cfq-iosched: reset oom_cfqq in cfq_set_request()
[linux-2.6] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/inotify.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6
7 struct audit_tree;
8 struct audit_chunk;
9
10 struct audit_tree {
11         atomic_t count;
12         int goner;
13         struct audit_chunk *root;
14         struct list_head chunks;
15         struct list_head rules;
16         struct list_head list;
17         struct list_head same_root;
18         struct rcu_head head;
19         char pathname[];
20 };
21
22 struct audit_chunk {
23         struct list_head hash;
24         struct inotify_watch watch;
25         struct list_head trees;         /* with root here */
26         int dead;
27         int count;
28         atomic_long_t refs;
29         struct rcu_head head;
30         struct node {
31                 struct list_head list;
32                 struct audit_tree *owner;
33                 unsigned index;         /* index; upper bit indicates 'will prune' */
34         } owners[];
35 };
36
37 static LIST_HEAD(tree_list);
38 static LIST_HEAD(prune_list);
39
40 /*
41  * One struct chunk is attached to each inode of interest.
42  * We replace struct chunk on tagging/untagging.
43  * Rules have pointer to struct audit_tree.
44  * Rules have struct list_head rlist forming a list of rules over
45  * the same tree.
46  * References to struct chunk are collected at audit_inode{,_child}()
47  * time and used in AUDIT_TREE rule matching.
48  * These references are dropped at the same time we are calling
49  * audit_free_names(), etc.
50  *
51  * Cyclic lists galore:
52  * tree.chunks anchors chunk.owners[].list                      hash_lock
53  * tree.rules anchors rule.rlist                                audit_filter_mutex
54  * chunk.trees anchors tree.same_root                           hash_lock
55  * chunk.hash is a hash with middle bits of watch.inode as
56  * a hash function.                                             RCU, hash_lock
57  *
58  * tree is refcounted; one reference for "some rules on rules_list refer to
59  * it", one for each chunk with pointer to it.
60  *
61  * chunk is refcounted by embedded inotify_watch + .refs (non-zero refcount
62  * of watch contributes 1 to .refs).
63  *
64  * node.index allows to get from node.list to containing chunk.
65  * MSB of that sucker is stolen to mark taggings that we might have to
66  * revert - several operations have very unpleasant cleanup logics and
67  * that makes a difference.  Some.
68  */
69
70 static struct inotify_handle *rtree_ih;
71
72 static struct audit_tree *alloc_tree(const char *s)
73 {
74         struct audit_tree *tree;
75
76         tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
77         if (tree) {
78                 atomic_set(&tree->count, 1);
79                 tree->goner = 0;
80                 INIT_LIST_HEAD(&tree->chunks);
81                 INIT_LIST_HEAD(&tree->rules);
82                 INIT_LIST_HEAD(&tree->list);
83                 INIT_LIST_HEAD(&tree->same_root);
84                 tree->root = NULL;
85                 strcpy(tree->pathname, s);
86         }
87         return tree;
88 }
89
90 static inline void get_tree(struct audit_tree *tree)
91 {
92         atomic_inc(&tree->count);
93 }
94
95 static void __put_tree(struct rcu_head *rcu)
96 {
97         struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
98         kfree(tree);
99 }
100
101 static inline void put_tree(struct audit_tree *tree)
102 {
103         if (atomic_dec_and_test(&tree->count))
104                 call_rcu(&tree->head, __put_tree);
105 }
106
107 /* to avoid bringing the entire thing in audit.h */
108 const char *audit_tree_path(struct audit_tree *tree)
109 {
110         return tree->pathname;
111 }
112
113 static struct audit_chunk *alloc_chunk(int count)
114 {
115         struct audit_chunk *chunk;
116         size_t size;
117         int i;
118
119         size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
120         chunk = kzalloc(size, GFP_KERNEL);
121         if (!chunk)
122                 return NULL;
123
124         INIT_LIST_HEAD(&chunk->hash);
125         INIT_LIST_HEAD(&chunk->trees);
126         chunk->count = count;
127         atomic_long_set(&chunk->refs, 1);
128         for (i = 0; i < count; i++) {
129                 INIT_LIST_HEAD(&chunk->owners[i].list);
130                 chunk->owners[i].index = i;
131         }
132         inotify_init_watch(&chunk->watch);
133         return chunk;
134 }
135
136 static void free_chunk(struct audit_chunk *chunk)
137 {
138         int i;
139
140         for (i = 0; i < chunk->count; i++) {
141                 if (chunk->owners[i].owner)
142                         put_tree(chunk->owners[i].owner);
143         }
144         kfree(chunk);
145 }
146
147 void audit_put_chunk(struct audit_chunk *chunk)
