2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
35 * - reservation for superuser
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
103 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
131 * The regular allocator(using the buddy cache) support few tunables.
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
160 * mballoc operates on the following data:
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
165 * there are two types of preallocations:
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
218 * so, now we're building a concurrency table:
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
234 * i_data_sem serializes them
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
243 * i_data_sem or another mutex should serializes them
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
265 * Logic in few words:
270 * mark bits in on-disk bitmap
273 * - use preallocation:
274 * find proper PA (per-inode or group)
276 * mark bits in on-disk bitmap
282 * mark bits in on-disk bitmap
285 * - discard preallocations in group:
287 * move them onto local list
288 * load on-disk bitmap
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
293 * - discard inode's preallocations:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
312 * - release consumed pa:
317 * - generate in-core bitmap:
321 * - discard all for given object (inode, locality group):
326 * - discard all for given group:
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
338 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
340 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
342 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
348 #if BITS_PER_LONG == 64
349 *bit += ((unsigned long) addr & 7UL) << 3;
350 addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit += ((unsigned long) addr & 3UL) << 3;
353 addr = (void *) ((unsigned long) addr & ~3UL);
355 #error "how many bits you are?!"
360 static inline int mb_test_bit(int bit, void *addr)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 return ext4_test_bit(bit, addr);
370 static inline void mb_set_bit(int bit, void *addr)
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_set_bit(bit, addr);
376 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_set_bit_atomic(lock, bit, addr);
382 static inline void mb_clear_bit(int bit, void *addr)
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 ext4_clear_bit(bit, addr);
388 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_clear_bit_atomic(lock, bit, addr);
394 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
396 int fix = 0, ret, tmpmax;
397 addr = mb_correct_addr_and_bit(&fix, addr);
401 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
407 static inline int mb_find_next_bit(void *addr, int max, int start)
409 int fix = 0, ret, tmpmax;
410 addr = mb_correct_addr_and_bit(&fix, addr);
414 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
420 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
424 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
427 if (order > e4b->bd_blkbits + 1) {
432 /* at order 0 we see each particular block */
433 *max = 1 << (e4b->bd_blkbits + 3);
435 return EXT4_MB_BITMAP(e4b);
437 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
438 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
444 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
445 int first, int count)
448 struct super_block *sb = e4b->bd_sb;
450 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
452 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
453 for (i = 0; i < count; i++) {
454 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
455 ext4_fsblk_t blocknr;
456 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
457 blocknr += first + i;
459 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
460 ext4_grp_locked_error(sb, e4b->bd_group,
461 __func__, "double-free of inode"
462 " %lu's block %llu(bit %u in group %u)",
463 inode ? inode->i_ino : 0, blocknr,
464 first + i, e4b->bd_group);
466 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
470 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
474 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
476 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
477 for (i = 0; i < count; i++) {
478 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
479 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
483 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
485 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
486 unsigned char *b1, *b2;
488 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
489 b2 = (unsigned char *) bitmap;
490 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
491 if (b1[i] != b2[i]) {
492 printk(KERN_ERR "corruption in group %u "
493 "at byte %u(%u): %x in copy != %x "
494 "on disk/prealloc\n",
495 e4b->bd_group, i, i * 8, b1[i], b2[i]);
503 static inline void mb_free_blocks_double(struct inode *inode,
504 struct ext4_buddy *e4b, int first, int count)
508 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
509 int first, int count)
513 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
519 #ifdef AGGRESSIVE_CHECK
521 #define MB_CHECK_ASSERT(assert) \
525 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
526 function, file, line, # assert); \
531 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
532 const char *function, int line)
534 struct super_block *sb = e4b->bd_sb;
535 int order = e4b->bd_blkbits + 1;
542 struct ext4_group_info *grp;
545 struct list_head *cur;
550 static int mb_check_counter;
551 if (mb_check_counter++ % 100 != 0)
556 buddy = mb_find_buddy(e4b, order, &max);
557 MB_CHECK_ASSERT(buddy);
558 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
559 MB_CHECK_ASSERT(buddy2);
560 MB_CHECK_ASSERT(buddy != buddy2);
561 MB_CHECK_ASSERT(max * 2 == max2);
564 for (i = 0; i < max; i++) {
566 if (mb_test_bit(i, buddy)) {
567 /* only single bit in buddy2 may be 1 */
568 if (!mb_test_bit(i << 1, buddy2)) {
570 mb_test_bit((i<<1)+1, buddy2));
571 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
573 mb_test_bit(i << 1, buddy2));
578 /* both bits in buddy2 must be 0 */
579 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
580 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
582 for (j = 0; j < (1 << order); j++) {
583 k = (i * (1 << order)) + j;
585 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
589 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
594 buddy = mb_find_buddy(e4b, 0, &max);
595 for (i = 0; i < max; i++) {
596 if (!mb_test_bit(i, buddy)) {
597 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
605 /* check used bits only */
606 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
607 buddy2 = mb_find_buddy(e4b, j, &max2);
609 MB_CHECK_ASSERT(k < max2);
610 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
613 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
614 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
616 grp = ext4_get_group_info(sb, e4b->bd_group);
617 buddy = mb_find_buddy(e4b, 0, &max);
618 list_for_each(cur, &grp->bb_prealloc_list) {
619 ext4_group_t groupnr;
620 struct ext4_prealloc_space *pa;
621 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
622 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
623 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
624 for (i = 0; i < pa->pa_len; i++)
625 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
631 __FILE__, __func__, __LINE__)
633 #define mb_check_buddy(e4b)
636 /* FIXME!! need more doc */
637 static void ext4_mb_mark_free_simple(struct super_block *sb,
638 void *buddy, unsigned first, int len,
639 struct ext4_group_info *grp)
641 struct ext4_sb_info *sbi = EXT4_SB(sb);
644 unsigned short chunk;
645 unsigned short border;
647 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
649 border = 2 << sb->s_blocksize_bits;
652 /* find how many blocks can be covered since this position */
653 max = ffs(first | border) - 1;
655 /* find how many blocks of power 2 we need to mark */
662 /* mark multiblock chunks only */
663 grp->bb_counters[min]++;
665 mb_clear_bit(first >> min,
666 buddy + sbi->s_mb_offsets[min]);
673 static void ext4_mb_generate_buddy(struct super_block *sb,
674 void *buddy, void *bitmap, ext4_group_t group)
676 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
677 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
678 unsigned short i = 0;
679 unsigned short first;
682 unsigned fragments = 0;
683 unsigned long long period = get_cycles();
685 /* initialize buddy from bitmap which is aggregation
686 * of on-disk bitmap and preallocations */
687 i = mb_find_next_zero_bit(bitmap, max, 0);
688 grp->bb_first_free = i;
692 i = mb_find_next_bit(bitmap, max, i);
696 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
698 grp->bb_counters[0]++;
700 i = mb_find_next_zero_bit(bitmap, max, i);
702 grp->bb_fragments = fragments;
704 if (free != grp->bb_free) {
705 ext4_grp_locked_error(sb, group, __func__,
706 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
707 group, free, grp->bb_free);
709 * If we intent to continue, we consider group descritor
710 * corrupt and update bb_free using bitmap value
715 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
717 period = get_cycles() - period;
718 spin_lock(&EXT4_SB(sb)->s_bal_lock);
719 EXT4_SB(sb)->s_mb_buddies_generated++;
720 EXT4_SB(sb)->s_mb_generation_time += period;
721 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
724 /* The buddy information is attached the buddy cache inode
725 * for convenience. The information regarding each group
726 * is loaded via ext4_mb_load_buddy. The information involve
727 * block bitmap and buddy information. The information are
728 * stored in the inode as
731 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
734 * one block each for bitmap and buddy information.
