Merge branch 'for-linus' from kernel.org:/.../shaggy/jfs-2.6 manually
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <asm/semaphore.h>
43
44 #include "aacraid.h"
45
46 /**
47  *      fib_map_alloc           -       allocate the fib objects
48  *      @dev: Adapter to allocate for
49  *
50  *      Allocate and map the shared PCI space for the FIB blocks used to
51  *      talk to the Adaptec firmware.
52  */
53  
54 static int fib_map_alloc(struct aac_dev *dev)
55 {
56         dprintk((KERN_INFO
57           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
58           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
59           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
60         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
61           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
62           &dev->hw_fib_pa))==NULL)
63                 return -ENOMEM;
64         return 0;
65 }
66
67 /**
68  *      fib_map_free            -       free the fib objects
69  *      @dev: Adapter to free
70  *
71  *      Free the PCI mappings and the memory allocated for FIB blocks
72  *      on this adapter.
73  */
74
75 void fib_map_free(struct aac_dev *dev)
76 {
77         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
78 }
79
80 /**
81  *      fib_setup       -       setup the fibs
82  *      @dev: Adapter to set up
83  *
84  *      Allocate the PCI space for the fibs, map it and then intialise the
85  *      fib area, the unmapped fib data and also the free list
86  */
87
88 int fib_setup(struct aac_dev * dev)
89 {
90         struct fib *fibptr;
91         struct hw_fib *hw_fib_va;
92         dma_addr_t hw_fib_pa;
93         int i;
94
95         while (((i = fib_map_alloc(dev)) == -ENOMEM)
96          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
97                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
98                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
99         }
100         if (i<0)
101                 return -ENOMEM;
102                 
103         hw_fib_va = dev->hw_fib_va;
104         hw_fib_pa = dev->hw_fib_pa;
105         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
106         /*
107          *      Initialise the fibs
108          */
109         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
110         {
111                 fibptr->dev = dev;
112                 fibptr->hw_fib = hw_fib_va;
113                 fibptr->data = (void *) fibptr->hw_fib->data;
114                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
115                 init_MUTEX_LOCKED(&fibptr->event_wait);
116                 spin_lock_init(&fibptr->event_lock);
117                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
118                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
119                 fibptr->hw_fib_pa = hw_fib_pa;
120                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
121                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
122         }
123         /*
124          *      Add the fib chain to the free list
125          */
126         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
127         /*
128          *      Enable this to debug out of queue space
129          */
130         dev->free_fib = &dev->fibs[0];
131         return 0;
132 }
133
134 /**
135  *      fib_alloc       -       allocate a fib
136  *      @dev: Adapter to allocate the fib for
137  *
138  *      Allocate a fib from the adapter fib pool. If the pool is empty we
139  *      return NULL.
