1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/mmu_context.h>
17 #include <asm/hypervisor.h>
18 #include <asm/processor.h>
19 #include <asm/sections.h>
20 #include <asm/topology.h>
21 #include <asm/cpumask.h>
22 #include <asm/pgtable.h>
23 #include <asm/atomic.h>
24 #include <asm/proto.h>
25 #include <asm/setup.h>
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
61 static const struct cpu_dev *this_cpu __cpuinitdata;
63 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
66 * We need valid kernel segments for data and code in long mode too
67 * IRET will check the segment types kkeil 2000/10/28
68 * Also sysret mandates a special GDT layout
70 * TLS descriptors are currently at a different place compared to i386.
71 * Hopefully nobody expects them at a fixed place (Wine?)
73 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
80 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
81 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
82 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
83 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
85 * Segments used for calling PnP BIOS have byte granularity.
86 * They code segments and data segments have fixed 64k limits,
87 * the transfer segment sizes are set at run time.
90 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
92 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
94 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
96 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
98 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
100 * The APM segments have byte granularity and their bases
101 * are set at run time. All have 64k limits.
104 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
106 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
108 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
110 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
111 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
112 GDT_STACK_CANARY_INIT
115 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
118 static int cachesize_override __cpuinitdata = -1;
119 static int disable_x86_serial_nr __cpuinitdata = 1;
121 static int __init cachesize_setup(char *str)
123 get_option(&str, &cachesize_override);
126 __setup("cachesize=", cachesize_setup);
128 static int __init x86_fxsr_setup(char *s)
130 setup_clear_cpu_cap(X86_FEATURE_FXSR);
131 setup_clear_cpu_cap(X86_FEATURE_XMM);
134 __setup("nofxsr", x86_fxsr_setup);
136 static int __init x86_sep_setup(char *s)
138 setup_clear_cpu_cap(X86_FEATURE_SEP);
141 __setup("nosep", x86_sep_setup);
143 /* Standard macro to see if a specific flag is changeable */
144 static inline int flag_is_changeable_p(u32 flag)
149 * Cyrix and IDT cpus allow disabling of CPUID
150 * so the code below may return different results
151 * when it is executed before and after enabling
152 * the CPUID. Add "volatile" to not allow gcc to
153 * optimize the subsequent calls to this function.
155 asm volatile ("pushfl \n\t"
166 : "=&r" (f1), "=&r" (f2)
169 return ((f1^f2) & flag) != 0;
172 /* Probe for the CPUID instruction */
173 static int __cpuinit have_cpuid_p(void)
175 return flag_is_changeable_p(X86_EFLAGS_ID);
178 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
180 unsigned long lo, hi;
182 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
185 /* Disable processor serial number: */
187 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
189 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
191 printk(KERN_NOTICE "CPU serial number disabled.\n");
192 clear_cpu_cap(c, X86_FEATURE_PN);
194 /* Disabling the serial number may affect the cpuid level */
195 c->cpuid_level = cpuid_eax(0);
198 static int __init x86_serial_nr_setup(char *s)
200 disable_x86_serial_nr = 0;
203 __setup("serialnumber", x86_serial_nr_setup);
205 static inline int flag_is_changeable_p(u32 flag)
209 /* Probe for the CPUID instruction */
210 static inline int have_cpuid_p(void)
214 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
220 * Some CPU features depend on higher CPUID levels, which may not always
221 * be available due to CPUID level capping or broken virtualization
222 * software. Add those features to this table to auto-disable them.
224 struct cpuid_dependent_feature {
229 static const struct cpuid_dependent_feature __cpuinitconst
230 cpuid_dependent_features[] = {
231 { X86_FEATURE_MWAIT, 0x00000005 },
232 { X86_FEATURE_DCA, 0x00000009 },
233 { X86_FEATURE_XSAVE, 0x0000000d },
237 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
239 const struct cpuid_dependent_feature *df;
241 for (df = cpuid_dependent_features; df->feature; df++) {
243 if (!cpu_has(c, df->feature))
246 * Note: cpuid_level is set to -1 if unavailable, but
247 * extended_extended_level is set to 0 if unavailable
248 * and the legitimate extended levels are all negative
249 * when signed; hence the weird messing around with
252 if (!((s32)df->level < 0 ?