735 * So for each group we take up 2 blocks. A page can
736 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
737 * So it can have information regarding groups_per_page which
738 * is blocks_per_page/2
741 static int ext4_mb_init_cache(struct page *page, char *incore)
748 ext4_group_t first_group;
750 struct super_block *sb;
751 struct buffer_head *bhs;
752 struct buffer_head **bh;
757 mb_debug("init page %lu\n", page->index);
759 inode = page->mapping->host;
761 blocksize = 1 << inode->i_blkbits;
762 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
764 groups_per_page = blocks_per_page >> 1;
765 if (groups_per_page == 0)
768 /* allocate buffer_heads to read bitmaps */
769 if (groups_per_page > 1) {
771 i = sizeof(struct buffer_head *) * groups_per_page;
772 bh = kzalloc(i, GFP_NOFS);
778 first_group = page->index * blocks_per_page / 2;
780 /* read all groups the page covers into the cache */
781 for (i = 0; i < groups_per_page; i++) {
782 struct ext4_group_desc *desc;
784 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
788 desc = ext4_get_group_desc(sb, first_group + i, NULL);
793 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
797 if (buffer_uptodate(bh[i]) &&
798 !(desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))
802 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
803 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
804 ext4_init_block_bitmap(sb, bh[i],
805 first_group + i, desc);
806 set_buffer_uptodate(bh[i]);
807 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
808 unlock_buffer(bh[i]);
811 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
813 bh[i]->b_end_io = end_buffer_read_sync;
814 submit_bh(READ, bh[i]);
815 mb_debug("read bitmap for group %u\n", first_group + i);
818 /* wait for I/O completion */
819 for (i = 0; i < groups_per_page && bh[i]; i++)
820 wait_on_buffer(bh[i]);
823 for (i = 0; i < groups_per_page && bh[i]; i++)
824 if (!buffer_uptodate(bh[i]))
828 first_block = page->index * blocks_per_page;
829 for (i = 0; i < blocks_per_page; i++) {
831 struct ext4_group_info *grinfo;
833 group = (first_block + i) >> 1;
834 if (group >= EXT4_SB(sb)->s_groups_count)
838 * data carry information regarding this
839 * particular group in the format specified
843 data = page_address(page) + (i * blocksize);
844 bitmap = bh[group - first_group]->b_data;
847 * We place the buddy block and bitmap block
850 if ((first_block + i) & 1) {
851 /* this is block of buddy */
852 BUG_ON(incore == NULL);
853 mb_debug("put buddy for group %u in page %lu/%x\n",
854 group, page->index, i * blocksize);
855 memset(data, 0xff, blocksize);
856 grinfo = ext4_get_group_info(sb, group);
857 grinfo->bb_fragments = 0;
858 memset(grinfo->bb_counters, 0,
859 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
861 * incore got set to the group block bitmap below
863 ext4_lock_group(sb, group);
864 ext4_mb_generate_buddy(sb, data, incore, group);
865 ext4_unlock_group(sb, group);
868 /* this is block of bitmap */
869 BUG_ON(incore != NULL);
870 mb_debug("put bitmap for group %u in page %lu/%x\n",
871 group, page->index, i * blocksize);
873 /* see comments in ext4_mb_put_pa() */
874 ext4_lock_group(sb, group);
875 memcpy(data, bitmap, blocksize);
877 /* mark all preallocated blks used in in-core bitmap */
878 ext4_mb_generate_from_pa(sb, data, group);
879 ext4_mb_generate_from_freelist(sb, data, group);
880 ext4_unlock_group(sb, group);
882 /* set incore so that the buddy information can be
883 * generated using this
888 SetPageUptodate(page);
892 for (i = 0; i < groups_per_page && bh[i]; i++)
900 static noinline_for_stack int
901 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
902 struct ext4_buddy *e4b)
910 struct ext4_group_info *grp;
911 struct ext4_sb_info *sbi = EXT4_SB(sb);
912 struct inode *inode = sbi->s_buddy_cache;
914 mb_debug("load group %u\n", group);
916 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
917 grp = ext4_get_group_info(sb, group);
919 e4b->bd_blkbits = sb->s_blocksize_bits;
920 e4b->bd_info = ext4_get_group_info(sb, group);
922 e4b->bd_group = group;
923 e4b->bd_buddy_page = NULL;
924 e4b->bd_bitmap_page = NULL;
925 e4b->alloc_semp = &grp->alloc_sem;
927 /* Take the read lock on the group alloc
928 * sem. This would make sure a parallel
929 * ext4_mb_init_group happening on other
930 * groups mapped by the page is blocked
931 * till we are done with allocation
933 down_read(e4b->alloc_semp);
936 * the buddy cache inode stores the block bitmap
937 * and buddy information in consecutive blocks.
938 * So for each group we need two blocks.
941 pnum = block / blocks_per_page;
942 poff = block % blocks_per_page;
944 /* we could use find_or_create_page(), but it locks page
945 * what we'd like to avoid in fast path ... */
946 page = find_get_page(inode->i_mapping, pnum);
947 if (page == NULL || !PageUptodate(page)) {
950 * drop the page reference and try
951 * to get the page with lock. If we
952 * are not uptodate that implies
953 * somebody just created the page but
954 * is yet to initialize the same. So
955 * wait for it to initialize.