148 {
149         if (atomic_long_dec_and_test(&chunk->refs))
150                 free_chunk(chunk);
151 }
152
153 static void __put_chunk(struct rcu_head *rcu)
154 {
155         struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
156         audit_put_chunk(chunk);
157 }
158
159 enum {HASH_SIZE = 128};
160 static struct list_head chunk_hash_heads[HASH_SIZE];
161 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
162
163 static inline struct list_head *chunk_hash(const struct inode *inode)
164 {
165         unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
166         return chunk_hash_heads + n % HASH_SIZE;
167 }
168
169 /* hash_lock is held by caller */
170 static void insert_hash(struct audit_chunk *chunk)
171 {
172         struct list_head *list = chunk_hash(chunk->watch.inode);
173         list_add_rcu(&chunk->hash, list);
174 }
175
176 /* called under rcu_read_lock */
177 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
178 {
179         struct list_head *list = chunk_hash(inode);
180         struct audit_chunk *p;
181
182         list_for_each_entry_rcu(p, list, hash) {
183                 if (p->watch.inode == inode) {
184                         atomic_long_inc(&p->refs);
185                         return p;
186                 }
187         }
188         return NULL;
189 }
190
191 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
192 {
193         int n;
194         for (n = 0; n < chunk->count; n++)
195                 if (chunk->owners[n].owner == tree)
196                         return 1;
197         return 0;
198 }
199
200 /* tagging and untagging inodes with trees */
201
202 static struct audit_chunk *find_chunk(struct node *p)
203 {
204         int index = p->index & ~(1U<<31);
205         p -= index;
206         return container_of(p, struct audit_chunk, owners[0]);
207 }
208
209 static void untag_chunk(struct node *p)
210 {
211         struct audit_chunk *chunk = find_chunk(p);
212         struct audit_chunk *new;
213         struct audit_tree *owner;
214         int size = chunk->count - 1;
215         int i, j;
216
217         if (!pin_inotify_watch(&chunk->watch)) {
218                 /*
219                  * Filesystem is shutting down; all watches are getting
220                  * evicted, just take it off the node list for this
221                  * tree and let the eviction logics take care of the
222                  * rest.
223                  */
224                 owner = p->owner;
225                 if (owner->root == chunk) {
226                         list_del_init(&owner->same_root);
227                         owner->root = NULL;
228                 }
229                 list_del_init(&p->list);
230                 p->owner = NULL;
231                 put_tree(owner);
232                 return;
233         }
234
235         spin_unlock(&hash_lock);
236
237         /*
238          * pin_inotify_watch() succeeded, so the watch won't go away
239          * from under us.
240          */
241         mutex_lock(&chunk->watch.inode->inotify_mutex);
242         if (chunk->dead) {
243                 mutex_unlock(&chunk->watch.inode->inotify_mutex);
244                 goto out;
245         }
246
247         owner = p->owner;
248
249         if (!size) {
250                 chunk->dead = 1;
251                 spin_lock(&hash_lock);
252                 list_del_init(&chunk->trees);
253                 if (owner->root == chunk)
254                         owner->root = NULL;
255                 list_del_init(&p->list);
256                 list_del_rcu(&chunk->hash);
257                 spin_unlock(&hash_lock);
258                 inotify_evict_watch(&chunk->watch);
259                 mutex_unlock(&chunk->watch.inode->inotify_mutex);
260                 put_inotify_watch(&chunk->watch);
261                 goto out;
262         }
263
264         new = alloc_chunk(size);
265         if (!new)
266                 goto Fallback;
267         if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
268                 free_chunk(new);
269                 goto Fallback;
270         }
271
272         chunk->dead = 1;
273         spin_lock(&hash_lock);
274         list_replace_init(&chunk->trees, &new->trees);
275         if (owner->root == chunk) {
276                 list_del_init(&owner->same_root);
277                 owner->root = NULL;
278         }
279
280         for (i = j = 0; i < size; i++, j++) {
281                 struct audit_tree *s;
282                 if (&chunk->owners[j] == p) {
283                         list_del_init(&p->list);
284                         i--;
285                         continue;
286                 }
287                 s = chunk->owners[j].owner;
288                 new->owners[i].owner = s;
289                 new->owners[i].index = chunk->owners[j].index - j + i;