140  */
141  
142 struct fib * fib_alloc(struct aac_dev *dev)
143 {
144         struct fib * fibptr;
145         unsigned long flags;
146         spin_lock_irqsave(&dev->fib_lock, flags);
147         fibptr = dev->free_fib; 
148         if(!fibptr){
149                 spin_unlock_irqrestore(&dev->fib_lock, flags);
150                 return fibptr;
151         }
152         dev->free_fib = fibptr->next;
153         spin_unlock_irqrestore(&dev->fib_lock, flags);
154         /*
155          *      Set the proper node type code and node byte size
156          */
157         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
158         fibptr->size = sizeof(struct fib);
159         /*
160          *      Null out fields that depend on being zero at the start of
161          *      each I/O
162          */
163         fibptr->hw_fib->header.XferState = 0;
164         fibptr->callback = NULL;
165         fibptr->callback_data = NULL;
166
167         return fibptr;
168 }
169
170 /**
171  *      fib_free        -       free a fib
172  *      @fibptr: fib to free up
173  *
174  *      Frees up a fib and places it on the appropriate queue
175  *      (either free or timed out)
176  */
177  
178 void fib_free(struct fib * fibptr)
179 {
180         unsigned long flags;
181
182         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
183         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
184                 aac_config.fib_timeouts++;
185                 fibptr->next = fibptr->dev->timeout_fib;
186                 fibptr->dev->timeout_fib = fibptr;
187         } else {
188                 if (fibptr->hw_fib->header.XferState != 0) {
189                         printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 
190                                  (void*)fibptr, 
191                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
192                 }
193                 fibptr->next = fibptr->dev->free_fib;
194                 fibptr->dev->free_fib = fibptr;
195         }       
196         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
197 }
198
199 /**
200  *      fib_init        -       initialise a fib
201  *      @fibptr: The fib to initialize
202  *      
203  *      Set up the generic fib fields ready for use
204  */
205  
206 void fib_init(struct fib *fibptr)
207 {
208         struct hw_fib *hw_fib = fibptr->hw_fib;
209
210         hw_fib->header.StructType = FIB_MAGIC;
211         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
212         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
213         hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
214         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
215         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
216 }
217
218 /**
219  *      fib_deallocate          -       deallocate a fib
220  *      @fibptr: fib to deallocate
221  *
222  *      Will deallocate and return to the free pool the FIB pointed to by the
223  *      caller.
224  */
225  
226 static void fib_dealloc(struct fib * fibptr)
227 {
228         struct hw_fib *hw_fib = fibptr->hw_fib;
229         if(hw_fib->header.StructType != FIB_MAGIC) 
230                 BUG();
231         hw_fib->header.XferState = 0;        
232 }
233
234 /*
235  *      Commuication primitives define and support the queuing method we use to
236  *      support host to adapter commuication. All queue accesses happen through
237  *      these routines and are the only routines which have a knowledge of the
238  *       how these queues are implemented.
239  */
240  
241 /**
242  *      aac_get_entry           -       get a queue entry
243  *      @dev: Adapter
244  *      @qid: Queue Number
245  *      @entry: Entry return
246  *      @index: Index return
247  *      @nonotify: notification control
248  *
249  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
250  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
251  *      returned.
252  */
253  
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
255 {
256         struct aac_queue * q;
257         unsigned long idx;
258
259         /*
260          *      All of the queues wrap when they reach the end, so we check
261          *      to see if they have reached the end and if they have we just
262          *      set the index back to zero. This is a wrap. You could or off
263          *      the high bits in all updates but this is a bit faster I think.
264          */
265
266         q = &dev->queues->queue[qid];
267
268         idx = *index = le32_to_cpu(*(q->headers.producer));
269         /* Interrupt Moderation, only interrupt for first two entries */
270         if (idx != le32_to_cpu(*(q->headers.consumer))) {
271                 if (--idx == 0) {
272                         if (qid == AdapHighCmdQueue)
273                                 idx = ADAP_HIGH_CMD_ENTRIES;
274                         else if (qid == AdapNormCmdQueue)
275                                 idx = ADAP_NORM_CMD_ENTRIES;
276                         else if (qid == AdapHighRespQueue) 
277                                 idx = ADAP_HIGH_RESP_ENTRIES;
278                         else if (qid == AdapNormRespQueue) 
279                                 idx = ADAP_NORM_RESP_ENTRIES;
280                 }
281                 if (idx != le32_to_cpu(*(q->headers.consumer)))
282                         *nonotify = 1; 
283         }
284
285         if (qid == AdapHighCmdQueue) {
286                 if (*index >= ADAP_HIGH_CMD_ENTRIES)
287                         *index = 0;
288         } else if (qid == AdapNormCmdQueue) {
289                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
290                         *index = 0; /* Wrap to front of the Producer Queue. */
291         }
292         else if (qid == AdapHighRespQueue) 
293         {
294                 if (*index >= ADAP_HIGH_RESP_ENTRIES)
295                         *index = 0;
296         }
297         else if (qid == AdapNormRespQueue) 
298         {
299                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
300                         *index = 0; /* Wrap to front of the Producer Queue. */
301         }
302         else {
303                 printk("aacraid: invalid qid\n");
304                 BUG();
305         }
306
307         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
308                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
309                                 qid, q->numpending);
310                 return 0;
311         } else {
312                 *entry = q->base + *index;
313                 return 1;
314         }
315 }   
316
317 /**
318  *      aac_queue_get           -       get the next free QE
319  *      @dev: Adapter
320  *      @index: Returned index
321  *      @priority: Priority of fib
322  *      @fib: Fib to associate with the queue entry
323  *      @wait: Wait if queue full
324  *      @fibptr: Driver fib object to go with fib
325  *      @nonotify: Don't notify the adapter
326  *
327  *      Gets the next free QE off the requested priorty adapter command
328  *      queue and associates the Fib with the QE. The QE represented by
329  *      index is ready to insert on the queue when this routine returns
330  *      success.
