[CPUFREQ] Lots of whitespace & CodingStyle cleanup.
[linux-2.6] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@suse.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be infrerred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <acpi/processor.h>
44 #endif
45
46 #define PFX "powernow-k8: "
47 #define BFX PFX "BIOS error: "
48 #define VERSION "version 1.60.0"
49 #include "powernow-k8.h"
50
51 /* serialize freq changes  */
52 static DECLARE_MUTEX(fidvid_sem);
53
54 static struct powernow_k8_data *powernow_data[NR_CPUS];
55
56 #ifndef CONFIG_SMP
57 static cpumask_t cpu_core_map[1];
58 #endif
59
60 /* Return a frequency in MHz, given an input fid */
61 static u32 find_freq_from_fid(u32 fid)
62 {
63         return 800 + (fid * 100);
64 }
65
66 /* Return a frequency in KHz, given an input fid */
67 static u32 find_khz_freq_from_fid(u32 fid)
68 {
69         return 1000 * find_freq_from_fid(fid);
70 }
71
72 /* Return a voltage in miliVolts, given an input vid */
73 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
74 {
75         return 1550-vid*25;
76 }
77
78 /* Return the vco fid for an input fid
79  *
80  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
81  * only from corresponding high fids. This returns "high" fid corresponding to
82  * "low" one.
83  */
84 static u32 convert_fid_to_vco_fid(u32 fid)
85 {
86         if (fid < HI_FID_TABLE_BOTTOM)
87                 return 8 + (2 * fid);
88         else
89                 return fid;
90 }
91
92 /*
93  * Return 1 if the pending bit is set. Unless we just instructed the processor
94  * to transition to a new state, seeing this bit set is really bad news.
95  */
96 static int pending_bit_stuck(void)
97 {
98         u32 lo, hi;
99
100         rdmsr(MSR_FIDVID_STATUS, lo, hi);
101         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
102 }
103
104 /*
105  * Update the global current fid / vid values from the status msr.
106  * Returns 1 on error.
107  */
108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
109 {
110         u32 lo, hi;
111         u32 i = 0;
112
113         do {
114                 if (i++ > 10000) {
115                         dprintk("detected change pending stuck\n");
116                         return 1;
117                 }
118                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
119         } while (lo & MSR_S_LO_CHANGE_PENDING);
120
121         data->currvid = hi & MSR_S_HI_CURRENT_VID;
122         data->currfid = lo & MSR_S_LO_CURRENT_FID;
123
124         return 0;
125 }
126
127 /* the isochronous relief time */
128 static void count_off_irt(struct powernow_k8_data *data)
129 {
130         udelay((1 << data->irt) * 10);
131         return;
132 }
133
134 /* the voltage stabalization time */
135 static void count_off_vst(struct powernow_k8_data *data)
136 {
137         udelay(data->vstable * VST_UNITS_20US);
138         return;
139 }
140
141 /* need to init the control msr to a safe value (for each cpu) */
142 static void fidvid_msr_init(void)
143 {
144         u32 lo, hi;
145         u8 fid, vid;
146
147         rdmsr(MSR_FIDVID_STATUS, lo, hi);
148         vid = hi & MSR_S_HI_CURRENT_VID;
149         fid = lo & MSR_S_LO_CURRENT_FID;
150         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
151         hi = MSR_C_HI_STP_GNT_BENIGN;
152         dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
153         wrmsr(MSR_FIDVID_CTL, lo, hi);
154 }
155
156
157 /* write the new fid value along with the other control fields to the msr */
158 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
159 {
160         u32 lo;
161         u32 savevid = data->currvid;
162         u32 i = 0;
163
164         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
165                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
166                 return 1;
167         }
168
169         lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
170
171         dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
172                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
173
174         do {
175                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
176                 if (i++ > 100) {
177                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
178                         return 1;
179                 }
180         } while (query_current_values_with_pending_wait(data));
181
182         count_off_irt(data);
183
184         if (savevid != data->currvid) {
185                 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
186                        savevid, data->currvid);
187                 return 1;
188         }
189
190         if (fid != data->currfid) {
191                 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
192                         data->currfid);
193                 return 1;
194         }
195
196         return 0;
197 }
198
199 /* Write a new vid to the hardware */
200 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
201 {
202         u32 lo;
203         u32 savefid = data->currfid;
204         int i = 0;
205
206         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
207                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
208                 return 1;
209         }
210
211         lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
212
213         dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
214                 vid, lo, STOP_GRANT_5NS);
215
216         do {
217                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
218                 if (i++ > 100) {
219                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
220                         return 1;
221                 }
222         } while (query_current_values_with_pending_wait(data));
223
224         if (savefid != data->currfid) {
225                 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
226                        savefid, data->currfid);
227                 return 1;
228         }
229
230         if (vid != data->currvid) {
231                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
232                                 data->currvid);
233                 return 1;
234         }
235
236         return 0;
237 }
238
239 /*
240  * Reduce the vid by the max of step or reqvid.
