&conf->device_lock);
1267 spin_unlock(&sh->lock);
1269 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1270 (unsigned long long)bi->bi_sector,
1271 (unsigned long long)sh->sector, dd_idx);
1273 if (conf->mddev->bitmap && firstwrite) {
1274 sh->bm_seq = conf->seq_write;
1275 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1277 set_bit(STRIPE_BIT_DELAY, &sh->state);
1281 /* check if page is covered */
1282 sector_t sector = sh->dev[dd_idx].sector;
1283 for (bi=sh->dev[dd_idx].towrite;
1284 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1285 bi && bi->bi_sector <= sector;
1286 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1287 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1288 sector = bi->bi_sector + (bi->bi_size>>9);
1290 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1291 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1296 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1297 spin_unlock_irq(&conf->device_lock);
1298 spin_unlock(&sh->lock);
1302 static void end_reshape(raid5_conf_t *conf);
1304 static int page_is_zero(struct page *p)
1306 char *a = page_address(p);
1307 return ((*(u32*)a) == 0 &&
1308 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1311 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1313 int sectors_per_chunk = conf->chunk_size >> 9;
1314 sector_t x = stripe;
1316 int chunk_offset = sector_div(x, sectors_per_chunk);
1318 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1319 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1325 * handle_stripe - do things to a stripe.
1327 * We lock the stripe and then examine the state of various bits
1328 * to see what needs to be done.
1330 * return some read request which now have data
1331 * return some write requests which are safely on disc
1332 * schedule a read on some buffers
1333 * schedule a write of some buffers
1334 * return confirmation of parity correctness
1336 * Parity calculations are done inside the stripe lock
1337 * buffers are taken off read_list or write_list, and bh_cache buffers
1338 * get BH_Lock set before the stripe lock is released.
1342 static void handle_stripe5(struct stripe_head *sh)
1344 raid5_conf_t *conf = sh->raid_conf;
1345 int disks = sh->disks;
1346 struct bio *return_bi= NULL;
1349 int syncing, expanding, expanded;
1350 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1351 int non_overwrite = 0;
1355 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1356 (unsigned long long)sh->sector, atomic_read(&sh->count),
1359 spin_lock(&sh->lock);
1360 clear_bit(STRIPE_HANDLE, &sh->state);
1361 clear_bit(STRIPE_DELAYED, &sh->state);
1363 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1364 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1365 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1366 /* Now to look around and see what can be done */
1369 for (i=disks; i--; ) {
1372 clear_bit(R5_Insync, &dev->flags);
1374 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1375 i, dev->flags, dev->toread, dev->towrite, dev->written);
1376 /* maybe we can reply to a read */
1377 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1378 struct bio *rbi, *rbi2;
1379 PRINTK("Return read for disc %d\n", i);
1380 spin_lock_irq(&conf->device_lock);
1383 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1384 wake_up(&conf->wait_for_overlap);
1385 spin_unlock_irq(&conf->device_lock);
1386 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1387 copy_data(0, rbi, dev->page, dev->sector);
1388 rbi2 = r5_next_bio(rbi, dev->sector);
1389 spin_lock_irq(&conf->device_lock);
1390 if (--rbi->bi_phys_segments == 0) {
1391 rbi->bi_next = return_bi;
1394 spin_unlock_irq(&conf->device_lock);
1399 /* now count some things */
1400 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1401 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1404 if (dev->toread) to_read++;
1407 if (!test_bit(R5_OVERWRITE, &dev->flags))
1410 if (dev->written) written++;
1411 rdev = rcu_dereference(conf->disks[i].rdev);
1412 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1413 /* The ReadError flag will just be confusing now */
1414 clear_bit(R5_ReadError, &dev->flags);
1415 clear_bit(R5_ReWrite, &dev->flags);
1417 if (!rdev || !test_bit(In_sync, &rdev->flags)
1418 || test_bit(R5_ReadError, &dev->flags)) {
1422 set_bit(R5_Insync, &dev->flags);
1425 PRINTK("locked=%d uptodate=%d to_read=%d"
1426 " to_write=%d failed=%d failed_num=%d\n",
1427 locked, uptodate, to_read, to_write, failed, failed_num);
1428 /* check if the array has lost two devices and, if so, some requests might
1431 if (failed > 1 && to_read+to_write+written) {
1432 for (i=disks; i--; ) {
1435 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1438 rdev = rcu_dereference(conf->disks[i].rdev);
1439 if (rdev && test_bit(In_sync, &rdev->flags))
1440 /* multiple read failures in one stripe */
1441 md_error(conf->mddev, rdev);
1445 spin_lock_irq(&conf->device_lock);
1446 /* fail all writes first */
1447 bi = sh->dev[i].towrite;
1448 sh->dev[i].towrite = NULL;
1449 if (bi) { to_write--; bitmap_end = 1; }
1451 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1452 wake_up(&conf->wait_for_overlap);
1454 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1455 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1456 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1457 if (--bi->bi_phys_segments == 0) {
1458 md_write_end(conf->mddev);
1459 bi->bi_next = return_bi;
1464 /* and fail all 'written' */
1465 bi = sh->dev[i].written;
1466 sh->dev[i].written = NULL;
1467 if (bi) bitmap_end = 1;
1468 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1469 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1470 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1471 if (--bi->bi_phys_segments == 0) {
1472 md_write_end(conf->mddev);
1473 bi->bi_next = return_bi;
1479 /* fail any reads if this device is non-operational */
1480 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1481 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1482 bi = sh->dev[i].toread;
1483 sh->dev[i].toread = NULL;
1484 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1485 wake_up(&conf->wait_for_overlap);
1487 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1488 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1489 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1490 if (--bi->bi_phys_segments == 0) {
1491 bi->bi_next = return_bi;
1497 spin_unlock_irq(&conf->device_lock);
1499 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1500 STRIPE_SECTORS, 0, 0);
1503 if (failed > 1 && syncing) {
1504 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1505 clear_bit(STRIPE_SYNCING, &sh->state);
1509 /* might be able to return some write requests if the parity block
1510 * is safe, or on a failed drive
1512 dev = &sh->dev[sh->pd_idx];
1514 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1515 test_bit(R5_UPTODATE, &dev->flags))
1516 || (failed == 1 && failed_num == sh->pd_idx))
1518 /* any written block on an uptodate or failed drive can be returned.
1519 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1520 * never LOCKED, so we don't need to test 'failed' directly.
1522 for (i=disks; i--; )
1523 if (sh->dev[i].written) {
1525 if (!test_bit(R5_LOCKED, &dev->flags) &&
1526 test_bit(R5_UPTODATE, &dev->flags) ) {
1527 /* We can return any write requests */
1528 struct bio *wbi, *wbi2;
1530 PRINTK("Return write for disc %d\n", i);
1531 spin_lock_irq(&conf->device_lock);
1533 dev->written = NULL;
1534 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1535 wbi2 = r5_next_bio(wbi, dev->sector);
1536 if (--wbi->bi_phys_segments == 0) {
1537 md_write_end(conf->mddev);
1538 wbi->bi_next = return_bi;
1543 if (dev->towrite == NULL)
1545 spin_unlock_irq(&conf->device_lock);
1547 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1549 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1554 /* Now we might consider reading some blocks, either to check/generate
1555 * parity, or to satisfy requests
1556 * or to load a block that is being partially written.