957 page_cache_release(page);
958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
960 BUG_ON(page->mapping != inode->i_mapping);
961 if (!PageUptodate(page)) {
962 ret = ext4_mb_init_cache(page, NULL);
967 mb_cmp_bitmaps(e4b, page_address(page) +
968 (poff * sb->s_blocksize));
973 if (page == NULL || !PageUptodate(page)) {
977 e4b->bd_bitmap_page = page;
978 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
979 mark_page_accessed(page);
982 pnum = block / blocks_per_page;
983 poff = block % blocks_per_page;
985 page = find_get_page(inode->i_mapping, pnum);
986 if (page == NULL || !PageUptodate(page)) {
988 page_cache_release(page);
989 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 BUG_ON(page->mapping != inode->i_mapping);
992 if (!PageUptodate(page)) {
993 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1002 if (page == NULL || !PageUptodate(page)) {
1006 e4b->bd_buddy_page = page;
1007 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1008 mark_page_accessed(page);
1010 BUG_ON(e4b->bd_bitmap_page == NULL);
1011 BUG_ON(e4b->bd_buddy_page == NULL);
1016 if (e4b->bd_bitmap_page)
1017 page_cache_release(e4b->bd_bitmap_page);
1018 if (e4b->bd_buddy_page)
1019 page_cache_release(e4b->bd_buddy_page);
1020 e4b->bd_buddy = NULL;
1021 e4b->bd_bitmap = NULL;
1023 /* Done with the buddy cache */
1024 up_read(e4b->alloc_semp);
1028 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1030 if (e4b->bd_bitmap_page)
1031 page_cache_release(e4b->bd_bitmap_page);
1032 if (e4b->bd_buddy_page)
1033 page_cache_release(e4b->bd_buddy_page);
1034 /* Done with the buddy cache */
1035 up_read(e4b->alloc_semp);
1039 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1044 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1045 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1047 bb = EXT4_MB_BUDDY(e4b);
1048 while (order <= e4b->bd_blkbits + 1) {
1050 if (!mb_test_bit(block, bb)) {
1051 /* this block is part of buddy of order 'order' */
1054 bb += 1 << (e4b->bd_blkbits - order);
1060 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1066 if ((cur & 31) == 0 && (len - cur) >= 32) {
1067 /* fast path: clear whole word at once */
1068 addr = bm + (cur >> 3);
1074 mb_clear_bit_atomic(lock, cur, bm);
1076 mb_clear_bit(cur, bm);
1081 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1087 if ((cur & 31) == 0 && (len - cur) >= 32) {
1088 /* fast path: set whole word at once */
1089 addr = bm + (cur >> 3);
1095 mb_set_bit_atomic(lock, cur, bm);
1097 mb_set_bit(cur, bm);
1102 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1103 int first, int count)
1110 struct super_block *sb = e4b->bd_sb;
1112 BUG_ON(first + count > (sb->s_blocksize << 3));
1113 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1114 mb_check_buddy(e4b);
1115 mb_free_blocks_double(inode, e4b, first, count);
1117 e4b->bd_info->bb_free += count;
1118 if (first < e4b->bd_info->bb_first_free)
1119 e4b->bd_info->bb_first_free = first;
1121 /* let's maintain fragments counter */
1123 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1124 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1125 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1127 e4b->bd_info->bb_fragments--;
1128 else if (!block && !max)
1129 e4b->bd_info->bb_fragments++;
1131 /* let's maintain buddy itself */
1132 while (count-- > 0) {
1136 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1137 ext4_fsblk_t blocknr;
1138 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1141 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1142 ext4_grp_locked_error(sb, e4b->bd_group,
1143 __func__, "double-free of inode"
1144 " %lu's block %llu(bit %u in group %u)",
1145 inode ? inode->i_ino : 0, blocknr, block,
1148 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1149 e4b->bd_info->bb_counters[order]++;
1151 /* start of the buddy */
1152 buddy = mb_find_buddy(e4b, order, &max);
1156 if (mb_test_bit(block, buddy) ||
1157 mb_test_bit(block + 1, buddy))
1160 /* both the buddies are free, try to coalesce them */
1161 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1167 /* for special purposes, we don't set
1168 * free bits in bitmap */
1169 mb_set_bit(block, buddy);
1170 mb_set_bit(block + 1, buddy);
1172 e4b->bd_info->bb_counters[order]--;
1173 e4b->bd_info->bb_counters[order]--;
1177 e4b->bd_info->bb_counters[order]++;
1179 mb_clear_bit(block, buddy2);
1183 mb_check_buddy(e4b);
1186 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1187 int needed, struct ext4_free_extent *ex)
1194 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1197 buddy = mb_find_buddy(e4b, order, &max);
1198 BUG_ON(buddy == NULL);
1199 BUG_ON(block >= max);
1200 if (mb_test_bit(block, buddy)) {
1207 /* FIXME dorp order completely ? */
1208 if (likely(order == 0)) {
1209 /* find actual order */
1210 order = mb_find_order_for_block(e4b, block);
1211 block = block >> order;
1214 ex->fe_len = 1 << order;
1215 ex->fe_start = block << order;
1216 ex->fe_group = e4b->bd_group;
1218 /* calc difference from given start */
1219 next = next - ex->fe_start;
1221 ex->fe_start += next;
1223 while (needed > ex->fe_len &&
1224 (buddy = mb_find_buddy(e4b, order, &max))) {
1226 if (block + 1 >= max)
1229 next = (block + 1) * (1 << order);
1230 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1233 ord = mb_find_order_for_block(e4b, next);
1236 block = next >> order;
1237 ex->fe_len += 1 << order;
1240 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1244 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1250 int start = ex->fe_start;
1251 int len = ex->fe_len;
1256 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1257 BUG_ON(e4b->bd_group != ex->fe_group);
1258 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1259 mb_check_buddy(e4b);
1260 mb_mark_used_double(e4b, start, len);
1262 e4b->bd_info->bb_free -= len;
1263 if (e4b->bd_info->bb_first_free == start)
1264 e4b->bd_info->bb_first_free += len;
1266 /* let's maintain fragments counter */
1268 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1269 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1270 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1272 e4b->bd_info->bb_fragments++;
1273 else if (!mlen && !max)
1274 e4b->bd_info->bb_fragments--;
1276 /* let's maintain buddy itself */
1278 ord = mb_find_order_for_block(e4b, start);
1280 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1281 /* the whole chunk may be allocated at once! */
1283 buddy = mb_find_buddy(e4b, ord, &max);
1284 BUG_ON((start >> ord) >= max);
1285 mb_set_bit(start >> ord, buddy);
1286 e4b->bd_info->bb_counters[ord]--;
1293 /* store for history */
1295 ret = len | (ord << 16);
1297 /* we have to split large buddy */
1299 buddy = mb_find_buddy(e4b, ord, &max);
1300 mb_set_bit(start >> ord, buddy);
1301 e4b->bd_info->bb_counters[ord]--;
1304 cur = (start >> ord) & ~1U;
1305 buddy = mb_find_buddy(e4b, ord, &max);
1306 mb_clear_bit(cur, buddy);
1307 mb_clear_bit(cur + 1, buddy);
1308 e4b->bd_info->bb_counters[ord]++;
1309 e4b->bd_info->bb_counters[ord]++;
1312 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1313 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1314 mb_check_buddy(e4b);
1320 * Must be called under group lock!