241  * Decreasing vid codes represent increasing voltages:
242  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
243  */
244 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
245 {
246         if ((data->currvid - reqvid) > step)
247                 reqvid = data->currvid - step;
248
249         if (write_new_vid(data, reqvid))
250                 return 1;
251
252         count_off_vst(data);
253
254         return 0;
255 }
256
257 /* Change the fid and vid, by the 3 phases. */
258 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
259 {
260         if (core_voltage_pre_transition(data, reqvid))
261                 return 1;
262
263         if (core_frequency_transition(data, reqfid))
264                 return 1;
265
266         if (core_voltage_post_transition(data, reqvid))
267                 return 1;
268
269         if (query_current_values_with_pending_wait(data))
270                 return 1;
271
272         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
273                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
274                                 smp_processor_id(),
275                                 reqfid, reqvid, data->currfid, data->currvid);
276                 return 1;
277         }
278
279         dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
280                 smp_processor_id(), data->currfid, data->currvid);
281
282         return 0;
283 }
284
285 /* Phase 1 - core voltage transition ... setup voltage */
286 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
287 {
288         u32 rvosteps = data->rvo;
289         u32 savefid = data->currfid;
290         u32 maxvid, lo;
291
292         dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
293                 smp_processor_id(),
294                 data->currfid, data->currvid, reqvid, data->rvo);
295
296         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
297         maxvid = 0x1f & (maxvid >> 16);
298         dprintk("ph1 maxvid=0x%x\n", maxvid);
299         if (reqvid < maxvid) /* lower numbers are higher voltages */
300                 reqvid = maxvid;
301
302         while (data->currvid > reqvid) {
303                 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
304                         data->currvid, reqvid);
305                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
306                         return 1;
307         }
308
309         while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
310                 if (data->currvid == maxvid) {
311                         rvosteps = 0;
312                 } else {
313                         dprintk("ph1: changing vid for rvo, req 0x%x\n",
314                                 data->currvid - 1);
315                         if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
316                                 return 1;
317                         rvosteps--;
318                 }
319         }
320
321         if (query_current_values_with_pending_wait(data))
322                 return 1;
323
324         if (savefid != data->currfid) {
325                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
326                 return 1;
327         }
328
329         dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
330                 data->currfid, data->currvid);
331
332         return 0;
333 }
334
335 /* Phase 2 - core frequency transition */
336 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
337 {
338         u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
339
340         if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
341                 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
342                         reqfid, data->currfid);
343                 return 1;
344         }
345
346         if (data->currfid == reqfid) {
347                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
348                 return 0;
349         }
350
351         dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
352                 smp_processor_id(),
353                 data->currfid, data->currvid, reqfid);
354
355         vcoreqfid = convert_fid_to_vco_fid(reqfid);
356         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
357         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
358             : vcoreqfid - vcocurrfid;
359
360         while (vcofiddiff > 2) {
361                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
362
363                 if (reqfid > data->currfid) {
364                         if (data->currfid > LO_FID_TABLE_TOP) {
365                                 if (write_new_fid(data, data->currfid + fid_interval)) {
366                                         return 1;
367                                 }
368                         } else {
369                                 if (write_new_fid
370                                     (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
371                                         return 1;
372                                 }
373                         }
374                 } else {
375                         if (write_new_fid(data, data->currfid - fid_interval))
376                                 return 1;
377                 }
378
379                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
380                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
381                     : vcoreqfid - vcocurrfid;
382         }
383
384         if (write_new_fid(data, reqfid))
385                 return 1;
386
387         if (query_current_values_with_pending_wait(data))
388                 return 1;
389
390         if (data->currfid != reqfid) {
391                 printk(KERN_ERR PFX
392                         "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
393                         data->currfid, reqfid);
394                 return 1;