1558 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1559 for (i=disks; i--;) {
1561 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1563 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1566 (failed && (sh->dev[failed_num].toread ||
1567 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1570 /* we would like to get this block, possibly
1571 * by computing it, but we might not be able to
1573 if (uptodate == disks-1) {
1574 PRINTK("Computing block %d\n", i);
1575 compute_block(sh, i);
1577 } else if (test_bit(R5_Insync, &dev->flags)) {
1578 set_bit(R5_LOCKED, &dev->flags);
1579 set_bit(R5_Wantread, &dev->flags);
1581 /* if I am just reading this block and we don't have
1582 a failed drive, or any pending writes then sidestep the cache */
1583 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1584 ! syncing && !failed && !to_write) {
1585 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1586 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1590 PRINTK("Reading block %d (sync=%d)\n",
1595 set_bit(STRIPE_HANDLE, &sh->state);
1598 /* now to consider writing and what else, if anything should be read */
1601 for (i=disks ; i--;) {
1602 /* would I have to read this buffer for read_modify_write */
1604 if ((dev->towrite || i == sh->pd_idx) &&
1605 (!test_bit(R5_LOCKED, &dev->flags)
1607 || sh->bh_page[i]!=bh->b_page
1610 !test_bit(R5_UPTODATE, &dev->flags)) {
1611 if (test_bit(R5_Insync, &dev->flags)
1612 /* && !(!mddev->insync && i == sh->pd_idx) */
1615 else rmw += 2*disks; /* cannot read it */
1617 /* Would I have to read this buffer for reconstruct_write */
1618 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1619 (!test_bit(R5_LOCKED, &dev->flags)
1621 || sh->bh_page[i] != bh->b_page
1624 !test_bit(R5_UPTODATE, &dev->flags)) {
1625 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1626 else rcw += 2*disks;
1629 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1630 (unsigned long long)sh->sector, rmw, rcw);
1631 set_bit(STRIPE_HANDLE, &sh->state);
1632 if (rmw < rcw && rmw > 0)
1633 /* prefer read-modify-write, but need to get some data */
1634 for (i=disks; i--;) {
1636 if ((dev->towrite || i == sh->pd_idx) &&
1637 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1638 test_bit(R5_Insync, &dev->flags)) {
1639 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1641 PRINTK("Read_old block %d for r-m-w\n", i);
1642 set_bit(R5_LOCKED, &dev->flags);
1643 set_bit(R5_Wantread, &dev->flags);
1646 set_bit(STRIPE_DELAYED, &sh->state);
1647 set_bit(STRIPE_HANDLE, &sh->state);
1651 if (rcw <= rmw && rcw > 0)
1652 /* want reconstruct write, but need to get some data */
1653 for (i=disks; i--;) {
1655 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1656 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1657 test_bit(R5_Insync, &dev->flags)) {
1658 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1660 PRINTK("Read_old block %d for Reconstruct\n", i);
1661 set_bit(R5_LOCKED, &dev->flags);
1662 set_bit(R5_Wantread, &dev->flags);
1665 set_bit(STRIPE_DELAYED, &sh->state);
1666 set_bit(STRIPE_HANDLE, &sh->state);
1670 /* now if nothing is locked, and if we have enough data, we can start a write request */
1671 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1672 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1673 PRINTK("Computing parity...\n");
1674 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1675 /* now every locked buffer is ready to be written */
1677 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1678 PRINTK("Writing block %d\n", i);
1680 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1681 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1682 || (i==sh->pd_idx && failed == 0))
1683 set_bit(STRIPE_INSYNC, &sh->state);
1685 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1686 atomic_dec(&conf->preread_active_stripes);
1687 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1688 md_wakeup_thread(conf->mddev->thread);
1693 /* maybe we need to check and possibly fix the parity for this stripe
1694 * Any reads will already have been scheduled, so we just see if enough data
1697 if (syncing && locked == 0 &&
1698 !test_bit(STRIPE_INSYNC, &sh->state)) {
1699 set_bit(STRIPE_HANDLE, &sh->state);
1701 BUG_ON(uptodate != disks);
1702 compute_parity5(sh, CHECK_PARITY);
1704 if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1705 /* parity is correct (on disc, not in buffer any more) */
1706 set_bit(STRIPE_INSYNC, &sh->state);
1708 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1709 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1710 /* don't try to repair!! */
1711 set_bit(STRIPE_INSYNC, &sh->state);
1713 compute_block(sh, sh->pd_idx);
1718 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1719 /* either failed parity check, or recovery is happening */
1721 failed_num = sh->pd_idx;
1722 dev = &sh->dev[failed_num];
1723 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1724 BUG_ON(uptodate != disks);
1726 set_bit(R5_LOCKED, &dev->flags);
1727 set_bit(R5_Wantwrite, &dev->flags);
1728 clear_bit(STRIPE_DEGRADED, &sh->state);
1730 set_bit(STRIPE_INSYNC, &sh->state);
1733 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1734 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1735 clear_bit(STRIPE_SYNCING, &sh->state);
1738 /* If the failed drive is just a ReadError, then we might need to progress
1739 * the repair/check process
1741 if (failed == 1 && ! conf->mddev->ro &&
1742 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1743 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1744 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1746 dev = &sh->dev[failed_num];
1747 if (!test_bit(R5_ReWrite, &dev->flags)) {
1748 set_bit(R5_Wantwrite, &dev->flags);
1749 set_bit(R5_ReWrite, &dev->flags);
1750 set_bit(R5_LOCKED, &dev->flags);
1753 /* let's read it back */
1754 set_bit(R5_Wantread, &dev->flags);
1755 set_bit(R5_LOCKED, &dev->flags);
1760 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1761 /* Need to write out all blocks after computing parity */
1762 sh->disks = conf->raid_disks;
1763 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1764 compute_parity5(sh, RECONSTRUCT_WRITE);
1765 for (i= conf->raid_disks; i--;) {
1766 set_bit(R5_LOCKED, &sh->dev[i].flags);
1768 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1770 clear_bit(STRIPE_EXPANDING, &sh->state);
1771 } else if (expanded) {
1772 clear_bit(STRIPE_EXPAND_READY, &sh->state);
1773 atomic_dec(&conf->reshape_stripes);
1774 wake_up(&conf->wait_for_overlap);
1775 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1778 if (expanding && locked == 0) {
1779 /* We have read all the blocks in this stripe and now we need to
1780 * copy some of them into a target stripe for expand.