1322 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1323 struct ext4_buddy *e4b)
1325 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1328 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1329 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1331 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1332 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1333 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1335 /* preallocation can change ac_b_ex, thus we store actually
1336 * allocated blocks for history */
1337 ac->ac_f_ex = ac->ac_b_ex;
1339 ac->ac_status = AC_STATUS_FOUND;
1340 ac->ac_tail = ret & 0xffff;
1341 ac->ac_buddy = ret >> 16;
1344 * take the page reference. We want the page to be pinned
1345 * so that we don't get a ext4_mb_init_cache_call for this
1346 * group until we update the bitmap. That would mean we
1347 * double allocate blocks. The reference is dropped
1348 * in ext4_mb_release_context
1350 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1351 get_page(ac->ac_bitmap_page);
1352 ac->ac_buddy_page = e4b->bd_buddy_page;
1353 get_page(ac->ac_buddy_page);
1355 /* store last allocated for subsequent stream allocation */
1356 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1357 spin_lock(&sbi->s_md_lock);
1358 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1359 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1360 spin_unlock(&sbi->s_md_lock);
1365 * regular allocator, for general purposes allocation
1368 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1369 struct ext4_buddy *e4b,
1372 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1373 struct ext4_free_extent *bex = &ac->ac_b_ex;
1374 struct ext4_free_extent *gex = &ac->ac_g_ex;
1375 struct ext4_free_extent ex;
1378 if (ac->ac_status == AC_STATUS_FOUND)
1381 * We don't want to scan for a whole year
1383 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1384 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1385 ac->ac_status = AC_STATUS_BREAK;
1390 * Haven't found good chunk so far, let's continue
1392 if (bex->fe_len < gex->fe_len)
1395 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1396 && bex->fe_group == e4b->bd_group) {
1397 /* recheck chunk's availability - we don't know
1398 * when it was found (within this lock-unlock
1400 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1401 if (max >= gex->fe_len) {
1402 ext4_mb_use_best_found(ac, e4b);
1409 * The routine checks whether found extent is good enough. If it is,
1410 * then the extent gets marked used and flag is set to the context
1411 * to stop scanning. Otherwise, the extent is compared with the
1412 * previous found extent and if new one is better, then it's stored
1413 * in the context. Later, the best found extent will be used, if
1414 * mballoc can't find good enough extent.
1416 * FIXME: real allocation policy is to be designed yet!
1418 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1419 struct ext4_free_extent *ex,
1420 struct ext4_buddy *e4b)
1422 struct ext4_free_extent *bex = &ac->ac_b_ex;
1423 struct ext4_free_extent *gex = &ac->ac_g_ex;
1425 BUG_ON(ex->fe_len <= 0);
1426 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1427 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1428 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1433 * The special case - take what you catch first
1435 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1437 ext4_mb_use_best_found(ac, e4b);
1442 * Let's check whether the chuck is good enough
1444 if (ex->fe_len == gex->fe_len) {
1446 ext4_mb_use_best_found(ac, e4b);
1451 * If this is first found extent, just store it in the context
1453 if (bex->fe_len == 0) {
1459 * If new found extent is better, store it in the context
1461 if (bex->fe_len < gex->fe_len) {
1462 /* if the request isn't satisfied, any found extent
1463 * larger than previous best one is better */
1464 if (ex->fe_len > bex->fe_len)
1466 } else if (ex->fe_len > gex->fe_len) {
1467 /* if the request is satisfied, then we try to find
1468 * an extent that still satisfy the request, but is
1469 * smaller than previous one */
1470 if (ex->fe_len < bex->fe_len)
1474 ext4_mb_check_limits(ac, e4b, 0);
1477 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1478 struct ext4_buddy *e4b)
1480 struct ext4_free_extent ex = ac->ac_b_ex;
1481 ext4_group_t group = ex.fe_group;
1485 BUG_ON(ex.fe_len <= 0);
1486 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1490 ext4_lock_group(ac->ac_sb, group);
1491 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1495 ext4_mb_use_best_found(ac, e4b);
1498 ext4_unlock_group(ac->ac_sb, group);
1499 ext4_mb_release_desc(e4b);
1504 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1505 struct ext4_buddy *e4b)
1507 ext4_group_t group = ac->ac_g_ex.fe_group;
1510 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1511 struct ext4_super_block *es = sbi->s_es;
1512 struct ext4_free_extent ex;
1514 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1517 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1521 ext4_lock_group(ac->ac_sb, group);
1522 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1523 ac->ac_g_ex.fe_len, &ex);
1525 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1528 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1529 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1530 /* use do_div to get remainder (would be 64-bit modulo) */
1531 if (do_div(start, sbi->s_stripe) == 0) {
1534 ext4_mb_use_best_found(ac, e4b);
1536 } else if (max >= ac->ac_g_ex.fe_len) {
1537 BUG_ON(ex.fe_len <= 0);
1538 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1539 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1542 ext4_mb_use_best_found(ac, e4b);
1543 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1544 /* Sometimes, caller may want to merge even small
1545 * number of blocks to an existing extent */
1546 BUG_ON(ex.fe_len <= 0);
1547 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1548 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1551 ext4_mb_use_best_found(ac, e4b);
1553 ext4_unlock_group(ac->ac_sb, group);
1554 ext4_mb_release_desc(e4b);
1560 * The routine scans buddy structures (not bitmap!) from given order
1561 * to max order and tries to find big enough chunk to satisfy the req
1563 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1564 struct ext4_buddy *e4b)
1566 struct super_block *sb = ac->ac_sb;
1567 struct ext4_group_info *grp = e4b->bd_info;
1573 BUG_ON(ac->ac_2order <= 0);
1574 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1575 if (grp->bb_counters[i] == 0)
1578 buddy = mb_find_buddy(e4b, i, &max);
1579 BUG_ON(buddy == NULL);
1581 k = mb_find_next_zero_bit(buddy, max, 0);
1586 ac->ac_b_ex.fe_len = 1 << i;
1587 ac->ac_b_ex.fe_start = k << i;
1588 ac->ac_b_ex.fe_group = e4b->bd_group;
1590 ext4_mb_use_best_found(ac, e4b);
1592 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1594 if (EXT4_SB(sb)->s_mb_stats)
1595 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1602 * The routine scans the group and measures all found extents.
1603 * In order to optimize scanning, caller must pass number of
1604 * free blocks in the group, so the routine can know upper limit.
1606 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1607 struct ext4_buddy *e4b)
1609 struct super_block *sb = ac->ac_sb;
1610 void *bitmap = EXT4_MB_BITMAP(e4b);
1611 struct ext4_free_extent ex;
1615 free = e4b->bd_info->bb_free;
1618 i = e4b->bd_info->bb_first_free;
1620 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1621 i = mb_find_next_zero_bit(bitmap,
1622 EXT4_BLOCKS_PER_GROUP(sb), i);
1623 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1625 * IF we have corrupt bitmap, we won't find any
1626 * free blocks even though group info says we
1627 * we have free blocks
1629 ext4_grp_locked_error(sb, e4b->bd_group,
1630 __func__, "%d free blocks as per "
1631 "group info. But bitmap says 0",
1636 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1637 BUG_ON(ex.fe_len <= 0);
1638 if (free < ex.fe_len) {
1639 ext4_grp_locked_error(sb, e4b->bd_group,
1640 __func__, "%d free blocks as per "
1641 "group info. But got %d blocks",
1644 * The number of free blocks differs. This mostly
1645 * indicate that the bitmap is corrupt. So exit
1646 * without claiming the space.