253 (u32)df->level > (u32)c->extended_cpuid_level :
254 (s32)df->level > (s32)c->cpuid_level))
257 clear_cpu_cap(c, df->feature);
262 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
263 x86_cap_flags[df->feature], df->level);
268 * Naming convention should be: <Name> [(<Codename>)]
269 * This table only is used unless init_<vendor>() below doesn't set it;
270 * in particular, if CPUID levels 0x80000002..4 are supported, this
274 /* Look up CPU names by table lookup. */
275 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
277 const struct cpu_model_info *info;
279 if (c->x86_model >= 16)
280 return NULL; /* Range check */
285 info = this_cpu->c_models;
287 while (info && info->family) {
288 if (info->family == c->x86)
289 return info->model_names[c->x86_model];
292 return NULL; /* Not found */
295 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
297 void load_percpu_segment(int cpu)
300 loadsegment(fs, __KERNEL_PERCPU);
303 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
305 load_stack_canary_segment();
309 * Current gdt points %fs at the "master" per-cpu area: after this,
310 * it's on the real one.
312 void switch_to_new_gdt(int cpu)
314 struct desc_ptr gdt_descr;
316 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
317 gdt_descr.size = GDT_SIZE - 1;
318 load_gdt(&gdt_descr);
319 /* Reload the per-cpu base */
321 load_percpu_segment(cpu);
324 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
326 static void __cpuinit default_init(struct cpuinfo_x86 *c)
329 display_cacheinfo(c);
331 /* Not much we can do here... */
332 /* Check if at least it has cpuid */
333 if (c->cpuid_level == -1) {
334 /* No cpuid. It must be an ancient CPU */
336 strcpy(c->x86_model_id, "486");
337 else if (c->x86 == 3)
338 strcpy(c->x86_model_id, "386");
343 static const struct cpu_dev __cpuinitconst default_cpu = {
344 .c_init = default_init,
345 .c_vendor = "Unknown",
346 .c_x86_vendor = X86_VENDOR_UNKNOWN,
349 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
354 if (c->extended_cpuid_level < 0x80000004)
357 v = (unsigned int *)c->x86_model_id;
358 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
359 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
360 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
361 c->x86_model_id[48] = 0;
364 * Intel chips right-justify this string for some dumb reason;
365 * undo that brain damage:
367 p = q = &c->x86_model_id[0];
373 while (q <= &c->x86_model_id[48])
374 *q++ = '\0'; /* Zero-pad the rest */
378 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
380 unsigned int n, dummy, ebx, ecx, edx, l2size;
382 n = c->extended_cpuid_level;
384 if (n >= 0x80000005) {
385 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
386 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
387 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
388 c->x86_cache_size = (ecx>>24) + (edx>>24);
390 /* On K8 L1 TLB is inclusive, so don't count it */
395 if (n < 0x80000006) /* Some chips just has a large L1. */
398 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
402 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
404 /* do processor-specific cache resizing */
405 if (this_cpu->c_size_cache)
406 l2size = this_cpu->c_size_cache(c, l2size);
408 /* Allow user to override all this if necessary. */
409 if (cachesize_override != -1)
410 l2size = cachesize_override;
413 return; /* Again, no L2 cache is possible */
416 c->x86_cache_size = l2size;
418 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
422 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
425 u32 eax, ebx, ecx, edx;
426 int index_msb, core_bits;
428 if (!cpu_has(c, X86_FEATURE_HT))
431 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
434 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