331  */
332
333 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
334 {
335         struct aac_entry * entry = NULL;
336         int map = 0;
337         struct aac_queue * q = &dev->queues->queue[qid];
338                 
339         spin_lock_irqsave(q->lock, q->SavedIrql);
340             
341         if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue) 
342         {
343                 /*  if no entries wait for some if caller wants to */
344                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
345                 {
346                         printk(KERN_ERR "GetEntries failed\n");
347                 }
348                 /*
349                  *      Setup queue entry with a command, status and fib mapped
350                  */
351                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
352                 map = 1;
353         }
354         else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
355         {
356                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
357                 {
358                         /* if no entries wait for some if caller wants to */
359                 }
360                 /*
361                  *      Setup queue entry with command, status and fib mapped
362                  */
363                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
364                 entry->addr = hw_fib->header.SenderFibAddress;
365                         /* Restore adapters pointer to the FIB */
366                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
367                 map = 0;
368         }
369         /*
370          *      If MapFib is true than we need to map the Fib and put pointers
371          *      in the queue entry.
372          */
373         if (map)
374                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
375         return 0;
376 }
377
378
379 /**
380  *      aac_insert_entry        -       insert a queue entry
381  *      @dev: Adapter
382  *      @index: Index of entry to insert
383  *      @qid: Queue number
384  *      @nonotify: Suppress adapter notification
385  *
386  *      Gets the next free QE off the requested priorty adapter command
387  *      queue and associates the Fib with the QE. The QE represented by
388  *      index is ready to insert on the queue when this routine returns
389  *      success.
390  */
391  
392 static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify) 
393 {
394         struct aac_queue * q = &dev->queues->queue[qid];
395
396         if(q == NULL)
397                 BUG();
398         *(q->headers.producer) = cpu_to_le32(index + 1);
399         spin_unlock_irqrestore(q->lock, q->SavedIrql);
400
401         if (qid == AdapHighCmdQueue ||
402             qid == AdapNormCmdQueue ||
403             qid == AdapHighRespQueue ||
404             qid == AdapNormRespQueue)
405         {
406                 if (!nonotify)
407                         aac_adapter_notify(dev, qid);
408         }
409         else
410                 printk("Suprise insert!\n");
411         return 0;
412 }
413
414 /*
415  *      Define the highest level of host to adapter communication routines. 
416  *      These routines will support host to adapter FS commuication. These 
417  *      routines have no knowledge of the commuication method used. This level
418  *      sends and receives FIBs. This level has no knowledge of how these FIBs
419  *      get passed back and forth.
420  */
421
422 /**
423  *      fib_send        -       send a fib to the adapter
424  *      @command: Command to send
425  *      @fibptr: The fib
426  *      @size: Size of fib data area
427  *      @priority: Priority of Fib
428  *      @wait: Async/sync select
429  *      @reply: True if a reply is wanted
430  *      @callback: Called with reply
431  *      @callback_data: Passed to callback
432  *
433  *      Sends the requested FIB to the adapter and optionally will wait for a
434  *      response FIB. If the caller does not wish to wait for a response than
435  *      an event to wait on must be supplied. This event will be set when a
436  *      response FIB is received from the adapter.