1651 ext4_mb_measure_extent(ac, &ex, e4b);
1657 ext4_mb_check_limits(ac, e4b, 1);
1661 * This is a special case for storages like raid5
1662 * we try to find stripe-aligned chunks for stripe-size requests
1663 * XXX should do so at least for multiples of stripe size as well
1665 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1666 struct ext4_buddy *e4b)
1668 struct super_block *sb = ac->ac_sb;
1669 struct ext4_sb_info *sbi = EXT4_SB(sb);
1670 void *bitmap = EXT4_MB_BITMAP(e4b);
1671 struct ext4_free_extent ex;
1672 ext4_fsblk_t first_group_block;
1677 BUG_ON(sbi->s_stripe == 0);
1679 /* find first stripe-aligned block in group */
1680 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1681 + le32_to_cpu(sbi->s_es->s_first_data_block);
1682 a = first_group_block + sbi->s_stripe - 1;
1683 do_div(a, sbi->s_stripe);
1684 i = (a * sbi->s_stripe) - first_group_block;
1686 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1687 if (!mb_test_bit(i, bitmap)) {
1688 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1689 if (max >= sbi->s_stripe) {
1692 ext4_mb_use_best_found(ac, e4b);
1700 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1701 ext4_group_t group, int cr)
1703 unsigned free, fragments;
1705 struct ext4_group_desc *desc;
1706 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1708 BUG_ON(cr < 0 || cr >= 4);
1709 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1711 free = grp->bb_free;
1712 fragments = grp->bb_fragments;
1720 BUG_ON(ac->ac_2order == 0);
1721 /* If this group is uninitialized, skip it initially */
1722 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1723 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1726 bits = ac->ac_sb->s_blocksize_bits + 1;
1727 for (i = ac->ac_2order; i <= bits; i++)
1728 if (grp->bb_counters[i] > 0)
1732 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1736 if (free >= ac->ac_g_ex.fe_len)
1749 * lock the group_info alloc_sem of all the groups
1750 * belonging to the same buddy cache page. This
1751 * make sure other parallel operation on the buddy
1752 * cache doesn't happen whild holding the buddy cache
1755 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1759 int blocks_per_page;
1760 int groups_per_page;
1761 ext4_group_t first_group;
1762 struct ext4_group_info *grp;
1764 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1766 * the buddy cache inode stores the block bitmap
1767 * and buddy information in consecutive blocks.
1768 * So for each group we need two blocks.
1771 pnum = block / blocks_per_page;
1772 first_group = pnum * blocks_per_page / 2;
1774 groups_per_page = blocks_per_page >> 1;
1775 if (groups_per_page == 0)
1776 groups_per_page = 1;
1777 /* read all groups the page covers into the cache */
1778 for (i = 0; i < groups_per_page; i++) {
1780 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1782 grp = ext4_get_group_info(sb, first_group + i);
1783 /* take all groups write allocation
1784 * semaphore. This make sure there is
1785 * no block allocation going on in any
1788 down_write_nested(&grp->alloc_sem, i);
1793 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1794 ext4_group_t group, int locked_group)
1798 int blocks_per_page;
1799 ext4_group_t first_group;
1800 struct ext4_group_info *grp;
1802 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1804 * the buddy cache inode stores the block bitmap
1805 * and buddy information in consecutive blocks.
1806 * So for each group we need two blocks.
1809 pnum = block / blocks_per_page;
1810 first_group = pnum * blocks_per_page / 2;
1811 /* release locks on all the groups */
1812 for (i = 0; i < locked_group; i++) {
1814 grp = ext4_get_group_info(sb, first_group + i);
1815 /* take all groups write allocation
1816 * semaphore. This make sure there is
1817 * no block allocation going on in any
1820 up_write(&grp->alloc_sem);
1825 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1830 int blocks_per_page;
1831 int block, pnum, poff;
1832 int num_grp_locked = 0;
1833 struct ext4_group_info *this_grp;
1834 struct ext4_sb_info *sbi = EXT4_SB(sb);
1835 struct inode *inode = sbi->s_buddy_cache;
1836 struct page *page = NULL, *bitmap_page = NULL;
1838 mb_debug("init group %lu\n", group);
1839 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1840 this_grp = ext4_get_group_info(sb, group);
1842 * This ensures we don't add group
1843 * to this buddy cache via resize
1845 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1846 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1848 * somebody initialized the group
1849 * return without doing anything
1855 * the buddy cache inode stores the block bitmap
1856 * and buddy information in consecutive blocks.
1857 * So for each group we need two blocks.
1860 pnum = block / blocks_per_page;
1861 poff = block % blocks_per_page;
1862 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1864 BUG_ON(page->mapping != inode->i_mapping);
1865 ret = ext4_mb_init_cache(page, NULL);
1872 if (page == NULL || !PageUptodate(page)) {
1876 mark_page_accessed(page);
1878 bitmap = page_address(page) + (poff * sb->s_blocksize);
1880 /* init buddy cache */
1882 pnum = block / blocks_per_page;
1883 poff = block % blocks_per_page;
1884 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1885 if (page == bitmap_page) {
1887 * If both the bitmap and buddy are in
1888 * the same page we don't need to force
1893 BUG_ON(page->mapping != inode->i_mapping);
1894 ret = ext4_mb_init_cache(page, bitmap);
1901 if (page == NULL || !PageUptodate(page)) {
1905 mark_page_accessed(page);
1907 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1909 page_cache_release(bitmap_page);
1911 page_cache_release(page);
1915 static noinline_for_stack int
1916 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1923 struct ext4_sb_info *sbi;
1924 struct super_block *sb;
1925 struct ext4_buddy e4b;
1930 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1932 /* first, try the goal */
1933 err = ext4_mb_find_by_goal(ac, &e4b);
1934 if (err || ac->ac_status == AC_STATUS_FOUND)
1937 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1941 * ac->ac2_order is set only if the fe_len is a power of 2
1942 * if ac2_order is set we also set criteria to 0 so that we
1943 * try exact allocation using buddy.