437 cpuid(1, &eax, &ebx, &ecx, &edx);
439 smp_num_siblings = (ebx & 0xff0000) >> 16;
441 if (smp_num_siblings == 1) {
442 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
446 if (smp_num_siblings <= 1)
449 if (smp_num_siblings > nr_cpu_ids) {
450 pr_warning("CPU: Unsupported number of siblings %d",
452 smp_num_siblings = 1;
456 index_msb = get_count_order(smp_num_siblings);
457 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
459 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
461 index_msb = get_count_order(smp_num_siblings);
463 core_bits = get_count_order(c->x86_max_cores);
465 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
466 ((1 << core_bits) - 1);
469 if ((c->x86_max_cores * smp_num_siblings) > 1) {
470 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
472 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
478 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
480 char *v = c->x86_vendor_id;
484 for (i = 0; i < X86_VENDOR_NUM; i++) {
488 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
489 (cpu_devs[i]->c_ident[1] &&
490 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
492 this_cpu = cpu_devs[i];
493 c->x86_vendor = this_cpu->c_x86_vendor;
501 "CPU: vendor_id '%s' unknown, using generic init.\n", v);
503 printk(KERN_ERR "CPU: Your system may be unstable.\n");
506 c->x86_vendor = X86_VENDOR_UNKNOWN;
507 this_cpu = &default_cpu;
510 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
512 /* Get vendor name */
513 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
514 (unsigned int *)&c->x86_vendor_id[0],
515 (unsigned int *)&c->x86_vendor_id[8],
516 (unsigned int *)&c->x86_vendor_id[4]);
519 /* Intel-defined flags: level 0x00000001 */
520 if (c->cpuid_level >= 0x00000001) {
521 u32 junk, tfms, cap0, misc;
523 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
524 c->x86 = (tfms >> 8) & 0xf;
525 c->x86_model = (tfms >> 4) & 0xf;
526 c->x86_mask = tfms & 0xf;
529 c->x86 += (tfms >> 20) & 0xff;
531 c->x86_model += ((tfms >> 16) & 0xf) << 4;
533 if (cap0 & (1<<19)) {
534 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
535 c->x86_cache_alignment = c->x86_clflush_size;
540 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
545 /* Intel-defined flags: level 0x00000001 */
546 if (c->cpuid_level >= 0x00000001) {
547 u32 capability, excap;
549 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
550 c->x86_capability[0] = capability;
551 c->x86_capability[4] = excap;
554 /* AMD-defined flags: level 0x80000001 */
555 xlvl = cpuid_eax(0x80000000);
556 c->extended_cpuid_level = xlvl;
558 if ((xlvl & 0xffff0000) == 0x80000000) {
559 if (xlvl >= 0x80000001) {
560 c->x86_capability[1] = cpuid_edx(0x80000001);
561 c->x86_capability[6] = cpuid_ecx(0x80000001);
565 if (c->extended_cpuid_level >= 0x80000008) {
566 u32 eax = cpuid_eax(0x80000008);
568 c->x86_virt_bits = (eax >> 8) & 0xff;
569 c->x86_phys_bits = eax & 0xff;
572 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
573 c->x86_phys_bits = 36;
576 if (c->extended_cpuid_level >= 0x80000007)
577 c->x86_power = cpuid_edx(0x80000007);
581 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
587 * First of all, decide if this is a 486 or higher
588 * It's a 486 if we can modify the AC flag
590 if (flag_is_changeable_p(X86_EFLAGS_AC))
595 for (i = 0; i < X86_VENDOR_NUM; i++)
596 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
597 c->x86_vendor_id[0] = 0;
598 cpu_devs[i]->c_identify(c);
599 if (c->x86_vendor_id[0]) {
608 * Do minimum CPU detection early.
609 * Fields really needed: vendor, cpuid_level, family, model, mask,
611 * The others are not touched to avoid unwanted side effects.
613 * WARNING: this function is only called on the BP. Don't add code here
614 * that is supposed to run on all CPUs.