395         }
396
397         if (savevid != data->currvid) {
398                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
399                         savevid, data->currvid);
400                 return 1;
401         }
402
403         dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
404                 data->currfid, data->currvid);
405
406         return 0;
407 }
408
409 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
410 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
411 {
412         u32 savefid = data->currfid;
413         u32 savereqvid = reqvid;
414
415         dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
416                 smp_processor_id(),
417                 data->currfid, data->currvid);
418
419         if (reqvid != data->currvid) {
420                 if (write_new_vid(data, reqvid))
421                         return 1;
422
423                 if (savefid != data->currfid) {
424                         printk(KERN_ERR PFX
425                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
426                                savefid, data->currfid);
427                         return 1;
428                 }
429
430                 if (data->currvid != reqvid) {
431                         printk(KERN_ERR PFX
432                                "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
433                                reqvid, data->currvid);
434                         return 1;
435                 }
436         }
437
438         if (query_current_values_with_pending_wait(data))
439                 return 1;
440
441         if (savereqvid != data->currvid) {
442                 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
443                 return 1;
444         }
445
446         if (savefid != data->currfid) {
447                 dprintk("ph3 failed, currfid changed 0x%x\n",
448                         data->currfid);
449                 return 1;
450         }
451
452         dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
453                 data->currfid, data->currvid);
454
455         return 0;
456 }
457
458 static int check_supported_cpu(unsigned int cpu)
459 {
460         cpumask_t oldmask = CPU_MASK_ALL;
461         u32 eax, ebx, ecx, edx;
462         unsigned int rc = 0;
463
464         oldmask = current->cpus_allowed;
465         set_cpus_allowed(current, cpumask_of_cpu(cpu));
466
467         if (smp_processor_id() != cpu) {
468                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
469                 goto out;
470         }
471
472         if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
473                 goto out;
474
475         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
476         if ((eax & CPUID_XFAM) != CPUID_XFAM_K8)
477                 goto out;
478
479         if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
480             ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) {
481                 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
482                 goto out;
483         }
484
485         eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
486         if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
487                 printk(KERN_INFO PFX
488                        "No frequency change capabilities detected\n");
489                 goto out;
490         }
491
492         cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
493         if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
494                 printk(KERN_INFO PFX "Power state transitions not supported\n");
495                 goto out;
496         }
497
498         rc = 1;
499
500 out:
501         set_cpus_allowed(current, oldmask);
502         return rc;
503 }
504
505 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
506 {
507         unsigned int j;
508         u8 lastfid = 0xff;
509
510         for (j = 0; j < data->numps; j++) {
511                 if (pst[j].vid > LEAST_VID) {
512                         printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
513                         return -EINVAL;
514                 }
515                 if (pst[j].vid < data->rvo) {   /* vid + rvo >= 0 */
516                         printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
517                         return -ENODEV;
518                 }
519                 if (pst[j].vid < maxvid + data->rvo) {  /* vid + rvo >= maxvid */
520                         printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
521                         return -ENODEV;
522                 }
523                 if (pst[j].fid > MAX_FID) {
524                         printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
525                         return -ENODEV;
526                 }
527                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
528                         /* Only first fid is allowed to be in "low" range */
529                         printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
530                         return -EINVAL;
531                 }
532                 if (pst[j].fid < lastfid)
533                         lastfid = pst[j].fid;
534         }
535         if (lastfid & 1) {
536                 printk(KERN_ERR BFX "lastfid invalid\n");
537                 return -EINVAL;
538         }
539         if (lastfid > LO_FID_TABLE_TOP)
540                 printk(KERN_INFO BFX  "first fid not from lo freq table\n");
541
542         return 0;
543 }
544
545 static void print_basics(struct powernow_k8_data *data)
546 {
547         int j;
548         for (j = 0; j < data->numps; j++) {
549                 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
550                         printk(KERN_INFO PFX "   %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
551                                 data->powernow_table[j].index & 0xff,