437  */
438  
439 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
440 {
441         u32 index;
442         u32 qid;
443         struct aac_dev * dev = fibptr->dev;
444         unsigned long nointr = 0;
445         struct hw_fib * hw_fib = fibptr->hw_fib;
446         struct aac_queue * q;
447         unsigned long flags = 0;
448         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
449                 return -EBUSY;
450         /*
451          *      There are 5 cases with the wait and reponse requested flags. 
452          *      The only invalid cases are if the caller requests to wait and
453          *      does not request a response and if the caller does not want a
454          *      response and the Fib is not allocated from pool. If a response
455          *      is not requesed the Fib will just be deallocaed by the DPC
456          *      routine when the response comes back from the adapter. No
457          *      further processing will be done besides deleting the Fib. We 
458          *      will have a debug mode where the adapter can notify the host
459          *      it had a problem and the host can log that fact.
460          */
461         if (wait && !reply) {
462                 return -EINVAL;
463         } else if (!wait && reply) {
464                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
465                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
466         } else if (!wait && !reply) {
467                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
468                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
469         } else if (wait && reply) {
470                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
471                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
472         } 
473         /*
474          *      Map the fib into 32bits by using the fib number
475          */
476
477         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
478         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
479         /*
480          *      Set FIB state to indicate where it came from and if we want a
481          *      response from the adapter. Also load the command from the
482          *      caller.
483          *
484          *      Map the hw fib pointer as a 32bit value
485          */
486         hw_fib->header.Command = cpu_to_le16(command);
487         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
488         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
489         /*
490          *      Set the size of the Fib we want to send to the adapter
491          */
492         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
493         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
494                 return -EMSGSIZE;
495         }                
496         /*
497          *      Get a queue entry connect the FIB to it and send an notify
498          *      the adapter a command is ready.
499          */
500         if (priority == FsaHigh) {
501                 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
502                 qid = AdapHighCmdQueue;
503         } else {
504                 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
505                 qid = AdapNormCmdQueue;
506         }
507         q = &dev->queues->queue[qid];
508
509         if(wait)
510                 spin_lock_irqsave(&fibptr->event_lock, flags);
511         if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
512                 return -EWOULDBLOCK;
513         dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
514         dprintk((KERN_DEBUG "Fib contents:.\n"));
515         dprintk((KERN_DEBUG "  Command =               %d.\n", hw_fib->header.Command));
516         dprintk((KERN_DEBUG "  XferState  =            %x.\n", hw_fib->header.XferState));
517         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
518         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
519         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
520         /*
521          *      Fill in the Callback and CallbackContext if we are not
522          *      going to wait.
523          */
524         if (!wait) {
525                 fibptr->callback = callback;
526                 fibptr->callback_data = callback_data;
527         }
528         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
529         list_add_tail(&fibptr->queue, &q->pendingq);
530         q->numpending++;
531
532         fibptr->done = 0;
533         fibptr->flags = 0;
534
535         if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
536                 return -EWOULDBLOCK;
537         /*
538          *      If the caller wanted us to wait for response wait now. 
539          */
540     
541         if (wait) {
542                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
543                 down(&fibptr->event_wait);
544                 if(fibptr->done == 0)
545                         BUG();
546                         
547                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
548                         return -ETIMEDOUT;
549                 } else {
550                         return 0;
551                 }
552         }
553         /*
554          *      If the user does not want a response than return success otherwise
555          *      return pending
556          */
557         if (reply)
558                 return -EINPROGRESS;
559         else
560                 return 0;
561 }
562
563 /** 
564  *      aac_consumer_get        -       get the top of the queue
565  *      @dev: Adapter
566  *      @q: Queue
567  *      @entry: Return entry
568  *
569  *      Will return a pointer to the entry on the top of the queue requested that
570  *      we are a consumer of, and return the address of the queue entry. It does
571  *      not change the state of the queue. 