616 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
619 c->x86_clflush_size = 64;
620 c->x86_phys_bits = 36;
621 c->x86_virt_bits = 48;
623 c->x86_clflush_size = 32;
624 c->x86_phys_bits = 32;
625 c->x86_virt_bits = 32;
627 c->x86_cache_alignment = c->x86_clflush_size;
629 memset(&c->x86_capability, 0, sizeof c->x86_capability);
630 c->extended_cpuid_level = 0;
633 identify_cpu_without_cpuid(c);
635 /* cyrix could have cpuid enabled via c_identify()*/
645 if (this_cpu->c_early_init)
646 this_cpu->c_early_init(c);
649 c->cpu_index = boot_cpu_id;
651 filter_cpuid_features(c, false);
654 void __init early_cpu_init(void)
656 const struct cpu_dev *const *cdev;
659 printk(KERN_INFO "KERNEL supported cpus:\n");
660 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
661 const struct cpu_dev *cpudev = *cdev;
664 if (count >= X86_VENDOR_NUM)
666 cpu_devs[count] = cpudev;
669 for (j = 0; j < 2; j++) {
670 if (!cpudev->c_ident[j])
672 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
677 early_identify_cpu(&boot_cpu_data);
681 * The NOPL instruction is supposed to exist on all CPUs with
682 * family >= 6; unfortunately, that's not true in practice because
683 * of early VIA chips and (more importantly) broken virtualizers that
684 * are not easy to detect. In the latter case it doesn't even *fail*
685 * reliably, so probing for it doesn't even work. Disable it completely
686 * unless we can find a reliable way to detect all the broken cases.
688 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
690 clear_cpu_cap(c, X86_FEATURE_NOPL);
693 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
695 c->extended_cpuid_level = 0;
698 identify_cpu_without_cpuid(c);
700 /* cyrix could have cpuid enabled via c_identify()*/
710 if (c->cpuid_level >= 0x00000001) {
711 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
713 # ifdef CONFIG_X86_HT
714 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
716 c->apicid = c->initial_apicid;
721 c->phys_proc_id = c->initial_apicid;
725 get_model_name(c); /* Default name */
727 init_scattered_cpuid_features(c);
732 * This does the hard work of actually picking apart the CPU stuff...
734 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
738 c->loops_per_jiffy = loops_per_jiffy;
739 c->x86_cache_size = -1;
740 c->x86_vendor = X86_VENDOR_UNKNOWN;
741 c->x86_model = c->x86_mask = 0; /* So far unknown... */
742 c->x86_vendor_id[0] = '\0'; /* Unset */
743 c->x86_model_id[0] = '\0'; /* Unset */
744 c->x86_max_cores = 1;
745 c->x86_coreid_bits = 0;
747 c->x86_clflush_size = 64;
748 c->x86_phys_bits = 36;
749 c->x86_virt_bits = 48;
751 c->cpuid_level = -1; /* CPUID not detected */
752 c->x86_clflush_size = 32;
753 c->x86_phys_bits = 32;
754 c->x86_virt_bits = 32;
756 c->x86_cache_alignment = c->x86_clflush_size;
757 memset(&c->x86_capability, 0, sizeof c->x86_capability);
761 if (this_cpu->c_identify)
762 this_cpu->c_identify(c);
765 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
769 * Vendor-specific initialization. In this section we
770 * canonicalize the feature flags, meaning if there are
771 * features a certain CPU supports which CPUID doesn't
772 * tell us, CPUID claiming incorrect flags, or other bugs,
773 * we handle them here.
775 * At the end of this section, c->x86_capability better
776 * indicate the features this CPU genuinely supports!
778 if (this_cpu->c_init)
781 /* Disable the PN if appropriate */
782 squash_the_stupid_serial_number(c);
785 * The vendor-specific functions might have changed features.
786 * Now we do "generic changes."
789 /* Filter out anything that depends on CPUID levels we don't have */
790 filter_cpuid_features(c, true);
792 /* If the model name is still unset, do table lookup. */
793 if (!c->x86_model_id[0]) {
795 p = table_lookup_model(c);
797 strcpy(c->x86_model_id, p);
800 sprintf(c->x86_model_id, "%02x/%02x",
801 c->x86, c->x86_model);
810 * On SMP, boot_cpu_data holds the common feature set between
811 * all CPUs; so make sure that we indicate which features are
812 * common between the CPUs. The first time this routine gets
813 * executed, c == &boot_cpu_data.