1945 i = fls(ac->ac_g_ex.fe_len);
1948 * We search using buddy data only if the order of the request
1949 * is greater than equal to the sbi_s_mb_order2_reqs
1950 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1952 if (i >= sbi->s_mb_order2_reqs) {
1954 * This should tell if fe_len is exactly power of 2
1956 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1957 ac->ac_2order = i - 1;
1960 bsbits = ac->ac_sb->s_blocksize_bits;
1961 /* if stream allocation is enabled, use global goal */
1962 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1963 isize = i_size_read(ac->ac_inode) >> bsbits;
1967 if (size < sbi->s_mb_stream_request &&
1968 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1969 /* TBD: may be hot point */
1970 spin_lock(&sbi->s_md_lock);
1971 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1972 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1973 spin_unlock(&sbi->s_md_lock);
1975 /* Let's just scan groups to find more-less suitable blocks */
1976 cr = ac->ac_2order ? 0 : 1;
1978 * cr == 0 try to get exact allocation,
1979 * cr == 3 try to get anything
1982 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1983 ac->ac_criteria = cr;
1985 * searching for the right group start
1986 * from the goal value specified
1988 group = ac->ac_g_ex.fe_group;
1990 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1991 struct ext4_group_info *grp;
1992 struct ext4_group_desc *desc;
1994 if (group == EXT4_SB(sb)->s_groups_count)
1997 /* quick check to skip empty groups */
1998 grp = ext4_get_group_info(sb, group);
1999 if (grp->bb_free == 0)
2003 * if the group is already init we check whether it is
2004 * a good group and if not we don't load the buddy
2006 if (EXT4_MB_GRP_NEED_INIT(grp)) {
2008 * we need full data about the group
2009 * to make a good selection
2011 err = ext4_mb_init_group(sb, group);
2017 * If the particular group doesn't satisfy our
2018 * criteria we continue with the next group
2020 if (!ext4_mb_good_group(ac, group, cr))
2023 err = ext4_mb_load_buddy(sb, group, &e4b);
2027 ext4_lock_group(sb, group);
2028 if (!ext4_mb_good_group(ac, group, cr)) {
2029 /* someone did allocation from this group */
2030 ext4_unlock_group(sb, group);
2031 ext4_mb_release_desc(&e4b);
2035 ac->ac_groups_scanned++;
2036 desc = ext4_get_group_desc(sb, group, NULL);
2037 if (cr == 0 || (desc->bg_flags &
2038 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2039 ac->ac_2order != 0))
2040 ext4_mb_simple_scan_group(ac, &e4b);
2042 ac->ac_g_ex.fe_len == sbi->s_stripe)
2043 ext4_mb_scan_aligned(ac, &e4b);
2045 ext4_mb_complex_scan_group(ac, &e4b);
2047 ext4_unlock_group(sb, group);
2048 ext4_mb_release_desc(&e4b);
2050 if (ac->ac_status != AC_STATUS_CONTINUE)
2055 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2056 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2058 * We've been searching too long. Let's try to allocate
2059 * the best chunk we've found so far
2062 ext4_mb_try_best_found(ac, &e4b);
2063 if (ac->ac_status != AC_STATUS_FOUND) {
2065 * Someone more lucky has already allocated it.
2066 * The only thing we can do is just take first
2068 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2070 ac->ac_b_ex.fe_group = 0;
2071 ac->ac_b_ex.fe_start = 0;
2072 ac->ac_b_ex.fe_len = 0;
2073 ac->ac_status = AC_STATUS_CONTINUE;
2074 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2076 atomic_inc(&sbi->s_mb_lost_chunks);
2084 #ifdef EXT4_MB_HISTORY
2085 struct ext4_mb_proc_session {
2086 struct ext4_mb_history *history;
2087 struct super_block *sb;
2092 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2093 struct ext4_mb_history *hs,
2096 if (hs == s->history + s->max)
2098 if (!first && hs == s->history + s->start)
2100 while (hs->orig.fe_len == 0) {
2102 if (hs == s->history + s->max)
2104 if (hs == s->history + s->start)
2110 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2112 struct ext4_mb_proc_session *s = seq->private;
2113 struct ext4_mb_history *hs;
2117 return SEQ_START_TOKEN;
2118 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2121 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2125 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2128 struct ext4_mb_proc_session *s = seq->private;
2129 struct ext4_mb_history *hs = v;
2132 if (v == SEQ_START_TOKEN)
2133 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2135 return ext4_mb_history_skip_empty(s, ++hs, 0);
2138 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2140 char buf[25], buf2[25], buf3[25], *fmt;
2141 struct ext4_mb_history *hs = v;
2143 if (v == SEQ_START_TOKEN) {
2144 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2145 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2146 "pid", "inode", "original", "goal", "result", "found",
2147 "grps", "cr", "flags", "merge", "tail", "broken");
2151 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2152 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2153 "%-5u %-5s %-5u %-6u\n";
2154 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2155 hs->result.fe_start, hs->result.fe_len,
2156 hs->result.fe_logical);
2157 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2158 hs->orig.fe_start, hs->orig.fe_len,
2159 hs->orig.fe_logical);
2160 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2161 hs->goal.fe_start, hs->goal.fe_len,
2162 hs->goal.fe_logical);
2163 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2164 hs->found, hs->groups, hs->cr, hs->flags,
2165 hs->merged ? "M" : "", hs->tail,
2166 hs->buddy ? 1 << hs->buddy : 0);
2167 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2168 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2169 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2170 hs->result.fe_start, hs->result.fe_len,
2171 hs->result.fe_logical);
2172 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2173 hs->orig.fe_start, hs->orig.fe_len,
2174 hs->orig.fe_logical);
2175 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2176 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2177 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2178 hs->result.fe_start, hs->result.fe_len);
2179 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2180 hs->pid, hs->ino, buf2);
2181 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2182 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2183 hs->result.fe_start, hs->result.fe_len);
2184 seq_printf(seq, "%-5u %-8u %-23s free\n",
2185 hs->pid, hs->ino, buf2);
2190 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2194 static struct seq_operations ext4_mb_seq_history_ops = {
2195 .start = ext4_mb_seq_history_start,
2196 .next = ext4_mb_seq_history_next,
2197 .stop = ext4_mb_seq_history_stop,
2198 .show = ext4_mb_seq_history_show,
2201 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2203 struct super_block *sb = PDE(inode)->data;
2204 struct ext4_sb_info *sbi = EXT4_SB(sb);
2205 struct ext4_mb_proc_session *s;
2209 if (unlikely(sbi->s_mb_history == NULL))
2211 s = kmalloc(sizeof(*s), GFP_KERNEL);
2215 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2216 s->history = kmalloc(size, GFP_KERNEL);
2217 if (s->history == NULL) {
2222 spin_lock(&sbi->s_mb_history_lock);
2223 memcpy(s->history, sbi->s_mb_history, size);
2224 s->max = sbi->s_mb_history_max;
2225 s->start = sbi->s_mb_history_cur % s->max;
2226 spin_unlock(&sbi->s_mb_history_lock);
2228 rc = seq_open(file, &ext4_mb_seq_history_ops);
2230 struct seq_file *m = (struct seq_file *)file->private_data;
2240 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2242 struct seq_file *seq = (struct seq_file *)file->private_data;
2243 struct ext4_mb_proc_session *s = seq->private;
2246 return seq_release(inode, file);
2249 static ssize_t ext4_mb_seq_history_write(struct file *file,
2250 const char __user *buffer,
2251 size_t count, loff_t *ppos)
2253 struct seq_file *seq = (struct seq_file *)file->private_data;
2254 struct ext4_mb_proc_session *s = seq->private;
2255 struct super_block *sb = s->sb;
2259 if (count >= sizeof(str)) {
2260 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2261 "mb_history", (int)sizeof(str));