1782 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1783 for (i=0; i< sh->disks; i++)
1784 if (i != sh->pd_idx) {
1785 int dd_idx, pd_idx, j;
1786 struct stripe_head *sh2;
1788 sector_t bn = compute_blocknr(sh, i);
1789 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1791 &dd_idx, &pd_idx, conf);
1792 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1794 /* so far only the early blocks of this stripe
1795 * have been requested. When later blocks
1796 * get requested, we will try again
1799 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1800 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1801 /* must have already done this block */
1802 release_stripe(sh2);
1805 memcpy(page_address(sh2->dev[dd_idx].page),
1806 page_address(sh->dev[i].page),
1808 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1809 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1810 for (j=0; j<conf->raid_disks; j++)
1811 if (j != sh2->pd_idx &&
1812 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1814 if (j == conf->raid_disks) {
1815 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1816 set_bit(STRIPE_HANDLE, &sh2->state);
1818 release_stripe(sh2);
1822 spin_unlock(&sh->lock);
1824 while ((bi=return_bi)) {
1825 int bytes = bi->bi_size;
1827 return_bi = bi->bi_next;
1830 bi->bi_end_io(bi, bytes, 0);
1832 for (i=disks; i-- ;) {
1836 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1838 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1843 bi = &sh->dev[i].req;
1847 bi->bi_end_io = raid5_end_write_request;
1849 bi->bi_end_io = raid5_end_read_request;
1852 rdev = rcu_dereference(conf->disks[i].rdev);
1853 if (rdev && test_bit(Faulty, &rdev->flags))
1856 atomic_inc(&rdev->nr_pending);
1860 if (syncing || expanding || expanded)
1861 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1863 bi->bi_bdev = rdev->bdev;
1864 PRINTK("for %llu schedule op %ld on disc %d\n",
1865 (unsigned long long)sh->sector, bi->bi_rw, i);
1866 atomic_inc(&sh->count);
1867 bi->bi_sector = sh->sector + rdev->data_offset;
1868 bi->bi_flags = 1 << BIO_UPTODATE;
1870 bi->bi_max_vecs = 1;
1872 bi->bi_io_vec = &sh->dev[i].vec;
1873 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1874 bi->bi_io_vec[0].bv_offset = 0;
1875 bi->bi_size = STRIPE_SIZE;
1878 test_bit(R5_ReWrite, &sh->dev[i].flags))
1879 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1880 generic_make_request(bi);
1883 set_bit(STRIPE_DEGRADED, &sh->state);
1884 PRINTK("skip op %ld on disc %d for sector %llu\n",
1885 bi->bi_rw, i, (unsigned long long)sh->sector);
1886 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1887 set_bit(STRIPE_HANDLE, &sh->state);
1892 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1894 raid6_conf_t *conf = sh->raid_conf;
1895 int disks = conf->raid_disks;
1896 struct bio *return_bi= NULL;
1900 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1901 int non_overwrite = 0;
1902 int failed_num[2] = {0, 0};
1903 struct r5dev *dev, *pdev, *qdev;
1904 int pd_idx = sh->pd_idx;
1905 int qd_idx = raid6_next_disk(pd_idx, disks);
1906 int p_failed, q_failed;
1908 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1909 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1912 spin_lock(&sh->lock);
1913 clear_bit(STRIPE_HANDLE, &sh->state);
1914 clear_bit(STRIPE_DELAYED, &sh->state);
1916 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1917 /* Now to look around and see what can be done */
1920 for (i=disks; i--; ) {
1923 clear_bit(R5_Insync, &dev->flags);
1925 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1926 i, dev->flags, dev->toread, dev->towrite, dev->written);
1927 /* maybe we can reply to a read */
1928 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1929 struct bio *rbi, *rbi2;
1930 PRINTK("Return read for disc %d\n", i);
1931 spin_lock_irq(&conf->device_lock);
1934 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1935 wake_up(&conf->wait_for_overlap);
1936 spin_unlock_irq(&conf->device_lock);
1937 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1938 copy_data(0, rbi, dev->page, dev->sector);
1939 rbi2 = r5_next_bio(rbi, dev->sector);
1940 spin_lock_irq(&conf->device_lock);
1941 if (--rbi->bi_phys_segments == 0) {
1942 rbi->bi_next = return_bi;
1945 spin_unlock_irq(&conf->device_lock);
1950 /* now count some things */
1951 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1952 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1955 if (dev->toread) to_read++;
1958 if (!test_bit(R5_OVERWRITE, &dev->flags))
1961 if (dev->written) written++;
1962 rdev = rcu_dereference(conf->disks[i].rdev);
1963 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1964 /* The ReadError flag will just be confusing now */
1965 clear_bit(R5_ReadError, &dev->flags);
1966 clear_bit(R5_ReWrite, &dev->flags);
1968 if (!rdev || !test_bit(In_sync, &rdev->flags)
1969 || test_bit(R5_ReadError, &dev->flags)) {
1971 failed_num[failed] = i;
1974 set_bit(R5_Insync, &dev->flags);
1977 PRINTK("locked=%d uptodate=%d to_read=%d"
1978 " to_write=%d failed=%d failed_num=%d,%d\n",
1979 locked, uptodate, to_read, to_write, failed,
1980 failed_num[0], failed_num[1]);
1981 /* check if the array has lost >2 devices and, if so, some requests might
1984 if (failed > 2 && to_read+to_write+written) {
1985 for (i=disks; i--; ) {
1988 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1991 rdev = rcu_dereference(conf->disks[i].rdev);
1992 if (rdev && test_bit(In_sync, &rdev->flags))
1993 /* multiple read failures in one stripe */
1994 md_error(conf->mddev, rdev);
1998 spin_lock_irq(&conf->device_lock);
1999 /* fail all writes first */
2000 bi = sh->dev[i].towrite;
2001 sh->dev[i].towrite = NULL;
2002 if (bi) { to_write--; bitmap_end = 1; }
2004 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2005 wake_up(&conf->wait_for_overlap);
2007 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2008 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2009 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2010 if (--bi->bi_phys_segments == 0) {
2011 md_write_end(conf->mddev);
2012 bi->bi_next = return_bi;
2017 /* and fail all 'written' */
2018 bi = sh->dev[i].written;
2019 sh->dev[i].written = NULL;
2020 if (bi) bitmap_end = 1;
2021 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2022 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2023 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2024 if (--bi->bi_phys_segments == 0) {
2025 md_write_end(conf->mddev);
2026 bi->bi_next = return_bi;
2032 /* fail any reads if this device is non-operational */
2033 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2034 test_bit(R5_ReadError, &sh->dev[i].flags)) {
2035 bi = sh->dev[i].toread;
2036 sh->dev[i].toread = NULL;
2037 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2038 wake_up(&conf->wait_for_overlap);
2040 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2041 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2042 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2043 if (--bi->bi_phys_segments == 0) {
2044 bi->bi_next = return_bi;
2050 spin_unlock_irq(&conf->device_lock);
2052 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2053 STRIPE_SECTORS, 0, 0);
2056 if (failed > 2 && syncing) {
2057 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2058 clear_bit(STRIPE_SYNCING, &sh->state);
2063 * might be able to return some write requests if the parity blocks
2064 * are safe, or on a failed drive
2066 pdev = &sh->dev[pd_idx];
2067 p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2068 || (failed >= 2 && failed_num[1] == pd_idx);
2069 qdev = &sh->dev[qd_idx];
2070 q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2071 || (failed >= 2 && failed_num[1] == qd_idx);
2074 ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2075 && !test_bit(R5_LOCKED, &pdev->flags)
2076 && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2077 ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2078 && !test_bit(R5_LOCKED, &qdev->flags)
2079 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2080 /* any written block on an uptodate or failed drive can be
2081 * returned. Note that if we 'wrote' to a failed drive,
2082 * it will be UPTODATE, but never LOCKED, so we don't need
2083 * to test 'failed' directly.
2085 for (i=disks; i--; )
2086 if (sh->dev[i].written) {
2088 if (!test_bit(R5_LOCKED, &dev->flags) &&
2089 test_bit(R5_UPTODATE, &dev->flags) ) {
2090 /* We can return any write requests */
2092 struct bio *wbi, *wbi2;
2093 PRINTK("Return write for stripe %llu disc %d\n",
2094 (unsigned long long)sh->sector, i);
2095 spin_lock_irq(&conf->device_lock);
2097 dev->written = NULL;
2098 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2099 wbi2 = r5_next_bio(wbi, dev->sector);
2100 if (--wbi->bi_phys_segments == 0) {
2101 md_write_end(conf->mddev);
2102 wbi->bi_next = return_bi;
2107 if (dev->towrite == NULL)
2109 spin_unlock_irq(&conf->device_lock);
2111 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2113 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2118 /* Now we might consider reading some blocks, either to check/generate
2119 * parity, or to satisfy requests
2120 * or to load a block that is being partially written.