815 if (c != &boot_cpu_data) {
816 /* AND the already accumulated flags with these */
817 for (i = 0; i < NCAPINTS; i++)
818 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
821 /* Clear all flags overriden by options */
822 for (i = 0; i < NCAPINTS; i++)
823 c->x86_capability[i] &= ~cleared_cpu_caps[i];
825 #ifdef CONFIG_X86_MCE
826 /* Init Machine Check Exception if available. */
830 select_idle_routine(c);
832 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
833 numa_add_cpu(smp_processor_id());
838 static void vgetcpu_set_mode(void)
840 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
841 vgetcpu_mode = VGETCPU_RDTSCP;
843 vgetcpu_mode = VGETCPU_LSL;
847 void __init identify_boot_cpu(void)
849 identify_cpu(&boot_cpu_data);
859 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
861 BUG_ON(c == &boot_cpu_data);
874 static const struct msr_range msr_range_array[] __cpuinitconst = {
875 { 0x00000000, 0x00000418},
876 { 0xc0000000, 0xc000040b},
877 { 0xc0010000, 0xc0010142},
878 { 0xc0011000, 0xc001103b},
881 static void __cpuinit print_cpu_msr(void)
883 unsigned index_min, index_max;
888 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
889 index_min = msr_range_array[i].min;
890 index_max = msr_range_array[i].max;
892 for (index = index_min; index < index_max; index++) {
893 if (rdmsrl_amd_safe(index, &val))
895 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
900 static int show_msr __cpuinitdata;
902 static __init int setup_show_msr(char *arg)
906 get_option(&arg, &num);
912 __setup("show_msr=", setup_show_msr);
914 static __init int setup_noclflush(char *arg)
916 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
919 __setup("noclflush", setup_noclflush);
921 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
923 const char *vendor = NULL;
925 if (c->x86_vendor < X86_VENDOR_NUM) {
926 vendor = this_cpu->c_vendor;
928 if (c->cpuid_level >= 0)
929 vendor = c->x86_vendor_id;
932 if (vendor && !strstr(c->x86_model_id, vendor))
933 printk(KERN_CONT "%s ", vendor);
935 if (c->x86_model_id[0])
936 printk(KERN_CONT "%s", c->x86_model_id);
938 printk(KERN_CONT "%d86", c->x86);
940 if (c->x86_mask || c->cpuid_level >= 0)
941 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
943 printk(KERN_CONT "\n");
946 if (c->cpu_index < show_msr)
954 static __init int setup_disablecpuid(char *arg)
958 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
959 setup_clear_cpu_cap(bit);
965 __setup("clearcpuid=", setup_disablecpuid);
968 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
970 DEFINE_PER_CPU_FIRST(union irq_stack_union,
971 irq_stack_union) __aligned(PAGE_SIZE);
973 DEFINE_PER_CPU(char *, irq_stack_ptr) =
974 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
976 DEFINE_PER_CPU(unsigned long, kernel_stack) =
977 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
978 EXPORT_PER_CPU_SYMBOL(kernel_stack);
980 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
983 * Special IST stacks which the CPU switches to when it calls
984 * an IST-marked descriptor entry. Up to 7 stacks (hardware
985 * limit), all of them are 4K, except the debug stack which
988 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
989 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
990 [DEBUG_STACK - 1] = DEBUG_STKSZ
993 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
994 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
995 __aligned(PAGE_SIZE);
997 /* May not be marked __init: used by software suspend */
998 void syscall_init(void)
1001 * LSTAR and STAR live in a bit strange symbiosis.
1002 * They both write to the same internal register. STAR allows to
1003 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1005 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1006 wrmsrl(MSR_LSTAR, system_call);
1007 wrmsrl(MSR_CSTAR, ignore_sysret);
1009 #ifdef CONFIG_IA32_EMULATION
1010 syscall32_cpu_init();
1013 /* Flags to clear on syscall */
1014 wrmsrl(MSR_SYSCALL_MASK,
1015 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1018 unsigned long kernel_eflags;
1021 * Copies of the original ist values from the tss are only accessed during
1022 * debugging, no special alignment required.