290                 if (!s) /* result of earlier fallback */
291                         continue;
292                 get_tree(s);
293                 list_replace_init(&chunk->owners[i].list, &new->owners[j].list);
294         }
295
296         list_replace_rcu(&chunk->hash, &new->hash);
297         list_for_each_entry(owner, &new->trees, same_root)
298                 owner->root = new;
299         spin_unlock(&hash_lock);
300         inotify_evict_watch(&chunk->watch);
301         mutex_unlock(&chunk->watch.inode->inotify_mutex);
302         put_inotify_watch(&chunk->watch);
303         goto out;
304
305 Fallback:
306         // do the best we can
307         spin_lock(&hash_lock);
308         if (owner->root == chunk) {
309                 list_del_init(&owner->same_root);
310                 owner->root = NULL;
311         }
312         list_del_init(&p->list);
313         p->owner = NULL;
314         put_tree(owner);
315         spin_unlock(&hash_lock);
316         mutex_unlock(&chunk->watch.inode->inotify_mutex);
317 out:
318         unpin_inotify_watch(&chunk->watch);
319         spin_lock(&hash_lock);
320 }
321
322 static int create_chunk(struct inode *inode, struct audit_tree *tree)
323 {
324         struct audit_chunk *chunk = alloc_chunk(1);
325         if (!chunk)
326                 return -ENOMEM;
327
328         if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
329                 free_chunk(chunk);
330                 return -ENOSPC;
331         }
332
333         mutex_lock(&inode->inotify_mutex);
334         spin_lock(&hash_lock);
335         if (tree->goner) {
336                 spin_unlock(&hash_lock);
337                 chunk->dead = 1;
338                 inotify_evict_watch(&chunk->watch);
339                 mutex_unlock(&inode->inotify_mutex);
340                 put_inotify_watch(&chunk->watch);
341                 return 0;
342         }
343         chunk->owners[0].index = (1U << 31);
344         chunk->owners[0].owner = tree;
345         get_tree(tree);
346         list_add(&chunk->owners[0].list, &tree->chunks);
347         if (!tree->root) {
348                 tree->root = chunk;
349                 list_add(&tree->same_root, &chunk->trees);
350         }
351         insert_hash(chunk);
352         spin_unlock(&hash_lock);
353         mutex_unlock(&inode->inotify_mutex);
354         return 0;
355 }
356
357 /* the first tagged inode becomes root of tree */
358 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
359 {
360         struct inotify_watch *watch;
361         struct audit_tree *owner;
362         struct audit_chunk *chunk, *old;
363         struct node *p;
364         int n;
365
366         if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
367                 return create_chunk(inode, tree);
368
369         old = container_of(watch, struct audit_chunk, watch);
370
371         /* are we already there? */
372         spin_lock(&hash_lock);
373         for (n = 0; n < old->count; n++) {
374                 if (old->owners[n].owner == tree) {
375                         spin_unlock(&hash_lock);
376                         put_inotify_watch(watch);
377                         return 0;
378                 }
379         }
380         spin_unlock(&hash_lock);
381
382         chunk = alloc_chunk(old->count + 1);
383         if (!chunk)
384                 return -ENOMEM;
385
386         mutex_lock(&inode->inotify_mutex);
387         if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
388                 mutex_unlock(&inode->inotify_mutex);
389                 put_inotify_watch(&old->watch);
390                 free_chunk(chunk);
391                 return -ENOSPC;
392         }
393         spin_lock(&hash_lock);
394         if (tree->goner) {
395                 spin_unlock(&hash_lock);
396                 chunk->dead = 1;
397                 inotify_evict_watch(&chunk->watch);
398                 mutex_unlock(&inode->inotify_mutex);
399                 put_inotify_watch(&old->watch);
400                 put_inotify_watch(&chunk->watch);
401                 return 0;
402         }
403         list_replace_init(&old->trees, &chunk->trees);
404         for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
405                 struct audit_tree *s = old->owners[n].owner;
406                 p->owner = s;
407                 p->index = old->owners[n].index;
408                 if (!s) /* result of fallback in untag */
409                         continue;
410                 get_tree(s);
411                 list_replace_init(&old->owners[n].list, &p->list);
412         }
413         p->index = (chunk->count - 1) | (1U<<31);
414         p->owner = tree;
415         get_tree(tree);
416         list_add(&p->list, &tree->chunks);
417         list_replace_rcu(&old->hash, &chunk->hash);
