2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
20 #include <linux/swap.h>
22 #include <asm/meminit.h>
23 #include <asm/pgalloc.h>
24 #include <asm/pgtable.h>
25 #include <asm/sections.h>
28 #ifdef CONFIG_VIRTUAL_MEM_MAP
29 static unsigned long num_dma_physpages;
30 static unsigned long max_gap;
34 * show_mem - display a memory statistics summary
36 * Just walks the pages in the system and describes where they're allocated.
41 int i, total = 0, reserved = 0;
42 int shared = 0, cached = 0;
44 printk("Mem-info:\n");
47 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
49 for (i = 0; i < max_mapnr; i++) {
51 #ifdef CONFIG_VIRTUAL_MEM_MAP
52 if (max_gap < LARGE_GAP)
54 i = vmemmap_find_next_valid_pfn(0, i) - 1;
59 if (PageReserved(mem_map+i))
61 else if (PageSwapCache(mem_map+i))
63 else if (page_count(mem_map + i))
64 shared += page_count(mem_map + i) - 1;
66 printk("%d pages of RAM\n", total);
67 printk("%d reserved pages\n", reserved);
68 printk("%d pages shared\n", shared);
69 printk("%d pages swap cached\n", cached);
70 printk("%ld pages in page table cache\n",
71 pgtable_quicklist_total_size());
74 /* physical address where the bootmem map is located */
75 unsigned long bootmap_start;
78 * find_max_pfn - adjust the maximum page number callback
79 * @start: start of range
81 * @arg: address of pointer to global max_pfn variable
83 * Passed as a callback function to efi_memmap_walk() to determine the highest
84 * available page frame number in the system.
87 find_max_pfn (unsigned long start, unsigned long end, void *arg)
89 unsigned long *max_pfnp = arg, pfn;
91 pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
98 * find_bootmap_location - callback to find a memory area for the bootmap
99 * @start: start of region
100 * @end: end of region
101 * @arg: unused callback data
103 * Find a place to put the bootmap and return its starting address in
104 * bootmap_start. This address must be page-aligned.
107 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
109 unsigned long needed = *(unsigned long *)arg;
110 unsigned long range_start, range_end, free_start;
114 if (start == PAGE_OFFSET) {
121 free_start = PAGE_OFFSET;
123 for (i = 0; i < num_rsvd_regions; i++) {
124 range_start = max(start, free_start);
125 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
127 free_start = PAGE_ALIGN(rsvd_region[i].end);
129 if (range_end <= range_start)
130 continue; /* skip over empty range */
132 if (range_end - range_start >= needed) {
133 bootmap_start = __pa(range_start);
134 return -1; /* done */
137 /* nothing more available in this segment */
138 if (range_end == end)
145 * find_memory - setup memory map
147 * Walk the EFI memory map and find usable memory for the system, taking
148 * into account reserved areas.
153 unsigned long bootmap_size;
157 /* first find highest page frame number */
159 efi_memmap_walk(find_max_pfn, &max_pfn);
161 /* how many bytes to cover all the pages */
162 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
164 /* look for a location to hold the bootmap */
165 bootmap_start = ~0UL;
166 efi_memmap_walk(find_bootmap_location, &bootmap_size);
167 if (bootmap_start == ~0UL)
168 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
170 bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
172 /* Free all available memory, then mark bootmem-map as being in use. */
173 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
174 reserve_bootmem(bootmap_start, bootmap_size);
181 * per_cpu_init - setup per-cpu variables
183 * Allocate and setup per-cpu data areas.
190 static int first_time=1;
193 * get_free_pages() cannot be used before cpu_init() done. BSP
194 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
199 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
200 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
201 for (cpu = 0; cpu < NR_CPUS; cpu++) {
202 memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
203 __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
204 cpu_data += PERCPU_PAGE_SIZE;
205 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
208 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
210 #endif /* CONFIG_SMP */
213 count_pages (u64 start, u64 end, void *arg)
215 unsigned long *count = arg;
217 *count += (end - start) >> PAGE_SHIFT;
221 #ifdef CONFIG_VIRTUAL_MEM_MAP
223 count_dma_pages (u64 start, u64 end, void *arg)
225 unsigned long *count = arg;
227 if (start < MAX_DMA_ADDRESS)
228 *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
234 * Set up the page tables.
240 unsigned long max_dma;
241 unsigned long zones_size[MAX_NR_ZONES];
242 #ifdef CONFIG_VIRTUAL_MEM_MAP
243 unsigned long zholes_size[MAX_NR_ZONES];
246 /* initialize mem_map[] */
248 memset(zones_size, 0, sizeof(zones_size));
251 efi_memmap_walk(count_pages, &num_physpages);
253 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
255 #ifdef CONFIG_VIRTUAL_MEM_MAP
256 memset(zholes_size, 0, sizeof(zholes_size));
258 num_dma_physpages = 0;
259 efi_memmap_walk(count_dma_pages, &num_dma_physpages);
261 if (max_low_pfn < max_dma) {
262 zones_size[ZONE_DMA] = max_low_pfn;
263 zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
265 zones_size[ZONE_DMA] = max_dma;
266 zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
267 if (num_physpages > num_dma_physpages) {
268 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
269 zholes_size[ZONE_NORMAL] =
270 ((max_low_pfn - max_dma) -
271 (num_physpages - num_dma_physpages));
275 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
276 if (max_gap < LARGE_GAP) {
277 vmem_map = (struct page *) 0;
278 free_area_init_node(0, NODE_DATA(0), zones_size, 0,
281 unsigned long map_size;
283 /* allocate virtual_mem_map */
285 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
286 sizeof(struct page));
287 vmalloc_end -= map_size;
288 vmem_map = (struct page *) vmalloc_end;
289 efi_memmap_walk(create_mem_map_page_table, NULL);
291 NODE_DATA(0)->node_mem_map = vmem_map;
292 free_area_init_node(0, NODE_DATA(0), zones_size,
295 printk("Virtual mem_map starts at 0x%p\n", mem_map);
297 #else /* !CONFIG_VIRTUAL_MEM_MAP */
298 if (max_low_pfn < max_dma)
299 zones_size[ZONE_DMA] = max_low_pfn;
301 zones_size[ZONE_DMA] = max_dma;
302 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
304 free_area_init(zones_size);
305 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
306 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));