2265 if (copy_from_user(str, buffer, count))
2268 value = simple_strtol(str, NULL, 0);
2271 EXT4_SB(sb)->s_mb_history_filter = value;
2276 static struct file_operations ext4_mb_seq_history_fops = {
2277 .owner = THIS_MODULE,
2278 .open = ext4_mb_seq_history_open,
2280 .write = ext4_mb_seq_history_write,
2281 .llseek = seq_lseek,
2282 .release = ext4_mb_seq_history_release,
2285 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2287 struct super_block *sb = seq->private;
2288 struct ext4_sb_info *sbi = EXT4_SB(sb);
2291 if (*pos < 0 || *pos >= sbi->s_groups_count)
2295 return (void *) ((unsigned long) group);
2298 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2300 struct super_block *sb = seq->private;
2301 struct ext4_sb_info *sbi = EXT4_SB(sb);
2305 if (*pos < 0 || *pos >= sbi->s_groups_count)
2308 return (void *) ((unsigned long) group);
2311 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2313 struct super_block *sb = seq->private;
2314 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2317 struct ext4_buddy e4b;
2319 struct ext4_group_info info;
2320 unsigned short counters[16];
2325 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2326 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2327 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2328 "group", "free", "frags", "first",
2329 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2330 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2332 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2333 sizeof(struct ext4_group_info);
2334 err = ext4_mb_load_buddy(sb, group, &e4b);
2336 seq_printf(seq, "#%-5u: I/O error\n", group);
2339 ext4_lock_group(sb, group);
2340 memcpy(&sg, ext4_get_group_info(sb, group), i);
2341 ext4_unlock_group(sb, group);
2342 ext4_mb_release_desc(&e4b);
2344 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2345 sg.info.bb_fragments, sg.info.bb_first_free);
2346 for (i = 0; i <= 13; i++)
2347 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2348 sg.info.bb_counters[i] : 0);
2349 seq_printf(seq, " ]\n");
2354 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2358 static struct seq_operations ext4_mb_seq_groups_ops = {
2359 .start = ext4_mb_seq_groups_start,
2360 .next = ext4_mb_seq_groups_next,
2361 .stop = ext4_mb_seq_groups_stop,
2362 .show = ext4_mb_seq_groups_show,
2365 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2367 struct super_block *sb = PDE(inode)->data;
2370 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2372 struct seq_file *m = (struct seq_file *)file->private_data;
2379 static struct file_operations ext4_mb_seq_groups_fops = {
2380 .owner = THIS_MODULE,
2381 .open = ext4_mb_seq_groups_open,
2383 .llseek = seq_lseek,
2384 .release = seq_release,
2387 static void ext4_mb_history_release(struct super_block *sb)
2389 struct ext4_sb_info *sbi = EXT4_SB(sb);
2391 if (sbi->s_proc != NULL) {
2392 remove_proc_entry("mb_groups", sbi->s_proc);
2393 remove_proc_entry("mb_history", sbi->s_proc);
2395 kfree(sbi->s_mb_history);
2398 static void ext4_mb_history_init(struct super_block *sb)
2400 struct ext4_sb_info *sbi = EXT4_SB(sb);
2403 if (sbi->s_proc != NULL) {
2404 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2405 &ext4_mb_seq_history_fops, sb);
2406 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2407 &ext4_mb_seq_groups_fops, sb);
2410 sbi->s_mb_history_max = 1000;
2411 sbi->s_mb_history_cur = 0;
2412 spin_lock_init(&sbi->s_mb_history_lock);
2413 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2414 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2415 /* if we can't allocate history, then we simple won't use it */
2418 static noinline_for_stack void
2419 ext4_mb_store_history(struct ext4_allocation_context *ac)
2421 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2422 struct ext4_mb_history h;
2424 if (unlikely(sbi->s_mb_history == NULL))
2427 if (!(ac->ac_op & sbi->s_mb_history_filter))
2431 h.pid = current->pid;
2432 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2433 h.orig = ac->ac_o_ex;
2434 h.result = ac->ac_b_ex;
2435 h.flags = ac->ac_flags;
2436 h.found = ac->ac_found;
2437 h.groups = ac->ac_groups_scanned;
2438 h.cr = ac->ac_criteria;
2439 h.tail = ac->ac_tail;
2440 h.buddy = ac->ac_buddy;
2442 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2443 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2444 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2446 h.goal = ac->ac_g_ex;
2447 h.result = ac->ac_f_ex;
2450 spin_lock(&sbi->s_mb_history_lock);
2451 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2452 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2453 sbi->s_mb_history_cur = 0;
2454 spin_unlock(&sbi->s_mb_history_lock);
2458 #define ext4_mb_history_release(sb)
2459 #define ext4_mb_history_init(sb)
2463 /* Create and initialize ext4_group_info data for the given group. */
2464 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2465 struct ext4_group_desc *desc)
2469 struct ext4_sb_info *sbi = EXT4_SB(sb);
2470 struct ext4_group_info **meta_group_info;
2473 * First check if this group is the first of a reserved block.
2474 * If it's true, we have to allocate a new table of pointers
2475 * to ext4_group_info structures
2477 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2478 metalen = sizeof(*meta_group_info) <<
2479 EXT4_DESC_PER_BLOCK_BITS(sb);
2480 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2481 if (meta_group_info == NULL) {
2482 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2484 goto exit_meta_group_info;
2486 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2491 * calculate needed size. if change bb_counters size,
2492 * don't forget about ext4_mb_generate_buddy()
2494 len = offsetof(typeof(**meta_group_info),
2495 bb_counters[sb->s_blocksize_bits + 2]);
2498 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2499 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2501 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2502 if (meta_group_info[i] == NULL) {
2503 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2504 goto exit_group_info;
2506 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2507 &(meta_group_info[i]->bb_state));
2510 * initialize bb_free to be able to skip
2511 * empty groups without initialization
2513 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2514 meta_group_info[i]->bb_free =
2515 ext4_free_blocks_after_init(sb, group, desc);
2517 meta_group_info[i]->bb_free =
2518 ext4_free_blks_count(sb, desc);
2521 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2522 init_rwsem(&meta_group_info[i]->alloc_sem);
2523 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2527 struct buffer_head *bh;
2528 meta_group_info[i]->bb_bitmap =
2529 kmalloc(sb->s_blocksize, GFP_KERNEL);
2530 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2531 bh = ext4_read_block_bitmap(sb, group);
2533 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2542 /* If a meta_group_info table has been allocated, release it now */
2543 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2544 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2545 exit_meta_group_info:
2547 } /* ext4_mb_add_groupinfo */
2550 * Update an existing group.
2551 * This function is used for online resize
2553 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2555 grp->bb_free += add;
2558 static int ext4_mb_init_backend(struct super_block *sb)
2562 struct ext4_sb_info *sbi = EXT4_SB(sb);
2563 struct ext4_super_block *es = sbi->s_es;
2564 int num_meta_group_infos;
2565 int num_meta_group_infos_max;
2567 struct ext4_group_info **meta_group_info;
2568 struct ext4_group_desc *desc;
2570 /* This is the number of blocks used by GDT */
2571 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2572 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2575 * This is the total number of blocks used by GDT including
2576 * the number of reserved blocks for GDT.
2577 * The s_group_info array is allocated with this value
2578 * to allow a clean online resize without a complex
2579 * manipulation of pointer.