418         list_for_each_entry(owner, &chunk->trees, same_root)
419                 owner->root = chunk;
420         old->dead = 1;
421         if (!tree->root) {
422                 tree->root = chunk;
423                 list_add(&tree->same_root, &chunk->trees);
424         }
425         spin_unlock(&hash_lock);
426         inotify_evict_watch(&old->watch);
427         mutex_unlock(&inode->inotify_mutex);
428         put_inotify_watch(&old->watch);
429         return 0;
430 }
431
432 static void kill_rules(struct audit_tree *tree)
433 {
434         struct audit_krule *rule, *next;
435         struct audit_entry *entry;
436         struct audit_buffer *ab;
437
438         list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
439                 entry = container_of(rule, struct audit_entry, rule);
440
441                 list_del_init(&rule->rlist);
442                 if (rule->tree) {
443                         /* not a half-baked one */
444                         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
445                         audit_log_format(ab, "op=");
446                         audit_log_string(ab, "remove rule");
447                         audit_log_format(ab, " dir=");
448                         audit_log_untrustedstring(ab, rule->tree->pathname);
449                         audit_log_key(ab, rule->filterkey);
450                         audit_log_format(ab, " list=%d res=1", rule->listnr);
451                         audit_log_end(ab);
452                         rule->tree = NULL;
453                         list_del_rcu(&entry->list);
454                         list_del(&entry->rule.list);
455                         call_rcu(&entry->rcu, audit_free_rule_rcu);
456                 }
457         }
458 }
459
460 /*
461  * finish killing struct audit_tree
462  */
463 static void prune_one(struct audit_tree *victim)
464 {
465         spin_lock(&hash_lock);
466         while (!list_empty(&victim->chunks)) {
467                 struct node *p;
468
469                 p = list_entry(victim->chunks.next, struct node, list);
470
471                 untag_chunk(p);
472         }
473         spin_unlock(&hash_lock);
474         put_tree(victim);
475 }
476
477 /* trim the uncommitted chunks from tree */
478
479 static void trim_marked(struct audit_tree *tree)
480 {
481         struct list_head *p, *q;
482         spin_lock(&hash_lock);
483         if (tree->goner) {
484                 spin_unlock(&hash_lock);
485                 return;
486         }
487         /* reorder */
488         for (p = tree->chunks.next; p != &tree->chunks; p = q) {
489                 struct node *node = list_entry(p, struct node, list);
490                 q = p->next;
491                 if (node->index & (1U<<31)) {
492                         list_del_init(p);
493                         list_add(p, &tree->chunks);
494                 }
495         }
496
497         while (!list_empty(&tree->chunks)) {
498                 struct node *node;
499
500                 node = list_entry(tree->chunks.next, struct node, list);
501
502                 /* have we run out of marked? */
503                 if (!(node->index & (1U<<31)))
504                         break;
505
506                 untag_chunk(node);
507         }
508         if (!tree->root && !tree->goner) {
509                 tree->goner = 1;
510                 spin_unlock(&hash_lock);
511                 mutex_lock(&audit_filter_mutex);
512                 kill_rules(tree);
513                 list_del_init(&tree->list);
514                 mutex_unlock(&audit_filter_mutex);
515                 prune_one(tree);
516         } else {
517                 spin_unlock(&hash_lock);
518         }
519 }
520
521 static void audit_schedule_prune(void);
522
523 /* called with audit_filter_mutex */
524 int audit_remove_tree_rule(struct audit_krule *rule)
525 {
526         struct audit_tree *tree;
527         tree = rule->tree;
528         if (tree) {
529                 spin_lock(&hash_lock);
530                 list_del_init(&rule->rlist);
531                 if (list_empty(&tree->rules) && !tree->goner) {
532                         tree->root = NULL;
533                         list_del_init(&tree->same_root);
534                         tree->goner = 1;
535                         list_move(&tree->list, &prune_list);
536                         rule->tree = NULL;
537                         spin_unlock(&hash_lock);
538                         audit_schedule_prune();
539                         return 1;
540                 }
541                 rule->tree = NULL;
542                 spin_unlock(&hash_lock);
543                 return 1;
544         }
545         return 0;
546 }
547
548 void audit_trim_trees(void)
549 {
550         struct list_head cursor;
551
552         mutex_lock(&audit_filter_mutex);
553         list_add(&cursor, &tree_list);