552                                 data->powernow_table[j].frequency/1000,
553                                 data->powernow_table[j].index >> 8,
554                                 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
555         }
556         if (data->batps)
557                 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
558 }
559
560 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
561 {
562         struct cpufreq_frequency_table *powernow_table;
563         unsigned int j;
564
565         if (data->batps) {    /* use ACPI support to get full speed on mains power */
566                 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
567                 data->numps = data->batps;
568         }
569
570         for ( j=1; j<data->numps; j++ ) {
571                 if (pst[j-1].fid >= pst[j].fid) {
572                         printk(KERN_ERR PFX "PST out of sequence\n");
573                         return -EINVAL;
574                 }
575         }
576
577         if (data->numps < 2) {
578                 printk(KERN_ERR PFX "no p states to transition\n");
579                 return -ENODEV;
580         }
581
582         if (check_pst_table(data, pst, maxvid))
583                 return -EINVAL;
584
585         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
586                 * (data->numps + 1)), GFP_KERNEL);
587         if (!powernow_table) {
588                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
589                 return -ENOMEM;
590         }
591
592         for (j = 0; j < data->numps; j++) {
593                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
594                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
595                 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
596         }
597         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
598         powernow_table[data->numps].index = 0;
599
600         if (query_current_values_with_pending_wait(data)) {
601                 kfree(powernow_table);
602                 return -EIO;
603         }
604
605         dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
606         data->powernow_table = powernow_table;
607         print_basics(data);
608
609         for (j = 0; j < data->numps; j++)
610                 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
611                         return 0;
612
613         dprintk("currfid/vid do not match PST, ignoring\n");
614         return 0;
615 }
616
617 /* Find and validate the PSB/PST table in BIOS. */
618 static int find_psb_table(struct powernow_k8_data *data)
619 {
620         struct psb_s *psb;
621         unsigned int i;
622         u32 mvs;
623         u8 maxvid;
624         u32 cpst = 0;
625         u32 thiscpuid;
626
627         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
628                 /* Scan BIOS looking for the signature. */
629                 /* It can not be at ffff0 - it is too big. */
630
631                 psb = phys_to_virt(i);
632                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
633                         continue;
634
635                 dprintk("found PSB header at 0x%p\n", psb);
636
637                 dprintk("table vers: 0x%x\n", psb->tableversion);
638                 if (psb->tableversion != PSB_VERSION_1_4) {
639                         printk(KERN_ERR BFX "PSB table is not v1.4\n");
640                         return -ENODEV;
641                 }
642
643                 dprintk("flags: 0x%x\n", psb->flags1);
644                 if (psb->flags1) {
645                         printk(KERN_ERR BFX "unknown flags\n");
646                         return -ENODEV;
647                 }
648
649                 data->vstable = psb->vstable;
650                 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
651
652                 dprintk("flags2: 0x%x\n", psb->flags2);
653                 data->rvo = psb->flags2 & 3;
654                 data->irt = ((psb->flags2) >> 2) & 3;
655                 mvs = ((psb->flags2) >> 4) & 3;
656                 data->vidmvs = 1 << mvs;
657                 data->batps = ((psb->flags2) >> 6) & 3;
658
659                 dprintk("ramp voltage offset: %d\n", data->rvo);
660                 dprintk("isochronous relief time: %d\n", data->irt);
661                 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
662
663                 dprintk("numpst: 0x%x\n", psb->num_tables);
664                 cpst = psb->num_tables;
665                 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
666                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
667                         if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
668                                 cpst = 1;
669                         }
670                 }
671                 if (cpst != 1) {
672                         printk(KERN_ERR BFX "numpst must be 1\n");
673                         return -ENODEV;
674                 }
675
676                 data->plllock = psb->plllocktime;
677                 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
678                 dprintk("maxfid: 0x%x\n", psb->maxfid);
679                 dprintk("maxvid: 0x%x\n", psb->maxvid);
680                 maxvid = psb->maxvid;
681
682                 data->numps = psb->numps;
683                 dprintk("numpstates: 0x%x\n", data->numps);
684                 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
685         }
686         /*
687          * If you see this message, complain to BIOS manufacturer. If
688          * he tells you "we do not support Linux" or some similar
689          * nonsense, remember that Windows 2000 uses the same legacy
690          * mechanism that the old Linux PSB driver uses. Tell them it
691          * is broken with Windows 2000.