572  */
573
574 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
575 {
576         u32 index;
577         int status;
578         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
579                 status = 0;
580         } else {
581                 /*
582                  *      The consumer index must be wrapped if we have reached
583                  *      the end of the queue, else we just use the entry
584                  *      pointed to by the header index
585                  */
586                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
587                         index = 0;              
588                 else
589                         index = le32_to_cpu(*q->headers.consumer);
590                 *entry = q->base + index;
591                 status = 1;
592         }
593         return(status);
594 }
595
596 /**
597  *      aac_consumer_free       -       free consumer entry
598  *      @dev: Adapter
599  *      @q: Queue
600  *      @qid: Queue ident
601  *
602  *      Frees up the current top of the queue we are a consumer of. If the
603  *      queue was full notify the producer that the queue is no longer full.
604  */
605
606 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
607 {
608         int wasfull = 0;
609         u32 notify;
610
611         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
612                 wasfull = 1;
613         
614         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
615                 *q->headers.consumer = cpu_to_le32(1);
616         else
617                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
618         
619         if (wasfull) {
620                 switch (qid) {
621
622                 case HostNormCmdQueue:
623                         notify = HostNormCmdNotFull;
624                         break;
625                 case HostHighCmdQueue:
626                         notify = HostHighCmdNotFull;
627                         break;
628                 case HostNormRespQueue:
629                         notify = HostNormRespNotFull;
630                         break;
631                 case HostHighRespQueue:
632                         notify = HostHighRespNotFull;
633                         break;
634                 default:
635                         BUG();
636                         return;
637                 }
638                 aac_adapter_notify(dev, notify);
639         }
640 }        
641
642 /**
643  *      fib_adapter_complete    -       complete adapter issued fib
644  *      @fibptr: fib to complete
645  *      @size: size of fib
646  *
647  *      Will do all necessary work to complete a FIB that was sent from
648  *      the adapter.
649  */
650
651 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
652 {
653         struct hw_fib * hw_fib = fibptr->hw_fib;
654         struct aac_dev * dev = fibptr->dev;
655         unsigned long nointr = 0;
656         if (hw_fib->header.XferState == 0)
657                 return 0;
658         /*
659          *      If we plan to do anything check the structure type first.
660          */ 
661         if ( hw_fib->header.StructType != FIB_MAGIC ) {
662                 return -EINVAL;
663         }
664         /*
665          *      This block handles the case where the adapter had sent us a
666          *      command and we have finished processing the command. We
667          *      call completeFib when we are done processing the command 
668          *      and want to send a response back to the adapter. This will 
669          *      send the completed cdb to the adapter.
670          */
671         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
672                 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
673                 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
674                         u32 index;
675                         if (size) 
676                         {
677                                 size += sizeof(struct aac_fibhdr);
678                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
679                                         return -EMSGSIZE;
680                                 hw_fib->header.Size = cpu_to_le16(size);
681                         }
682                         if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
683                                 return -EWOULDBLOCK;
684                         }
685                         if (aac_insert_entry(dev, index, AdapHighRespQueue,  (nointr & (int)aac_config.irq_mod)) != 0) {
686                         }
687                 } else if (hw_fib->header.XferState & 
688                                 cpu_to_le32(NormalPriority)) {
689                         u32 index;
690
691                         if (size) {
692                                 size += sizeof(struct aac_fibhdr);
693                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
694                                         return -EMSGSIZE;
695                                 hw_fib->header.Size = cpu_to_le16(size);
696                         }
697                         if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0) 
698                                 return -EWOULDBLOCK;
699                         if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) 
700                         {
701                         }
702                 }
703         }
704         else 
705         {
706                 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
707                 BUG();
708         }   
709         return 0;
710 }
711
712 /**
713  *      fib_complete    -       fib completion handler
714  *      @fib: FIB to complete
715  *
716  *      Will do all necessary work to complete a FIB.