554         while (cursor.next != &tree_list) {
555                 struct audit_tree *tree;
556                 struct path path;
557                 struct vfsmount *root_mnt;
558                 struct node *node;
559                 struct list_head list;
560                 int err;
561
562                 tree = container_of(cursor.next, struct audit_tree, list);
563                 get_tree(tree);
564                 list_del(&cursor);
565                 list_add(&cursor, &tree->list);
566                 mutex_unlock(&audit_filter_mutex);
567
568                 err = kern_path(tree->pathname, 0, &path);
569                 if (err)
570                         goto skip_it;
571
572                 root_mnt = collect_mounts(&path);
573                 path_put(&path);
574                 if (!root_mnt)
575                         goto skip_it;
576
577                 list_add_tail(&list, &root_mnt->mnt_list);
578                 spin_lock(&hash_lock);
579                 list_for_each_entry(node, &tree->chunks, list) {
580                         struct audit_chunk *chunk = find_chunk(node);
581                         struct inode *inode = chunk->watch.inode;
582                         struct vfsmount *mnt;
583                         node->index |= 1U<<31;
584                         list_for_each_entry(mnt, &list, mnt_list) {
585                                 if (mnt->mnt_root->d_inode == inode) {
586                                         node->index &= ~(1U<<31);
587                                         break;
588                                 }
589                         }
590                 }
591                 spin_unlock(&hash_lock);
592                 trim_marked(tree);
593                 put_tree(tree);
594                 list_del_init(&list);
595                 drop_collected_mounts(root_mnt);
596 skip_it:
597                 mutex_lock(&audit_filter_mutex);
598         }
599         list_del(&cursor);
600         mutex_unlock(&audit_filter_mutex);
601 }
602
603 static int is_under(struct vfsmount *mnt, struct dentry *dentry,
604                     struct path *path)
605 {
606         if (mnt != path->mnt) {
607                 for (;;) {
608                         if (mnt->mnt_parent == mnt)
609                                 return 0;
610                         if (mnt->mnt_parent == path->mnt)
611                                         break;
612                         mnt = mnt->mnt_parent;
613                 }
614                 dentry = mnt->mnt_mountpoint;
615         }
616         return is_subdir(dentry, path->dentry);
617 }
618
619 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
620 {
621
622         if (pathname[0] != '/' ||
623             rule->listnr != AUDIT_FILTER_EXIT ||
624             op != Audit_equal ||
625             rule->inode_f || rule->watch || rule->tree)
626                 return -EINVAL;
627         rule->tree = alloc_tree(pathname);
628         if (!rule->tree)
629                 return -ENOMEM;
630         return 0;
631 }
632
633 void audit_put_tree(struct audit_tree *tree)
634 {
635         put_tree(tree);
636 }
637
638 /* called with audit_filter_mutex */
639 int audit_add_tree_rule(struct audit_krule *rule)
640 {
641         struct audit_tree *seed = rule->tree, *tree;
642         struct path path;
643         struct vfsmount *mnt, *p;
644         struct list_head list;
645         int err;
646
647         list_for_each_entry(tree, &tree_list, list) {
648                 if (!strcmp(seed->pathname, tree->pathname)) {
649                         put_tree(seed);
650                         rule->tree = tree;
651                         list_add(&rule->rlist, &tree->rules);
652                         return 0;
653                 }
654         }
655         tree = seed;
656         list_add(&tree->list, &tree_list);
657         list_add(&rule->rlist, &tree->rules);
658         /* do not set rule->tree yet */
659         mutex_unlock(&audit_filter_mutex);
660
661         err = kern_path(tree->pathname, 0, &path);
662         if (err)
663                 goto Err;
664         mnt = collect_mounts(&path);
665         path_put(&path);
666         if (!mnt) {
667                 err = -ENOMEM;
668                 goto Err;
669         }
670         list_add_tail(&list, &mnt->mnt_list);
671
672         get_tree(tree);
673         list_for_each_entry(p, &list, mnt_list) {
674                 err = tag_chunk(p->mnt_root->d_inode, tree);
675                 if (err)
676                         break;
677         }
678
679         list_del(&list);
680         drop_collected_mounts(mnt);
681
682         if (!err) {
683                 struct node *node;
684                 spin_lock(&hash_lock);
685                 list_for_each_entry(node, &tree->chunks, list)