2122 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2123 for (i=disks; i--;) {
2125 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2127 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2129 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2130 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2133 /* we would like to get this block, possibly
2134 * by computing it, but we might not be able to
2136 if (uptodate == disks-1) {
2137 PRINTK("Computing stripe %llu block %d\n",
2138 (unsigned long long)sh->sector, i);
2139 compute_block_1(sh, i, 0);
2141 } else if ( uptodate == disks-2 && failed >= 2 ) {
2142 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2144 for (other=disks; other--;) {
2147 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2151 PRINTK("Computing stripe %llu blocks %d,%d\n",
2152 (unsigned long long)sh->sector, i, other);
2153 compute_block_2(sh, i, other);
2155 } else if (test_bit(R5_Insync, &dev->flags)) {
2156 set_bit(R5_LOCKED, &dev->flags);
2157 set_bit(R5_Wantread, &dev->flags);
2159 /* if I am just reading this block and we don't have
2160 a failed drive, or any pending writes then sidestep the cache */
2161 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2162 ! syncing && !failed && !to_write) {
2163 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
2164 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
2168 PRINTK("Reading block %d (sync=%d)\n",
2173 set_bit(STRIPE_HANDLE, &sh->state);
2176 /* now to consider writing and what else, if anything should be read */
2178 int rcw=0, must_compute=0;
2179 for (i=disks ; i--;) {
2181 /* Would I have to read this buffer for reconstruct_write */
2182 if (!test_bit(R5_OVERWRITE, &dev->flags)
2183 && i != pd_idx && i != qd_idx
2184 && (!test_bit(R5_LOCKED, &dev->flags)
2186 || sh->bh_page[i] != bh->b_page
2189 !test_bit(R5_UPTODATE, &dev->flags)) {
2190 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2192 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2197 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2198 (unsigned long long)sh->sector, rcw, must_compute);
2199 set_bit(STRIPE_HANDLE, &sh->state);
2202 /* want reconstruct write, but need to get some data */
2203 for (i=disks; i--;) {
2205 if (!test_bit(R5_OVERWRITE, &dev->flags)
2206 && !(failed == 0 && (i == pd_idx || i == qd_idx))
2207 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2208 test_bit(R5_Insync, &dev->flags)) {
2209 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2211 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2212 (unsigned long long)sh->sector, i);
2213 set_bit(R5_LOCKED, &dev->flags);
2214 set_bit(R5_Wantread, &dev->flags);
2217 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2218 (unsigned long long)sh->sector, i);
2219 set_bit(STRIPE_DELAYED, &sh->state);
2220 set_bit(STRIPE_HANDLE, &sh->state);
2224 /* now if nothing is locked, and if we have enough data, we can start a write request */
2225 if (locked == 0 && rcw == 0 &&
2226 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2227 if ( must_compute > 0 ) {
2228 /* We have failed blocks and need to compute them */
2231 case 1: compute_block_1(sh, failed_num[0], 0); break;
2232 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2233 default: BUG(); /* This request should have been failed? */
2237 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2238 compute_parity6(sh, RECONSTRUCT_WRITE);
2239 /* now every locked buffer is ready to be written */
2241 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2242 PRINTK("Writing stripe %llu block %d\n",
2243 (unsigned long long)sh->sector, i);
2245 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2247 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2248 set_bit(STRIPE_INSYNC, &sh->state);
2250 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2251 atomic_dec(&conf->preread_active_stripes);
2252 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2253 md_wakeup_thread(conf->mddev->thread);
2258 /* maybe we need to check and possibly fix the parity for this stripe
2259 * Any reads will already have been scheduled, so we just see if enough data
2262 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2263 int update_p = 0, update_q = 0;
2266 set_bit(STRIPE_HANDLE, &sh->state);
2269 BUG_ON(uptodate < disks);
2270 /* Want to check and possibly repair P and Q.
2271 * However there could be one 'failed' device, in which
2272 * case we can only check one of them, possibly using the
2273 * other to generate missing data
2276 /* If !tmp_page, we cannot do the calculations,
2277 * but as we have set STRIPE_HANDLE, we will soon be called
2278 * by stripe_handle with a tmp_page - just wait until then.
2281 if (failed == q_failed) {
2282 /* The only possible failed device holds 'Q', so it makes
2283 * sense to check P (If anything else were failed, we would
2284 * have used P to recreate it).
2286 compute_block_1(sh, pd_idx, 1);
2287 if (!page_is_zero(sh->dev[pd_idx].page)) {
2288 compute_block_1(sh,pd_idx,0);
2292 if (!q_failed && failed < 2) {
2293 /* q is not failed, and we didn't use it to generate
2294 * anything, so it makes sense to check it
2296 memcpy(page_address(tmp_page),
2297 page_address(sh->dev[qd_idx].page),
2299 compute_parity6(sh, UPDATE_PARITY);
2300 if (memcmp(page_address(tmp_page),
2301 page_address(sh->dev[qd_idx].page),
2303 clear_bit(STRIPE_INSYNC, &sh->state);
2307 if (update_p || update_q) {
2308 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2309 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2310 /* don't try to repair!! */
2311 update_p = update_q = 0;
2314 /* now write out any block on a failed drive,
2315 * or P or Q if they need it
2319 dev = &sh->dev[failed_num[1]];
2321 set_bit(R5_LOCKED, &dev->flags);
2322 set_bit(R5_Wantwrite, &dev->flags);
2325 dev = &sh->dev[failed_num[0]];
2327 set_bit(R5_LOCKED, &dev->flags);
2328 set_bit(R5_Wantwrite, &dev->flags);
2332 dev = &sh->dev[pd_idx];
2334 set_bit(R5_LOCKED, &dev->flags);
2335 set_bit(R5_Wantwrite, &dev->flags);
2338 dev = &sh->dev[qd_idx];
2340 set_bit(R5_LOCKED, &dev->flags);
2341 set_bit(R5_Wantwrite, &dev->flags);
2343 clear_bit(STRIPE_DEGRADED, &sh->state);
2345 set_bit(STRIPE_INSYNC, &sh->state);
2349 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2350 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2351 clear_bit(STRIPE_SYNCING, &sh->state);
2354 /* If the failed drives are just a ReadError, then we might need
2355 * to progress the repair/check process
2357 if (failed <= 2 && ! conf->mddev->ro)
2358 for (i=0; i<failed;i++) {
2359 dev = &sh->dev[failed_num[i]];
2360 if (test_bit(R5_ReadError, &dev->flags)
2361 && !test_bit(R5_LOCKED, &dev->flags)
2362 && test_bit(R5_UPTODATE, &dev->flags)
2364 if (!test_bit(R5_ReWrite, &dev->flags)) {
2365 set_bit(R5_Wantwrite, &dev->flags);
2366 set_bit(R5_ReWrite, &dev->flags);
2367 set_bit(R5_LOCKED, &dev->flags);
2369 /* let's read it back */
2370 set_bit(R5_Wantread, &dev->flags);
2371 set_bit(R5_LOCKED, &dev->flags);
2375 spin_unlock(&sh->lock);
2377 while ((bi=return_bi)) {
2378 int bytes = bi->bi_size;
2380 return_bi = bi->bi_next;
2383 bi->bi_end_io(bi, bytes, 0);
2385 for (i=disks; i-- ;) {
2389 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2391 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2396 bi = &sh->dev[i].req;
2400 bi->bi_end_io = raid5_end_write_request;
2402 bi->bi_end_io = raid5_end_read_request;
2405 rdev = rcu_dereference(conf->disks[i].rdev);
2406 if (rdev && test_bit(Faulty, &rdev->flags))
2409 atomic_inc(&rdev->nr_pending);
2414 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2416 bi->bi_bdev = rdev->bdev;
2417 PRINTK("for %llu schedule op %ld on disc %d\n",
2418 (unsigned long long)sh->sector, bi->bi_rw, i);
2419 atomic_inc(&sh->count);
2420 bi->bi_sector = sh->sector + rdev->data_offset;
2421 bi->bi_flags = 1 << BIO_UPTODATE;
2423 bi->bi_max_vecs = 1;
2425 bi->bi_io_vec = &sh->dev[i].vec;
2426 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2427 bi->bi_io_vec[0].bv_offset = 0;
2428 bi->bi_size = STRIPE_SIZE;
2431 test_bit(R5_ReWrite, &sh->dev[i].flags))
2432 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2433 generic_make_request(bi);
2436 set_bit(STRIPE_DEGRADED, &sh->state);
2437 PRINTK("skip op %ld on disc %d for sector %llu\n",
2438 bi->bi_rw, i, (unsigned long long)sh->sector);
2439 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2440 set_bit(STRIPE_HANDLE, &sh->state);
2445 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2447 if (sh->raid_conf->level == 6)
2448 handle_stripe6(sh, tmp_page);
2455 static void raid5_activate_delayed(raid5_conf_t *conf)
2457 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2458 while (!list_empty(&conf->delayed_list)) {
2459 struct list_head *l = conf->delayed_list.next;
2460 struct stripe_head *sh;