692          *
693          * The reference to the AMD documentation is chapter 9 in the
694          * BIOS and Kernel Developer's Guide, which is available on
695          * www.amd.com
696          */
697         printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
698         return -ENODEV;
699 }
700
701 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
702 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
703 {
704         if (!data->acpi_data.state_count)
705                 return;
706
707         data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
708         data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
709         data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
710         data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
711         data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
712         data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
713 }
714
715 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
716 {
717         int i;
718         int cntlofreq = 0;
719         struct cpufreq_frequency_table *powernow_table;
720
721         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
722                 dprintk("register performance failed: bad ACPI data\n");
723                 return -EIO;
724         }
725
726         /* verify the data contained in the ACPI structures */
727         if (data->acpi_data.state_count <= 1) {
728                 dprintk("No ACPI P-States\n");
729                 goto err_out;
730         }
731
732         if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
733                 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
734                 dprintk("Invalid control/status registers (%x - %x)\n",
735                         data->acpi_data.control_register.space_id,
736                         data->acpi_data.status_register.space_id);
737                 goto err_out;
738         }
739
740         /* fill in data->powernow_table */
741         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
742                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
743         if (!powernow_table) {
744                 dprintk("powernow_table memory alloc failure\n");
745                 goto err_out;
746         }
747
748         for (i = 0; i < data->acpi_data.state_count; i++) {
749                 u32 fid;
750                 u32 vid;
751
752                 if (data->exttype) {
753                         fid = data->acpi_data.states[i].status & FID_MASK;
754                         vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
755                 } else {
756                         fid = data->acpi_data.states[i].control & FID_MASK;
757                         vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
758                 }
759
760                 dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
761
762                 powernow_table[i].index = fid; /* lower 8 bits */
763                 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
764                 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
765
766                 /* verify frequency is OK */
767                 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
768                         (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
769                         dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
770                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
771                         continue;
772                 }
773
774                 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
775                 if (vid == VID_OFF) {
776                         dprintk("invalid vid %u, ignoring\n", vid);
777                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
778                         continue;
779                 }
780
781                 /* verify only 1 entry from the lo frequency table */
782                 if (fid < HI_FID_TABLE_BOTTOM) {
783                         if (cntlofreq) {
784                                 /* if both entries are the same, ignore this one ... */
785                                 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
786                                     (powernow_table[i].index != powernow_table[cntlofreq].index)) {
787                                         printk(KERN_ERR PFX "Too many lo freq table entries\n");
788                                         goto err_out_mem;
789                                 }
790
791                                 dprintk("double low frequency table entry, ignoring it.\n");
792                                 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
793                                 continue;
794                         } else
795                                 cntlofreq = i;
796                 }
797
798                 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
799                         printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
800                                 powernow_table[i].frequency,
801                                 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
802                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
803                         continue;
804                 }
805         }
806
807         powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
808         powernow_table[data->acpi_data.state_count].index = 0;
809         data->powernow_table = powernow_table;
810
811         /* fill in data */
812         data->numps = data->acpi_data.state_count;
813         print_basics(data);
814         powernow_k8_acpi_pst_values(data, 0);
815
816         /* notify BIOS that we exist */
817         acpi_processor_notify_smm(THIS_MODULE);
818
819         return 0;
820
821 err_out_mem:
822         kfree(powernow_table);
823
824 err_out:
825         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
826
827         /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
828         data->acpi_data.state_count = 0;
829
830         return -ENODEV;
831 }
832
833 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
834 {
835         if (data->acpi_data.state_count)
836                 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
837 }
838
839 #else
840 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
841 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
842 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
843 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
844
845 /* Take a frequency, and issue the fid/vid transition command */
846 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
847 {
848         u32 fid;
849         u32 vid;
850         int res, i;
851         struct cpufreq_freqs freqs;
852
853         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
854
855         /* fid are the lower 8 bits of the index we stored into
856          * the cpufreq frequency table in find_psb_table, vid are
857          * the upper 8 bits.