686                         node->index &= ~(1U<<31);
687                 spin_unlock(&hash_lock);
688         } else {
689                 trim_marked(tree);
690                 goto Err;
691         }
692
693         mutex_lock(&audit_filter_mutex);
694         if (list_empty(&rule->rlist)) {
695                 put_tree(tree);
696                 return -ENOENT;
697         }
698         rule->tree = tree;
699         put_tree(tree);
700
701         return 0;
702 Err:
703         mutex_lock(&audit_filter_mutex);
704         list_del_init(&tree->list);
705         list_del_init(&tree->rules);
706         put_tree(tree);
707         return err;
708 }
709
710 int audit_tag_tree(char *old, char *new)
711 {
712         struct list_head cursor, barrier;
713         int failed = 0;
714         struct path path;
715         struct vfsmount *tagged;
716         struct list_head list;
717         struct vfsmount *mnt;
718         struct dentry *dentry;
719         int err;
720
721         err = kern_path(new, 0, &path);
722         if (err)
723                 return err;
724         tagged = collect_mounts(&path);
725         path_put(&path);
726         if (!tagged)
727                 return -ENOMEM;
728
729         err = kern_path(old, 0, &path);
730         if (err) {
731                 drop_collected_mounts(tagged);
732                 return err;
733         }
734         mnt = mntget(path.mnt);
735         dentry = dget(path.dentry);
736         path_put(&path);
737
738         list_add_tail(&list, &tagged->mnt_list);
739
740         mutex_lock(&audit_filter_mutex);
741         list_add(&barrier, &tree_list);
742         list_add(&cursor, &barrier);
743
744         while (cursor.next != &tree_list) {
745                 struct audit_tree *tree;
746                 struct vfsmount *p;
747
748                 tree = container_of(cursor.next, struct audit_tree, list);
749                 get_tree(tree);
750                 list_del(&cursor);
751                 list_add(&cursor, &tree->list);
752                 mutex_unlock(&audit_filter_mutex);
753
754                 err = kern_path(tree->pathname, 0, &path);
755                 if (err) {
756                         put_tree(tree);
757                         mutex_lock(&audit_filter_mutex);
758                         continue;
759                 }
760
761                 spin_lock(&vfsmount_lock);
762                 if (!is_under(mnt, dentry, &path)) {
763                         spin_unlock(&vfsmount_lock);
764                         path_put(&path);
765                         put_tree(tree);
766                         mutex_lock(&audit_filter_mutex);
767                         continue;
768                 }
769                 spin_unlock(&vfsmount_lock);
770                 path_put(&path);
771
772                 list_for_each_entry(p, &list, mnt_list) {
773                         failed = tag_chunk(p->mnt_root->d_inode, tree);
774                         if (failed)
775                                 break;
776                 }
777
778                 if (failed) {
779                         put_tree(tree);
780                         mutex_lock(&audit_filter_mutex);
781                         break;
782                 }
783
784                 mutex_lock(&audit_filter_mutex);
785                 spin_lock(&hash_lock);
786                 if (!tree->goner) {
787                         list_del(&tree->list);
788                         list_add(&tree->list, &tree_list);
789                 }
790                 spin_unlock(&hash_lock);
791                 put_tree(tree);
792         }
793
794         while (barrier.prev != &tree_list) {
795                 struct audit_tree *tree;
796
797                 tree = container_of(barrier.prev, struct audit_tree, list);
798                 get_tree(tree);
799                 list_del(&tree->list);
800                 list_add(&tree->list, &barrier);
801                 mutex_unlock(&audit_filter_mutex);
802
803                 if (!failed) {
804                         struct node *node;
805                         spin_lock(&hash_lock);
806                         list_for_each_entry(node, &tree->chunks, list)
807                                 node->index &= ~(1U<<31);
808                         spin_unlock(&hash_lock);
809                 } else {
810                         trim_marked(tree);
811                 }
812
813                 put_tree(tree);
814                 mutex_lock(&audit_filter_mutex);
815         }
816         list_del(&barrier);
817         list_del(&cursor);
818         list_del(&list);
819         mutex_unlock(&audit_filter_mutex);
820         dput(dentry);
821         mntput(mnt);
822         drop_collected_mounts(tagged);
823         return failed;
824 }
825
826 /*
827  * That gets run when evict_chunk() ends up needing to kill audit_tree.