2461 sh = list_entry(l, struct stripe_head, lru);
2463 clear_bit(STRIPE_DELAYED, &sh->state);
2464 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2465 atomic_inc(&conf->preread_active_stripes);
2466 list_add_tail(&sh->lru, &conf->handle_list);
2471 static void activate_bit_delay(raid5_conf_t *conf)
2473 /* device_lock is held */
2474 struct list_head head;
2475 list_add(&head, &conf->bitmap_list);
2476 list_del_init(&conf->bitmap_list);
2477 while (!list_empty(&head)) {
2478 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2479 list_del_init(&sh->lru);
2480 atomic_inc(&sh->count);
2481 __release_stripe(conf, sh);
2485 static void unplug_slaves(mddev_t *mddev)
2487 raid5_conf_t *conf = mddev_to_conf(mddev);
2491 for (i=0; i<mddev->raid_disks; i++) {
2492 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2493 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2494 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2496 atomic_inc(&rdev->nr_pending);
2499 if (r_queue->unplug_fn)
2500 r_queue->unplug_fn(r_queue);
2502 rdev_dec_pending(rdev, mddev);
2509 static void raid5_unplug_device(request_queue_t *q)
2511 mddev_t *mddev = q->queuedata;
2512 raid5_conf_t *conf = mddev_to_conf(mddev);
2513 unsigned long flags;
2515 spin_lock_irqsave(&conf->device_lock, flags);
2517 if (blk_remove_plug(q)) {
2519 raid5_activate_delayed(conf);
2521 md_wakeup_thread(mddev->thread);
2523 spin_unlock_irqrestore(&conf->device_lock, flags);
2525 unplug_slaves(mddev);
2528 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2529 sector_t *error_sector)
2531 mddev_t *mddev = q->queuedata;
2532 raid5_conf_t *conf = mddev_to_conf(mddev);
2536 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2537 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2538 if (rdev && !test_bit(Faulty, &rdev->flags)) {
2539 struct block_device *bdev = rdev->bdev;
2540 request_queue_t *r_queue = bdev_get_queue(bdev);
2542 if (!r_queue->issue_flush_fn)
2545 atomic_inc(&rdev->nr_pending);
2547 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2549 rdev_dec_pending(rdev, mddev);
2558 static inline void raid5_plug_device(raid5_conf_t *conf)
2560 spin_lock_irq(&conf->device_lock);
2561 blk_plug_device(conf->mddev->queue);
2562 spin_unlock_irq(&conf->device_lock);
2565 static int make_request(request_queue_t *q, struct bio * bi)
2567 mddev_t *mddev = q->queuedata;
2568 raid5_conf_t *conf = mddev_to_conf(mddev);
2569 unsigned int dd_idx, pd_idx;
2570 sector_t new_sector;
2571 sector_t logical_sector, last_sector;
2572 struct stripe_head *sh;
2573 const int rw = bio_data_dir(bi);
2576 if (unlikely(bio_barrier(bi))) {
2577 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2581 md_write_start(mddev, bi);
2583 disk_stat_inc(mddev->gendisk, ios[rw]);
2584 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2586 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2587 last_sector = bi->bi_sector + (bi->bi_size>>9);
2589 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
2591 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2593 int disks, data_disks;
2596 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2597 if (likely(conf->expand_progress == MaxSector))
2598 disks = conf->raid_disks;
2600 /* spinlock is needed as expand_progress may be
2601 * 64bit on a 32bit platform, and so it might be
2602 * possible to see a half-updated value
2603 * Ofcourse expand_progress could change after
2604 * the lock is dropped, so once we get a reference
2605 * to the stripe that we think it is, we will have
2608 spin_lock_irq(&conf->device_lock);
2609 disks = conf->raid_disks;
2610 if (logical_sector >= conf->expand_progress)
2611 disks = conf->previous_raid_disks;
2613 if (logical_sector >= conf->expand_lo) {
2614 spin_unlock_irq(&conf->device_lock);
2619 spin_unlock_irq(&conf->device_lock);
2621 data_disks = disks - conf->max_degraded;
2623 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2624 &dd_idx, &pd_idx, conf);
2625 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2626 (unsigned long long)new_sector,
2627 (unsigned long long)logical_sector);
2629 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2631 if (unlikely(conf->expand_progress != MaxSector)) {
2632 /* expansion might have moved on while waiting for a
2633 * stripe, so we must do the range check again.
2634 * Expansion could still move past after this
2635 * test, but as we are holding a reference to
2636 * 'sh', we know that if that happens,
2637 * STRIPE_EXPANDING will get set and the expansion
2638 * won't proceed until we finish with the stripe.
2641 spin_lock_irq(&conf->device_lock);
2642 if (logical_sector < conf->expand_progress &&
2643 disks == conf->previous_raid_disks)
2644 /* mismatch, need to try again */
2646 spin_unlock_irq(&conf->device_lock);
2652 /* FIXME what if we get a false positive because these
2653 * are being updated.
2655 if (logical_sector >= mddev->suspend_lo &&
2656 logical_sector < mddev->suspend_hi) {
2662 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2663 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2664 /* Stripe is busy expanding or
2665 * add failed due to overlap. Flush everything
2668 raid5_unplug_device(mddev->queue);
2673 finish_wait(&conf->wait_for_overlap, &w);
2674 raid5_plug_device(conf);
2675 handle_stripe(sh, NULL);
2678 /* cannot get stripe for read-ahead, just give-up */
2679 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2680 finish_wait(&conf->wait_for_overlap, &w);
2685 spin_lock_irq(&conf->device_lock);
2686 remaining = --bi->bi_phys_segments;
2687 spin_unlock_irq(&conf->device_lock);
2688 if (remaining == 0) {
2689 int bytes = bi->bi_size;
2692 md_write_end(mddev);
2694 bi->bi_end_io(bi, bytes, 0);
2699 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2701 /* reshaping is quite different to recovery/resync so it is
2702 * handled quite separately ... here.
2704 * On each call to sync_request, we gather one chunk worth of
2705 * destination stripes and flag them as expanding.
2706 * Then we find all the source stripes and request reads.
2707 * As the reads complete, handle_stripe will copy the data
2708 * into the destination stripe and release that stripe.
2710 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2711 struct stripe_head *sh;
2713 sector_t first_sector, last_sector;
2718 sector_t writepos, safepos, gap;
2720 if (sector_nr == 0 &&
2721 conf->expand_progress != 0) {
2722 /* restarting in the middle, skip the initial sectors */
2723 sector_nr = conf->expand_progress;
2724 sector_div(sector_nr, conf->raid_disks-1);
2729 /* we update the metadata when there is more than 3Meg
2730 * in the block range (that is rather arbitrary, should
2731 * probably be time based) or when the data about to be
2732 * copied would over-write the source of the data at
2733 * the front of the range.
2734 * i.e. one new_stripe forward from expand_progress new_maps
2735 * to after where expand_lo old_maps to
2737 writepos = conf->expand_progress +
2738 conf->chunk_size/512*(conf->raid_disks-1);
2739 sector_div(writepos, conf->raid_disks-1);
2740 safepos = conf->expand_lo;
2741 sector_div(safepos, conf->previous_raid_disks-1);
2742 gap = conf->expand_progress - conf->expand_lo;
2744 if (writepos >= safepos ||
2745 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2746 /* Cannot proceed until we've updated the superblock... */
2747 wait_event(conf->wait_for_overlap,
2748 atomic_read(&conf->reshape_stripes)==0);
2749 mddev->reshape_position = conf->expand_progress;
2750 mddev->sb_dirty = 1;
2751 md_wakeup_thread(mddev->thread);
2752 wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
2753 kthread_should_stop());
2754 spin_lock_irq(&conf->device_lock);
2755 conf->expand_lo = mddev->reshape_position;
2756 spin_unlock_irq(&conf->device_lock);
2757 wake_up(&conf->wait_for_overlap);
2760 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2763 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2764 sh = get_active_stripe(conf, sector_nr+i,
2765 conf->raid_disks, pd_idx, 0);
2766 set_bit(STRIPE_EXPANDING, &sh->state);
2767 atomic_inc(&conf->reshape_stripes);
2768 /* If any of this stripe is beyond the end of the old
2769 * array, then we need to zero those blocks
2771 for (j=sh->disks; j--;) {
2773 if (j == sh->pd_idx)
2775 s = compute_blocknr(sh, j);
2776 if (s < (mddev->array_size<<1)) {
2780 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2781 set_bit(R5_Expanded, &sh->dev[j].flags);
2782 set_bit(R5_UPTODATE, &sh->dev[j].flags);
2785 set_bit(STRIPE_EXPAND_READY, &sh->state);
2786 set_bit(STRIPE_HANDLE, &sh->state);
2790 spin_lock_irq(&conf->device_lock);
2791 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2792 spin_unlock_irq(&conf->device_lock);
2793 /* Ok, those stripe are ready. We can start scheduling
2794 * reads on the source stripes.