858          */
859
860         fid = data->powernow_table[index].index & 0xFF;
861         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
862
863         dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
864
865         if (query_current_values_with_pending_wait(data))
866                 return 1;
867
868         if ((data->currvid == vid) && (data->currfid == fid)) {
869                 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
870                         fid, vid);
871                 return 0;
872         }
873
874         if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
875                 printk(KERN_ERR PFX
876                        "ignoring illegal change in lo freq table-%x to 0x%x\n",
877                        data->currfid, fid);
878                 return 1;
879         }
880
881         dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
882                 smp_processor_id(), fid, vid);
883
884         freqs.cpu = data->cpu;
885         freqs.old = find_khz_freq_from_fid(data->currfid);
886         freqs.new = find_khz_freq_from_fid(fid);
887         for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
888                 freqs.cpu = i;
889                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
890         }
891
892         res = transition_fid_vid(data, fid, vid);
893
894         freqs.new = find_khz_freq_from_fid(data->currfid);
895         for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
896                 freqs.cpu = i;
897                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
898         }
899         return res;
900 }
901
902 /* Driver entry point to switch to the target frequency */
903 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
904 {
905         cpumask_t oldmask = CPU_MASK_ALL;
906         struct powernow_k8_data *data = powernow_data[pol->cpu];
907         u32 checkfid = data->currfid;
908         u32 checkvid = data->currvid;
909         unsigned int newstate;
910         int ret = -EIO;
911         int i;
912
913         /* only run on specific CPU from here on */
914         oldmask = current->cpus_allowed;
915         set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
916
917         if (smp_processor_id() != pol->cpu) {
918                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
919                 goto err_out;
920         }
921
922         if (pending_bit_stuck()) {
923                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
924                 goto err_out;
925         }
926
927         dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
928                 pol->cpu, targfreq, pol->min, pol->max, relation);
929
930         if (query_current_values_with_pending_wait(data)) {
931                 ret = -EIO;
932                 goto err_out;
933         }
934
935         dprintk("targ: curr fid 0x%x, vid 0x%x\n",
936                 data->currfid, data->currvid);
937
938         if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
939                 printk(KERN_INFO PFX
940                         "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
941                         checkfid, data->currfid, checkvid, data->currvid);
942         }
943
944         if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
945                 goto err_out;
946
947         down(&fidvid_sem);
948
949         powernow_k8_acpi_pst_values(data, newstate);
950
951         if (transition_frequency(data, newstate)) {
952                 printk(KERN_ERR PFX "transition frequency failed\n");
953                 ret = 1;
954                 up(&fidvid_sem);
955                 goto err_out;
956         }
957
958         /* Update all the fid/vids of our siblings */
959         for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
960                 powernow_data[i]->currvid = data->currvid;
961                 powernow_data[i]->currfid = data->currfid;
962         }       
963         up(&fidvid_sem);
964
965         pol->cur = find_khz_freq_from_fid(data->currfid);
966         ret = 0;
967
968 err_out:
969         set_cpus_allowed(current, oldmask);
970         return ret;
971 }
972
973 /* Driver entry point to verify the policy and range of frequencies */
974 static int powernowk8_verify(struct cpufreq_policy *pol)
975 {
976         struct powernow_k8_data *data = powernow_data[pol->cpu];
977
978         return cpufreq_frequency_table_verify(pol, data->powernow_table);
979 }
980
981 /* per CPU init entry point to the driver */
982 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
983 {
984         struct powernow_k8_data *data;
985         cpumask_t oldmask = CPU_MASK_ALL;
986         int rc, i;
987
988         if (!cpu_online(pol->cpu))
989                 return -ENODEV;
990
991         if (!check_supported_cpu(pol->cpu))
992                 return -ENODEV;
993
994         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
995         if (!data) {
996                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
997                 return -ENOMEM;
998         }
999
1000         data->cpu = pol->cpu;
1001
1002         if (powernow_k8_cpu_init_acpi(data)) {
1003                 /*
1004                  * Use the PSB BIOS structure. This is only availabe on
1005                  * an UP version, and is deprecated by AMD.
1006                  */
1007
1008                 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1009                         printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1010                         kfree(data);
1011                         return -ENODEV;
1012                 }
1013                 if (pol->cpu != 0) {
1014                         printk(KERN_ERR PFX "init not cpu 0\n");
1015                         kfree(data);
1016                         return -ENODEV;
1017                 }
1018                 rc = find_psb_table(data);
1019                 if (rc) {
1020                         kfree(data);
1021                         return -ENODEV;
1022                 }
1023         }
1024
1025         /* only run on specific CPU from here on */
1026         oldmask = current->cpus_allowed;
1027         set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1028
1029         if (smp_processor_id() != pol->cpu) {
1030                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1031                 goto err_out;
1032         }
1033
1034         if (pending_bit_stuck()) {
1035                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1036                 goto err_out;
1037         }
1038
1039         if (query_current_values_with_pending_wait(data))
1040                 goto err_out;
1041
1042         fidvid_msr_init();
1043
1044         /* run on any CPU again */
1045         set_cpus_allowed(current, oldmask);
1046
1047         pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1048         pol->cpus = cpu_core_map[pol->cpu];
1049
1050         /* Take a crude guess here.