717  */
718  
719 int fib_complete(struct fib * fibptr)
720 {
721         struct hw_fib * hw_fib = fibptr->hw_fib;
722
723         /*
724          *      Check for a fib which has already been completed
725          */
726
727         if (hw_fib->header.XferState == 0)
728                 return 0;
729         /*
730          *      If we plan to do anything check the structure type first.
731          */ 
732
733         if (hw_fib->header.StructType != FIB_MAGIC)
734                 return -EINVAL;
735         /*
736          *      This block completes a cdb which orginated on the host and we 
737          *      just need to deallocate the cdb or reinit it. At this point the
738          *      command is complete that we had sent to the adapter and this
739          *      cdb could be reused.
740          */
741         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
742                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
743         {
744                 fib_dealloc(fibptr);
745         }
746         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
747         {
748                 /*
749                  *      This handles the case when the host has aborted the I/O
750                  *      to the adapter because the adapter is not responding
751                  */
752                 fib_dealloc(fibptr);
753         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
754                 fib_dealloc(fibptr);
755         } else {
756                 BUG();
757         }   
758         return 0;
759 }
760
761 /**
762  *      aac_printf      -       handle printf from firmware
763  *      @dev: Adapter
764  *      @val: Message info
765  *
766  *      Print a message passed to us by the controller firmware on the
767  *      Adaptec board
768  */
769
770 void aac_printf(struct aac_dev *dev, u32 val)
771 {
772         char *cp = dev->printfbuf;
773         if (dev->printf_enabled)
774         {
775                 int length = val & 0xffff;
776                 int level = (val >> 16) & 0xffff;
777                 
778                 /*
779                  *      The size of the printfbuf is set in port.c
780                  *      There is no variable or define for it
781                  */
782                 if (length > 255)
783                         length = 255;
784                 if (cp[length] != 0)
785                         cp[length] = 0;
786                 if (level == LOG_AAC_HIGH_ERROR)
787                         printk(KERN_WARNING "aacraid:%s", cp);
788                 else
789                         printk(KERN_INFO "aacraid:%s", cp);
790         }
791         memset(cp, 0,  256);
792 }
793
794 /**
795  *      aac_command_thread      -       command processing thread
796  *      @dev: Adapter to monitor
797  *
798  *      Waits on the commandready event in it's queue. When the event gets set
799  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
800  *      until the queue is empty. When the queue is empty it will wait for
801  *      more FIBs.
802  */
803  
804 int aac_command_thread(struct aac_dev * dev)
805 {
806         struct hw_fib *hw_fib, *hw_newfib;
807         struct fib *fib, *newfib;
808         struct aac_queue_block *queues = dev->queues;
809         struct aac_fib_context *fibctx;
810         unsigned long flags;
811         DECLARE_WAITQUEUE(wait, current);
812
813         /*
814          *      We can only have one thread per adapter for AIF's.
815          */
816         if (dev->aif_thread)
817                 return -EINVAL;
818         /*
819          *      Set up the name that will appear in 'ps'
820          *      stored in  task_struct.comm[16].
821          */
822         daemonize("aacraid");
823         allow_signal(SIGKILL);
824         /*
825          *      Let the DPC know it has a place to send the AIF's to.
826          */
827         dev->aif_thread = 1;
828         add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
829         set_current_state(TASK_INTERRUPTIBLE);
830         while(1) 
831         {
832                 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
833                 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
834                         struct list_head *entry;
835                         struct aac_aifcmd * aifcmd;
836
837                         set_current_state(TASK_RUNNING);
838                 
839                         entry = queues->queue[HostNormCmdQueue].cmdq.next;
840                         list_del(entry);
841                         
842                         spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
843                         fib = list_entry(entry, struct fib, fiblink);
844                         /*
845                          *      We will process the FIB here or pass it to a 
846                          *      worker thread that is TBD. We Really can't 
847                          *      do anything at this point since we don't have
848                          *      anything defined for this thread to do.