2795 * The source stripes are determined by mapping the first and last
2796 * block on the destination stripes.
2798 raid_disks = conf->previous_raid_disks;
2799 data_disks = raid_disks - 1;
2801 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2802 raid_disks, data_disks,
2803 &dd_idx, &pd_idx, conf);
2805 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2806 *(conf->raid_disks-1) -1,
2807 raid_disks, data_disks,
2808 &dd_idx, &pd_idx, conf);
2809 if (last_sector >= (mddev->size<<1))
2810 last_sector = (mddev->size<<1)-1;
2811 while (first_sector <= last_sector) {
2812 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2813 sh = get_active_stripe(conf, first_sector,
2814 conf->previous_raid_disks, pd_idx, 0);
2815 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2816 set_bit(STRIPE_HANDLE, &sh->state);
2818 first_sector += STRIPE_SECTORS;
2820 return conf->chunk_size>>9;
2823 /* FIXME go_faster isn't used */
2824 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2826 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2827 struct stripe_head *sh;
2829 int raid_disks = conf->raid_disks;
2830 int data_disks = raid_disks - conf->max_degraded;
2831 sector_t max_sector = mddev->size << 1;
2833 int still_degraded = 0;
2836 if (sector_nr >= max_sector) {
2837 /* just being told to finish up .. nothing much to do */
2838 unplug_slaves(mddev);
2839 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2844 if (mddev->curr_resync < max_sector) /* aborted */
2845 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2847 else /* completed sync */
2849 bitmap_close_sync(mddev->bitmap);
2854 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2855 return reshape_request(mddev, sector_nr, skipped);
2857 /* if there is too many failed drives and we are trying
2858 * to resync, then assert that we are finished, because there is
2859 * nothing we can do.
2861 if (mddev->degraded >= conf->max_degraded &&
2862 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2863 sector_t rv = (mddev->size << 1) - sector_nr;
2867 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2868 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2869 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2870 /* we can skip this block, and probably more */
2871 sync_blocks /= STRIPE_SECTORS;
2873 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2876 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2877 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2879 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2880 /* make sure we don't swamp the stripe cache if someone else
2881 * is trying to get access
2883 schedule_timeout_uninterruptible(1);
2885 /* Need to check if array will still be degraded after recovery/resync
2886 * We don't need to check the 'failed' flag as when that gets set,
2889 for (i=0; i<mddev->raid_disks; i++)
2890 if (conf->disks[i].rdev == NULL)
2893 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2895 spin_lock(&sh->lock);
2896 set_bit(STRIPE_SYNCING, &sh->state);
2897 clear_bit(STRIPE_INSYNC, &sh->state);
2898 spin_unlock(&sh->lock);
2900 handle_stripe(sh, NULL);
2903 return STRIPE_SECTORS;
2907 * This is our raid5 kernel thread.
2909 * We scan the hash table for stripes which can be handled now.
2910 * During the scan, completed stripes are saved for us by the interrupt
2911 * handler, so that they will not have to wait for our next wakeup.
2913 static void raid5d (mddev_t *mddev)
2915 struct stripe_head *sh;
2916 raid5_conf_t *conf = mddev_to_conf(mddev);
2919 PRINTK("+++ raid5d active\n");
2921 md_check_recovery(mddev);
2924 spin_lock_irq(&conf->device_lock);
2926 struct list_head *first;
2928 if (conf->seq_flush - conf->seq_write > 0) {
2929 int seq = conf->seq_flush;
2930 spin_unlock_irq(&conf->device_lock);
2931 bitmap_unplug(mddev->bitmap);
2932 spin_lock_irq(&conf->device_lock);
2933 conf->seq_write = seq;
2934 activate_bit_delay(conf);
2937 if (list_empty(&conf->handle_list) &&
2938 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2939 !blk_queue_plugged(mddev->queue) &&
2940 !list_empty(&conf->delayed_list))
2941 raid5_activate_delayed(conf);
2943 if (list_empty(&conf->handle_list))
2946 first = conf->handle_list.next;
2947 sh = list_entry(first, struct stripe_head, lru);
2949 list_del_init(first);
2950 atomic_inc(&sh->count);
2951 BUG_ON(atomic_read(&sh->count)!= 1);
2952 spin_unlock_irq(&conf->device_lock);
2955 handle_stripe(sh, conf->spare_page);
2958 spin_lock_irq(&conf->device_lock);
2960 PRINTK("%d stripes handled\n", handled);
2962 spin_unlock_irq(&conf->device_lock);
2964 unplug_slaves(mddev);
2966 PRINTK("--- raid5d inactive\n");
2970 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
2972 raid5_conf_t *conf = mddev_to_conf(mddev);
2974 return sprintf(page, "%d\n", conf->max_nr_stripes);
2980 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
2982 raid5_conf_t *conf = mddev_to_conf(mddev);
2985 if (len >= PAGE_SIZE)
2990 new = simple_strtoul(page, &end, 10);
2991 if (!*page || (*end && *end != '\n') )
2993 if (new <= 16 || new > 32768)
2995 while (new < conf->max_nr_stripes) {
2996 if (drop_one_stripe(conf))
2997 conf->max_nr_stripes--;
3001 while (new > conf->max_nr_stripes) {
3002 if (grow_one_stripe(conf))
3003 conf->max_nr_stripes++;
3009 static struct md_sysfs_entry
3010 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3011 raid5_show_stripe_cache_size,
3012 raid5_store_stripe_cache_size);
3015 stripe_cache_active_show(mddev_t *mddev, char *page)
3017 raid5_conf_t *conf = mddev_to_conf(mddev);
3019 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3024 static struct md_sysfs_entry
3025 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3027 static struct attribute *raid5_attrs[] = {
3028 &raid5_stripecache_size.attr,
3029 &raid5_stripecache_active.attr,
3032 static struct attribute_group raid5_attrs_group = {
3034 .attrs = raid5_attrs,
3037 static int run(mddev_t *mddev)
3040 int raid_disk, memory;
3042 struct disk_info *disk;
3043 struct list_head *tmp;
3045 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3046 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3047 mdname(mddev), mddev->level);
3051 if (mddev->reshape_position != MaxSector) {
3052 /* Check that we can continue the reshape.
3053 * Currently only disks can change, it must
3054 * increase, and we must be past the point where
3055 * a stripe over-writes itself
3057 sector_t here_new, here_old;
3060 if (mddev->new_level != mddev->level ||
3061 mddev->new_layout != mddev->layout ||
3062 mddev->new_chunk != mddev->chunk_size) {
3063 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3067 if (mddev->delta_disks <= 0) {
3068 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3072 old_disks = mddev->raid_disks - mddev->delta_disks;
3073 /* reshape_position must be on a new-stripe boundary, and one
3074 * further up in new geometry must map after here in old geometry.