1051          * That guess was in microseconds, so multiply with 1000 */
1052         pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1053             + (3 * (1 << data->irt) * 10)) * 1000;
1054
1055         pol->cur = find_khz_freq_from_fid(data->currfid);
1056         dprintk("policy current frequency %d kHz\n", pol->cur);
1057
1058         /* min/max the cpu is capable of */
1059         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1060                 printk(KERN_ERR PFX "invalid powernow_table\n");
1061                 powernow_k8_cpu_exit_acpi(data);
1062                 kfree(data->powernow_table);
1063                 kfree(data);
1064                 return -EINVAL;
1065         }
1066
1067         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1068
1069         printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1070                data->currfid, data->currvid);
1071
1072         for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
1073                 powernow_data[i] = data;
1074         }
1075
1076         return 0;
1077
1078 err_out:
1079         set_cpus_allowed(current, oldmask);
1080         powernow_k8_cpu_exit_acpi(data);
1081
1082         kfree(data);
1083         return -ENODEV;
1084 }
1085
1086 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1087 {
1088         struct powernow_k8_data *data = powernow_data[pol->cpu];
1089
1090         if (!data)
1091                 return -EINVAL;
1092
1093         powernow_k8_cpu_exit_acpi(data);
1094
1095         cpufreq_frequency_table_put_attr(pol->cpu);
1096
1097         kfree(data->powernow_table);
1098         kfree(data);
1099
1100         return 0;
1101 }
1102
1103 static unsigned int powernowk8_get (unsigned int cpu)
1104 {
1105         struct powernow_k8_data *data = powernow_data[cpu];
1106         cpumask_t oldmask = current->cpus_allowed;
1107         unsigned int khz = 0;
1108
1109         set_cpus_allowed(current, cpumask_of_cpu(cpu));
1110         if (smp_processor_id() != cpu) {
1111                 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1112                 set_cpus_allowed(current, oldmask);
1113                 return 0;
1114         }
1115
1116         if (query_current_values_with_pending_wait(data))
1117                 goto out;
1118
1119         khz = find_khz_freq_from_fid(data->currfid);
1120
1121 out:
1122         set_cpus_allowed(current, oldmask);
1123         return khz;
1124 }
1125
1126 static struct freq_attr* powernow_k8_attr[] = {
1127         &cpufreq_freq_attr_scaling_available_freqs,
1128         NULL,
1129 };
1130
1131 static struct cpufreq_driver cpufreq_amd64_driver = {
1132         .verify = powernowk8_verify,
1133         .target = powernowk8_target,
1134         .init = powernowk8_cpu_init,
1135         .exit = __devexit_p(powernowk8_cpu_exit),
1136         .get = powernowk8_get,
1137         .name = "powernow-k8",
1138         .owner = THIS_MODULE,
1139         .attr = powernow_k8_attr,
1140 };
1141
1142 /* driver entry point for init */
1143 static int __cpuinit powernowk8_init(void)
1144 {
1145         unsigned int i, supported_cpus = 0;
1146
1147         for (i=0; i<NR_CPUS; i++) {
1148                 if (!cpu_online(i))
1149                         continue;
1150                 if (check_supported_cpu(i))
1151                         supported_cpus++;
1152         }
1153
1154         if (supported_cpus == num_online_cpus()) {
1155                 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
1156                         supported_cpus);
1157                 return cpufreq_register_driver(&cpufreq_amd64_driver);
1158         }
1159
1160         return -ENODEV;
1161 }
1162
1163 /* driver entry point for term */
1164 static void __exit powernowk8_exit(void)
1165 {
1166         dprintk("exit\n");
1167
1168         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1169 }
1170
1171 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1172 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1173 MODULE_LICENSE("GPL");
1174
1175 late_initcall(powernowk8_init);
1176 module_exit(powernowk8_exit);