849                          */
850                         hw_fib = fib->hw_fib;
851                         memset(fib, 0, sizeof(struct fib));
852                         fib->type = FSAFS_NTC_FIB_CONTEXT;
853                         fib->size = sizeof( struct fib );
854                         fib->hw_fib = hw_fib;
855                         fib->data = hw_fib->data;
856                         fib->dev = dev;
857                         /*
858                          *      We only handle AifRequest fibs from the adapter.
859                          */
860                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
861                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
862                                 /* Handle Driver Notify Events */
863                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
864                                 fib_adapter_complete(fib, (u16)sizeof(u32));
865                         } else {
866                                 struct list_head *entry;
867                                 /* The u32 here is important and intended. We are using
868                                    32bit wrapping time to fit the adapter field */
869                                    
870                                 u32 time_now, time_last;
871                                 unsigned long flagv;
872                                 
873                                 time_now = jiffies/HZ;
874
875                                 spin_lock_irqsave(&dev->fib_lock, flagv);
876                                 entry = dev->fib_list.next;
877                                 /*
878                                  * For each Context that is on the 
879                                  * fibctxList, make a copy of the
880                                  * fib, and then set the event to wake up the
881                                  * thread that is waiting for it.
882                                  */
883                                 while (entry != &dev->fib_list) {
884                                         /*
885                                          * Extract the fibctx
886                                          */
887                                         fibctx = list_entry(entry, struct aac_fib_context, next);
888                                         /*
889                                          * Check if the queue is getting
890                                          * backlogged
891                                          */
892                                         if (fibctx->count > 20)
893                                         {
894                                                 /*
895                                                  * It's *not* jiffies folks,
896                                                  * but jiffies / HZ so do not
897                                                  * panic ...
898                                                  */
899                                                 time_last = fibctx->jiffies;
900                                                 /*
901                                                  * Has it been > 2 minutes 
902                                                  * since the last read off
903                                                  * the queue?
904                                                  */
905                                                 if ((time_now - time_last) > 120) {
906                                                         entry = entry->next;
907                                                         aac_close_fib_context(dev, fibctx);
908                                                         continue;
909                                                 }
910                                         }
911                                         /*
912                                          * Warning: no sleep allowed while
913                                          * holding spinlock
914                                          */
915                                         hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
916                                         newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
917                                         if (newfib && hw_newfib) {
918                                                 /*
919                                                  * Make the copy of the FIB
920                                                  */
921                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
922                                                 memcpy(newfib, fib, sizeof(struct fib));
923                                                 newfib->hw_fib = hw_newfib;
924                                                 /*
925                                                  * Put the FIB onto the
926                                                  * fibctx's fibs
927                                                  */
928                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
929                                                 fibctx->count++;
930                                                 /* 
931                                                  * Set the event to wake up the
932                                                  * thread that will waiting.
933                                                  */
934                                                 up(&fibctx->wait_sem);
935                                         } else {
936                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
937                                                 if(newfib)
938                                                         kfree(newfib);
939                                                 if(hw_newfib)
940                                                         kfree(hw_newfib);
941                                         }
942                                         entry = entry->next;
943                                 }
944                                 /*
945                                  *      Set the status of this FIB
946                                  */
947                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
948                                 fib_adapter_complete(fib, sizeof(u32));
949                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
950                         }
951                         spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
952                         kfree(fib);
953                 }
954                 /*
955                  *      There are no more AIF's
956                  */
957                 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
958                 schedule();
959
960                 if(signal_pending(current))
961                         break;
962                 set_current_state(TASK_INTERRUPTIBLE);
963         }
964         remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
965         dev->aif_thread = 0;
966         complete_and_exit(&dev->aif_completion, 0);
967 }