828  * Runs from a separate thread.
829  */
830 static int prune_tree_thread(void *unused)
831 {
832         mutex_lock(&audit_cmd_mutex);
833         mutex_lock(&audit_filter_mutex);
834
835         while (!list_empty(&prune_list)) {
836                 struct audit_tree *victim;
837
838                 victim = list_entry(prune_list.next, struct audit_tree, list);
839                 list_del_init(&victim->list);
840
841                 mutex_unlock(&audit_filter_mutex);
842
843                 prune_one(victim);
844
845                 mutex_lock(&audit_filter_mutex);
846         }
847
848         mutex_unlock(&audit_filter_mutex);
849         mutex_unlock(&audit_cmd_mutex);
850         return 0;
851 }
852
853 static void audit_schedule_prune(void)
854 {
855         kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
856 }
857
858 /*
859  * ... and that one is done if evict_chunk() decides to delay until the end
860  * of syscall.  Runs synchronously.
861  */
862 void audit_kill_trees(struct list_head *list)
863 {
864         mutex_lock(&audit_cmd_mutex);
865         mutex_lock(&audit_filter_mutex);
866
867         while (!list_empty(list)) {
868                 struct audit_tree *victim;
869
870                 victim = list_entry(list->next, struct audit_tree, list);
871                 kill_rules(victim);
872                 list_del_init(&victim->list);
873
874                 mutex_unlock(&audit_filter_mutex);
875
876                 prune_one(victim);
877
878                 mutex_lock(&audit_filter_mutex);
879         }
880
881         mutex_unlock(&audit_filter_mutex);
882         mutex_unlock(&audit_cmd_mutex);
883 }
884
885 /*
886  *  Here comes the stuff asynchronous to auditctl operations
887  */
888
889 /* inode->inotify_mutex is locked */
890 static void evict_chunk(struct audit_chunk *chunk)
891 {
892         struct audit_tree *owner;
893         struct list_head *postponed = audit_killed_trees();
894         int need_prune = 0;
895         int n;
896
897         if (chunk->dead)
898                 return;
899
900         chunk->dead = 1;
901         mutex_lock(&audit_filter_mutex);
902         spin_lock(&hash_lock);
903         while (!list_empty(&chunk->trees)) {
904                 owner = list_entry(chunk->trees.next,
905                                    struct audit_tree, same_root);
906                 owner->goner = 1;
907                 owner->root = NULL;
908                 list_del_init(&owner->same_root);
909                 spin_unlock(&hash_lock);
910                 if (!postponed) {
911                         kill_rules(owner);
912                         list_move(&owner->list, &prune_list);
913                         need_prune = 1;
914                 } else {
915                         list_move(&owner->list, postponed);
916                 }
917                 spin_lock(&hash_lock);
918         }
919         list_del_rcu(&chunk->hash);
920         for (n = 0; n < chunk->count; n++)
921                 list_del_init(&chunk->owners[n].list);
922         spin_unlock(&hash_lock);
923         if (need_prune)
924                 audit_schedule_prune();
925         mutex_unlock(&audit_filter_mutex);
926 }
927
928 static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
929                          u32 cookie, const char *dname, struct inode *inode)
930 {
931         struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
932
933         if (mask & IN_IGNORED) {
934                 evict_chunk(chunk);
935                 put_inotify_watch(watch);
936         }
937 }
938
939 static void destroy_watch(struct inotify_watch *watch)
940 {
941         struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
942         call_rcu(&chunk->head, __put_chunk);
943 }
944
945 static const struct inotify_operations rtree_inotify_ops = {
946         .handle_event   = handle_event,
947         .destroy_watch  = destroy_watch,
948 };
949
950 static int __init audit_tree_init(void)
951 {
952         int i;
953
954         rtree_ih = inotify_init(&rtree_inotify_ops);
955         if (IS_ERR(rtree_ih))
956                 audit_panic("cannot initialize inotify handle for rectree watches");
957
958         for (i = 0; i < HASH_SIZE; i++)
959                 INIT_LIST_HEAD(&chunk_hash_heads[i]);
960
961         return 0;
962 }
963 __initcall(audit_tree_init);