3076 here_new = mddev->reshape_position;
3077 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3078 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3081 /* here_new is the stripe we will write to */
3082 here_old = mddev->reshape_position;
3083 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3084 /* here_old is the first stripe that we might need to read from */
3085 if (here_new >= here_old) {
3086 /* Reading from the same stripe as writing to - bad */
3087 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3090 printk(KERN_INFO "raid5: reshape will continue\n");
3091 /* OK, we should be able to continue; */
3095 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3096 if ((conf = mddev->private) == NULL)
3098 if (mddev->reshape_position == MaxSector) {
3099 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3101 conf->raid_disks = mddev->raid_disks;
3102 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3105 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3110 conf->mddev = mddev;
3112 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3115 if (mddev->level == 6) {
3116 conf->spare_page = alloc_page(GFP_KERNEL);
3117 if (!conf->spare_page)
3120 spin_lock_init(&conf->device_lock);
3121 init_waitqueue_head(&conf->wait_for_stripe);
3122 init_waitqueue_head(&conf->wait_for_overlap);
3123 INIT_LIST_HEAD(&conf->handle_list);
3124 INIT_LIST_HEAD(&conf->delayed_list);
3125 INIT_LIST_HEAD(&conf->bitmap_list);
3126 INIT_LIST_HEAD(&conf->inactive_list);
3127 atomic_set(&conf->active_stripes, 0);
3128 atomic_set(&conf->preread_active_stripes, 0);
3130 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3132 ITERATE_RDEV(mddev,rdev,tmp) {
3133 raid_disk = rdev->raid_disk;
3134 if (raid_disk >= conf->raid_disks
3137 disk = conf->disks + raid_disk;
3141 if (test_bit(In_sync, &rdev->flags)) {
3142 char b[BDEVNAME_SIZE];
3143 printk(KERN_INFO "raid5: device %s operational as raid"
3144 " disk %d\n", bdevname(rdev->bdev,b),
3146 conf->working_disks++;
3151 * 0 for a fully functional array, 1 or 2 for a degraded array.
3153 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
3154 conf->mddev = mddev;
3155 conf->chunk_size = mddev->chunk_size;
3156 conf->level = mddev->level;
3157 if (conf->level == 6)
3158 conf->max_degraded = 2;
3160 conf->max_degraded = 1;
3161 conf->algorithm = mddev->layout;
3162 conf->max_nr_stripes = NR_STRIPES;
3163 conf->expand_progress = mddev->reshape_position;
3165 /* device size must be a multiple of chunk size */
3166 mddev->size &= ~(mddev->chunk_size/1024 -1);
3167 mddev->resync_max_sectors = mddev->size << 1;
3169 if (conf->level == 6 && conf->raid_disks < 4) {
3170 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3171 mdname(mddev), conf->raid_disks);
3174 if (!conf->chunk_size || conf->chunk_size % 4) {
3175 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3176 conf->chunk_size, mdname(mddev));
3179 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3181 "raid5: unsupported parity algorithm %d for %s\n",
3182 conf->algorithm, mdname(mddev));
3185 if (mddev->degraded > conf->max_degraded) {
3186 printk(KERN_ERR "raid5: not enough operational devices for %s"
3187 " (%d/%d failed)\n",
3188 mdname(mddev), conf->failed_disks, conf->raid_disks);
3192 if (mddev->degraded > 0 &&
3193 mddev->recovery_cp != MaxSector) {
3194 if (mddev->ok_start_degraded)
3196 "raid5: starting dirty degraded array: %s"
3197 "- data corruption possible.\n",
3201 "raid5: cannot start dirty degraded array for %s\n",
3208 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3209 if (!mddev->thread) {
3211 "raid5: couldn't allocate thread for %s\n",
3216 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3217 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3218 if (grow_stripes(conf, conf->max_nr_stripes)) {
3220 "raid5: couldn't allocate %dkB for buffers\n", memory);
3221 shrink_stripes(conf);
3222 md_unregister_thread(mddev->thread);
3225 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3226 memory, mdname(mddev));
3228 if (mddev->degraded == 0)
3229 printk("raid5: raid level %d set %s active with %d out of %d"
3230 " devices, algorithm %d\n", conf->level, mdname(mddev),
3231 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3234 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3235 " out of %d devices, algorithm %d\n", conf->level,
3236 mdname(mddev), mddev->raid_disks - mddev->degraded,
3237 mddev->raid_disks, conf->algorithm);
3239 print_raid5_conf(conf);
3241 if (conf->expand_progress != MaxSector) {
3242 printk("...ok start reshape thread\n");
3243 conf->expand_lo = conf->expand_progress;
3244 atomic_set(&conf->reshape_stripes, 0);
3245 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3246 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3247 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3248 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3249 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3251 /* FIXME if md_register_thread fails?? */
3252 md_wakeup_thread(mddev->sync_thread);
3256 /* read-ahead size must cover two whole stripes, which is
3257 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3260 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3261 int stripe = data_disks *
3262 (mddev->chunk_size / PAGE_SIZE);
3263 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3264 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3267 /* Ok, everything is just fine now */
3268 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3270 mddev->queue->unplug_fn = raid5_unplug_device;
3271 mddev->queue->issue_flush_fn = raid5_issue_flush;
3272 mddev->array_size = mddev->size * (conf->previous_raid_disks -
3273 conf->max_degraded);
3278 print_raid5_conf(conf);
3279 safe_put_page(conf->spare_page);
3281 kfree(conf->stripe_hashtbl);
3284 mddev->private = NULL;
3285 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3291 static int stop(mddev_t *mddev)
3293 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3295 md_unregister_thread(mddev->thread);
3296 mddev->thread = NULL;
3297 shrink_stripes(conf);
3298 kfree(conf->stripe_hashtbl);
3299 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3300 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3303 mddev->private = NULL;
3308 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3312 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3313 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3314 seq_printf(seq, "sh %llu, count %d.\n",
3315 (unsigned long long)sh->sector, atomic_read(&sh->count));
3316 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3317 for (i = 0; i < sh->disks; i++) {
3318 seq_printf(seq, "(cache%d: %p %ld) ",
3319 i, sh->dev[i].page, sh->dev[i].flags);
3321 seq_printf(seq, "\n");
3324 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3326 struct stripe_head *sh;
3327 struct hlist_node *hn;
3330 spin_lock_irq(&conf->device_lock);
3331 for (i = 0; i < NR_HASH; i++) {
3332 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3333 if (sh->raid_conf != conf)
3338 spin_unlock_irq(&conf->device_lock);
3342 static void status (struct seq_file *seq, mddev_t *mddev)
3344 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3347 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3348 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
3349 for (i = 0; i < conf->raid_disks; i++)
3350 seq_printf (seq, "%s",
3351 conf->disks[i].rdev &&
3352 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3353 seq_printf (seq, "]");
3355 seq_printf (seq, "\n");
3356 printall(seq, conf);
3360 static void print_raid5_conf (raid5_conf_t *conf)
3363 struct disk_info *tmp;
3365 printk("RAID5 conf printout:\n");
3367 printk("(conf==NULL)\n");
3370 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
3371 conf->working_disks, conf->failed_disks);
3373 for (i = 0; i < conf->raid_disks; i++) {
3374 char b[BDEVNAME_SIZE];
3375 tmp = conf->disks + i;
3377 printk(" disk %d, o:%d, dev:%s\n",
3378 i, !test_bit(Faulty, &tmp->rdev->flags),
3379 bdevname(tmp->rdev->bdev,b));
3383 static int raid5_spare_active(mddev_t *mddev)
3386 raid5_conf_t *conf = mddev->private;
3387 struct disk_info *tmp;
3389 for (i = 0; i < conf->raid_disks; i++) {
3390 tmp = conf->disks + i;
3392 && !test_bit(Faulty, &tmp->rdev->flags)
3393 && !test_bit(In_sync, &tmp->rdev->flags)) {
3395 conf->failed_disks--;
3396 conf->working_disks++;
3397 set_bit(In_sync, &tmp->rdev->flags);
3400 print_raid5_conf(conf);
3404 static int raid5_remove_disk(mddev_t *mddev, int number)
3406 raid5_conf_t *conf = mddev->private;
3409 struct disk_info *p = conf->disks + number;
3411 print_raid5_conf(conf);
3414 if (test_bit(In_sync, &rdev->flags) ||
3415 atomic_read(&rdev->nr_pending)) {
3421 if (atomic_read(&rdev->nr_pending)) {
3422 /* lost the race, try later */
3429 print_raid5_conf(conf);
3433 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3435 raid5_conf_t *conf = mddev->private;
3438 struct disk_info *p;
3440 if (mddev->degraded > conf->max_degraded)
3441 /* no point adding a device */
3445 * find the disk ... but prefer rdev->saved_raid_disk
3448 if (rdev->saved_raid_disk >= 0 &&
3449 conf->disks[rdev->saved_raid_disk].rdev == NULL)
3450 disk = rdev->saved_raid_disk;
3453 for ( ; disk < conf->raid_disks; disk++)
3454 if ((p=conf->disks + disk)->rdev == NULL) {
3455 clear_bit(In_sync, &rdev->flags);
3456 rdev->raid_disk = disk;
3458 if (rdev->saved_raid_disk != disk)
3460 rcu_assign_pointer(p->rdev, rdev);
3463 print_raid5_conf(conf);
3467 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3469 /* no resync is happening, and there is enough space
3470 * on all devices, so we can resize.