1024 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1026 #else /* CONFIG_X86_64 */
1028 #ifdef CONFIG_CC_STACKPROTECTOR
1029 DEFINE_PER_CPU(unsigned long, stack_canary);
1032 /* Make sure %fs and %gs are initialized properly in idle threads */
1033 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1035 memset(regs, 0, sizeof(struct pt_regs));
1036 regs->fs = __KERNEL_PERCPU;
1037 regs->gs = __KERNEL_STACK_CANARY;
1041 #endif /* CONFIG_X86_64 */
1044 * Clear all 6 debug registers:
1046 static void clear_all_debug_regs(void)
1050 for (i = 0; i < 8; i++) {
1051 /* Ignore db4, db5 */
1052 if ((i == 4) || (i == 5))
1060 * cpu_init() initializes state that is per-CPU. Some data is already
1061 * initialized (naturally) in the bootstrap process, such as the GDT
1062 * and IDT. We reload them nevertheless, this function acts as a
1063 * 'CPU state barrier', nothing should get across.
1064 * A lot of state is already set up in PDA init for 64 bit
1066 #ifdef CONFIG_X86_64
1068 void __cpuinit cpu_init(void)
1070 struct orig_ist *orig_ist;
1071 struct task_struct *me;
1072 struct tss_struct *t;
1077 cpu = stack_smp_processor_id();
1078 t = &per_cpu(init_tss, cpu);
1079 orig_ist = &per_cpu(orig_ist, cpu);
1082 if (cpu != 0 && percpu_read(node_number) == 0 &&
1083 cpu_to_node(cpu) != NUMA_NO_NODE)
1084 percpu_write(node_number, cpu_to_node(cpu));
1089 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1090 panic("CPU#%d already initialized!\n", cpu);
1092 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1094 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1097 * Initialize the per-CPU GDT with the boot GDT,
1098 * and set up the GDT descriptor:
1101 switch_to_new_gdt(cpu);
1104 load_idt((const struct desc_ptr *)&idt_descr);
1106 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1109 wrmsrl(MSR_FS_BASE, 0);
1110 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1118 * set up and load the per-CPU TSS
1120 if (!orig_ist->ist[0]) {
1121 char *estacks = per_cpu(exception_stacks, cpu);
1123 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1124 estacks += exception_stack_sizes[v];
1125 orig_ist->ist[v] = t->x86_tss.ist[v] =
1126 (unsigned long)estacks;
1130 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1133 * <= is required because the CPU will access up to
1134 * 8 bits beyond the end of the IO permission bitmap.
1136 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1137 t->io_bitmap[i] = ~0UL;
1139 atomic_inc(&init_mm.mm_count);
1140 me->active_mm = &init_mm;
1142 enter_lazy_tlb(&init_mm, me);
1144 load_sp0(t, ¤t->thread);
1145 set_tss_desc(cpu, t);
1147 load_LDT(&init_mm.context);
1151 * If the kgdb is connected no debug regs should be altered. This
1152 * is only applicable when KGDB and a KGDB I/O module are built
1153 * into the kernel and you are using early debugging with
1154 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1156 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1157 arch_kgdb_ops.correct_hw_break();
1160 clear_all_debug_regs();
1164 raw_local_save_flags(kernel_eflags);
1172 void __cpuinit cpu_init(void)
1174 int cpu = smp_processor_id();
1175 struct task_struct *curr = current;
1176 struct tss_struct *t = &per_cpu(init_tss, cpu);
1177 struct thread_struct *thread = &curr->thread;
1179 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1180 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1185 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1187 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1188 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1190 load_idt(&idt_descr);
1191 switch_to_new_gdt(cpu);
1194 * Set up and load the per-CPU TSS and LDT
1196 atomic_inc(&init_mm.mm_count);
1197 curr->active_mm = &init_mm;
1199 enter_lazy_tlb(&init_mm, curr);
1201 load_sp0(t, thread);
1202 set_tss_desc(cpu, t);
1204 load_LDT(&init_mm.context);
1206 #ifdef CONFIG_DOUBLEFAULT
1207 /* Set up doublefault TSS pointer in the GDT */
1208 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1211 clear_all_debug_regs();
1214 * Force FPU initialization:
1217 current_thread_info()->status = TS_XSAVE;
1219 current_thread_info()->status = 0;
1221 mxcsr_feature_mask_init();
1224 * Boot processor to setup the FP and extended state context info.
1226 if (smp_processor_id() == boot_cpu_id)
1227 init_thread_xstate();