3471 * We need to make sure resync covers any new space.
3472 * If the array is shrinking we should possibly wait until
3473 * any io in the removed space completes, but it hardly seems
3476 raid5_conf_t *conf = mddev_to_conf(mddev);
3478 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3479 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3480 set_capacity(mddev->gendisk, mddev->array_size << 1);
3482 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
3483 mddev->recovery_cp = mddev->size << 1;
3484 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3486 mddev->size = sectors /2;
3487 mddev->resync_max_sectors = sectors;
3491 #ifdef CONFIG_MD_RAID5_RESHAPE
3492 static int raid5_check_reshape(mddev_t *mddev)
3494 raid5_conf_t *conf = mddev_to_conf(mddev);
3497 if (mddev->delta_disks < 0 ||
3498 mddev->new_level != mddev->level)
3499 return -EINVAL; /* Cannot shrink array or change level yet */
3500 if (mddev->delta_disks == 0)
3501 return 0; /* nothing to do */
3503 /* Can only proceed if there are plenty of stripe_heads.
3504 * We need a minimum of one full stripe,, and for sensible progress
3505 * it is best to have about 4 times that.
3506 * If we require 4 times, then the default 256 4K stripe_heads will
3507 * allow for chunk sizes up to 256K, which is probably OK.
3508 * If the chunk size is greater, user-space should request more
3509 * stripe_heads first.
3511 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3512 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3513 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
3514 (mddev->chunk_size / STRIPE_SIZE)*4);
3518 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3522 /* looks like we might be able to manage this */
3526 static int raid5_start_reshape(mddev_t *mddev)
3528 raid5_conf_t *conf = mddev_to_conf(mddev);
3530 struct list_head *rtmp;
3532 int added_devices = 0;
3534 if (mddev->degraded ||
3535 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3538 ITERATE_RDEV(mddev, rdev, rtmp)
3539 if (rdev->raid_disk < 0 &&
3540 !test_bit(Faulty, &rdev->flags))
3543 if (spares < mddev->delta_disks-1)
3544 /* Not enough devices even to make a degraded array
3549 atomic_set(&conf->reshape_stripes, 0);
3550 spin_lock_irq(&conf->device_lock);
3551 conf->previous_raid_disks = conf->raid_disks;
3552 conf->raid_disks += mddev->delta_disks;
3553 conf->expand_progress = 0;
3554 conf->expand_lo = 0;
3555 spin_unlock_irq(&conf->device_lock);
3557 /* Add some new drives, as many as will fit.
3558 * We know there are enough to make the newly sized array work.
3560 ITERATE_RDEV(mddev, rdev, rtmp)
3561 if (rdev->raid_disk < 0 &&
3562 !test_bit(Faulty, &rdev->flags)) {
3563 if (raid5_add_disk(mddev, rdev)) {
3565 set_bit(In_sync, &rdev->flags);
3566 conf->working_disks++;
3568 rdev->recovery_offset = 0;
3569 sprintf(nm, "rd%d", rdev->raid_disk);
3570 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3575 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3576 mddev->raid_disks = conf->raid_disks;
3577 mddev->reshape_position = 0;
3578 mddev->sb_dirty = 1;
3580 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3581 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3582 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3583 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3584 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3586 if (!mddev->sync_thread) {
3587 mddev->recovery = 0;
3588 spin_lock_irq(&conf->device_lock);
3589 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3590 conf->expand_progress = MaxSector;
3591 spin_unlock_irq(&conf->device_lock);
3594 md_wakeup_thread(mddev->sync_thread);
3595 md_new_event(mddev);
3600 static void end_reshape(raid5_conf_t *conf)
3602 struct block_device *bdev;
3604 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3605 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3606 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3607 conf->mddev->changed = 1;
3609 bdev = bdget_disk(conf->mddev->gendisk, 0);
3611 mutex_lock(&bdev->bd_inode->i_mutex);
3612 i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3613 mutex_unlock(&bdev->bd_inode->i_mutex);
3616 spin_lock_irq(&conf->device_lock);
3617 conf->expand_progress = MaxSector;
3618 spin_unlock_irq(&conf->device_lock);
3619 conf->mddev->reshape_position = MaxSector;
3621 /* read-ahead size must cover two whole stripes, which is
3622 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3625 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3626 int stripe = data_disks *
3627 (conf->mddev->chunk_size / PAGE_SIZE);
3628 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3629 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3634 static void raid5_quiesce(mddev_t *mddev, int state)
3636 raid5_conf_t *conf = mddev_to_conf(mddev);
3639 case 2: /* resume for a suspend */
3640 wake_up(&conf->wait_for_overlap);
3643 case 1: /* stop all writes */
3644 spin_lock_irq(&conf->device_lock);
3646 wait_event_lock_irq(conf->wait_for_stripe,
3647 atomic_read(&conf->active_stripes) == 0,
3648 conf->device_lock, /* nothing */);
3649 spin_unlock_irq(&conf->device_lock);
3652 case 0: /* re-enable writes */
3653 spin_lock_irq(&conf->device_lock);
3655 wake_up(&conf->wait_for_stripe);
3656 wake_up(&conf->wait_for_overlap);
3657 spin_unlock_irq(&conf->device_lock);
3662 static struct mdk_personality raid6_personality =
3666 .owner = THIS_MODULE,
3667 .make_request = make_request,
3671 .error_handler = error,
3672 .hot_add_disk = raid5_add_disk,
3673 .hot_remove_disk= raid5_remove_disk,
3674 .spare_active = raid5_spare_active,
3675 .sync_request = sync_request,
3676 .resize = raid5_resize,
3677 .quiesce = raid5_quiesce,
3679 static struct mdk_personality raid5_personality =
3683 .owner = THIS_MODULE,
3684 .make_request = make_request,
3688 .error_handler = error,
3689 .hot_add_disk = raid5_add_disk,
3690 .hot_remove_disk= raid5_remove_disk,
3691 .spare_active = raid5_spare_active,
3692 .sync_request = sync_request,
3693 .resize = raid5_resize,
3694 #ifdef CONFIG_MD_RAID5_RESHAPE
3695 .check_reshape = raid5_check_reshape,
3696 .start_reshape = raid5_start_reshape,
3698 .quiesce = raid5_quiesce,
3701 static struct mdk_personality raid4_personality =
3705 .owner = THIS_MODULE,
3706 .make_request = make_request,
3710 .error_handler = error,
3711 .hot_add_disk = raid5_add_disk,
3712 .hot_remove_disk= raid5_remove_disk,
3713 .spare_active = raid5_spare_active,
3714 .sync_request = sync_request,
3715 .resize = raid5_resize,
3716 .quiesce = raid5_quiesce,
3719 static int __init raid5_init(void)
3723 e = raid6_select_algo();
3726 register_md_personality(&raid6_personality);
3727 register_md_personality(&raid5_personality);
3728 register_md_personality(&raid4_personality);
3732 static void raid5_exit(void)
3734 unregister_md_personality(&raid6_personality);
3735 unregister_md_personality(&raid5_personality);
3736 unregister_md_personality(&raid4_personality);
3739 module_init(raid5_init);
3740 module_exit(raid5_exit);
3741 MODULE_LICENSE("GPL");
3742 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3743 MODULE_ALIAS("md-raid5");
3744 MODULE_ALIAS("md-raid4");
3745 MODULE_ALIAS("md-level-5");
3746 MODULE_ALIAS("md-level-4");
3747 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3748 MODULE_ALIAS("md-raid6");
3749 MODULE_ALIAS("md-level-6");
3751 /* This used to be two separate modules, they were: */
3752 MODULE_ALIAS("raid5");
3753 MODULE_ALIAS("raid6");