2580 * The drawback is the unused memory when no resize
2581 * occurs but it's very low in terms of pages
2582 * (see comments below)
2583 * Need to handle this properly when META_BG resizing is allowed
2585 num_meta_group_infos_max = num_meta_group_infos +
2586 le16_to_cpu(es->s_reserved_gdt_blocks);
2589 * array_size is the size of s_group_info array. We round it
2590 * to the next power of two because this approximation is done
2591 * internally by kmalloc so we can have some more memory
2592 * for free here (e.g. may be used for META_BG resize).
2595 while (array_size < sizeof(*sbi->s_group_info) *
2596 num_meta_group_infos_max)
2597 array_size = array_size << 1;
2598 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2599 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2600 * So a two level scheme suffices for now. */
2601 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2602 if (sbi->s_group_info == NULL) {
2603 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2606 sbi->s_buddy_cache = new_inode(sb);
2607 if (sbi->s_buddy_cache == NULL) {
2608 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2611 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2613 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2614 for (i = 0; i < num_meta_group_infos; i++) {
2615 if ((i + 1) == num_meta_group_infos)
2616 metalen = sizeof(*meta_group_info) *
2617 (sbi->s_groups_count -
2618 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2619 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2620 if (meta_group_info == NULL) {
2621 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2625 sbi->s_group_info[i] = meta_group_info;
2628 for (i = 0; i < sbi->s_groups_count; i++) {
2629 desc = ext4_get_group_desc(sb, i, NULL);
2632 "EXT4-fs: can't read descriptor %u\n", i);
2635 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2643 kfree(ext4_get_group_info(sb, i));
2644 i = num_meta_group_infos;
2647 kfree(sbi->s_group_info[i]);
2648 iput(sbi->s_buddy_cache);
2650 kfree(sbi->s_group_info);
2654 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2656 struct ext4_sb_info *sbi = EXT4_SB(sb);
2662 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2664 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2665 if (sbi->s_mb_offsets == NULL) {
2669 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2670 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2671 if (sbi->s_mb_maxs == NULL) {
2672 kfree(sbi->s_mb_maxs);
2676 /* order 0 is regular bitmap */
2677 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2678 sbi->s_mb_offsets[0] = 0;
2682 max = sb->s_blocksize << 2;
2684 sbi->s_mb_offsets[i] = offset;
2685 sbi->s_mb_maxs[i] = max;
2686 offset += 1 << (sb->s_blocksize_bits - i);
2689 } while (i <= sb->s_blocksize_bits + 1);
2691 /* init file for buddy data */
2692 ret = ext4_mb_init_backend(sb);
2694 kfree(sbi->s_mb_offsets);
2695 kfree(sbi->s_mb_maxs);
2699 spin_lock_init(&sbi->s_md_lock);
2700 spin_lock_init(&sbi->s_bal_lock);
2702 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2703 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2704 sbi->s_mb_stats = MB_DEFAULT_STATS;
2705 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2706 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2707 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2708 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2710 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2711 if (sbi->s_locality_groups == NULL) {
2712 kfree(sbi->s_mb_offsets);
2713 kfree(sbi->s_mb_maxs);
2716 for_each_possible_cpu(i) {
2717 struct ext4_locality_group *lg;
2718 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2719 mutex_init(&lg->lg_mutex);
2720 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2721 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2722 spin_lock_init(&lg->lg_prealloc_lock);
2725 ext4_mb_init_per_dev_proc(sb);
2726 ext4_mb_history_init(sb);
2729 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2731 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2735 /* need to called with ext4 group lock (ext4_lock_group) */
2736 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2738 struct ext4_prealloc_space *pa;
2739 struct list_head *cur, *tmp;
2742 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2743 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2744 list_del(&pa->pa_group_list);
2746 kmem_cache_free(ext4_pspace_cachep, pa);
2749 mb_debug("mballoc: %u PAs left\n", count);
2753 int ext4_mb_release(struct super_block *sb)
2756 int num_meta_group_infos;
2757 struct ext4_group_info *grinfo;
2758 struct ext4_sb_info *sbi = EXT4_SB(sb);
2760 if (sbi->s_group_info) {
2761 for (i = 0; i < sbi->s_groups_count; i++) {
2762 grinfo = ext4_get_group_info(sb, i);
2764 kfree(grinfo->bb_bitmap);
2766 ext4_lock_group(sb, i);
2767 ext4_mb_cleanup_pa(grinfo);
2768 ext4_unlock_group(sb, i);
2771 num_meta_group_infos = (sbi->s_groups_count +
2772 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2773 EXT4_DESC_PER_BLOCK_BITS(sb);
2774 for (i = 0; i < num_meta_group_infos; i++)
2775 kfree(sbi->s_group_info[i]);
2776 kfree(sbi->s_group_info);
2778 kfree(sbi->s_mb_offsets);
2779 kfree(sbi->s_mb_maxs);
2780 if (sbi->s_buddy_cache)
2781 iput(sbi->s_buddy_cache);
2782 if (sbi->s_mb_stats) {
2784 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2785 atomic_read(&sbi->s_bal_allocated),
2786 atomic_read(&sbi->s_bal_reqs),
2787 atomic_read(&sbi->s_bal_success));
2789 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2790 "%u 2^N hits, %u breaks, %u lost\n",
2791 atomic_read(&sbi->s_bal_ex_scanned),
2792 atomic_read(&sbi->s_bal_goals),
2793 atomic_read(&sbi->s_bal_2orders),
2794 atomic_read(&sbi->s_bal_breaks),
2795 atomic_read(&sbi->s_mb_lost_chunks));
2797 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2798 sbi->s_mb_buddies_generated++,
2799 sbi->s_mb_generation_time);
2801 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2802 atomic_read(&sbi->s_mb_preallocated),
2803 atomic_read(&sbi->s_mb_discarded));
2806 free_percpu(sbi->s_locality_groups);
2807 ext4_mb_history_release(sb);
2808 ext4_mb_destroy_per_dev_proc(sb);
2814 * This function is called by the jbd2 layer once the commit has finished,
2815 * so we know we can free the blocks that were released with that commit.
2817 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2819 struct super_block *sb = journal->j_private;
2820 struct ext4_buddy e4b;
2821 struct ext4_group_info *db;
2822 int err, count = 0, count2 = 0;
2823 struct ext4_free_data *entry;
2824 ext4_fsblk_t discard_block;
2825 struct list_head *l, *ltmp;
2827 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2828 entry = list_entry(l, struct ext4_free_data, list);
2830 mb_debug("gonna free %u blocks in group %u (0x%p):",
2831 entry->count, entry->group, entry);
2833 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2834 /* we expect to find existing buddy because it's pinned */
2838 /* there are blocks to put in buddy to make them really free */
2839 count += entry->count;
2841 ext4_lock_group(sb, entry->group);
2842 /* Take it out of per group rb tree */
2843 rb_erase(&entry->node, &(db->bb_free_root));
2844 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2846 if (!db->bb_free_root.rb_node) {
2847 /* No more items in the per group rb tree
2848 * balance refcounts from ext4_mb_free_metadata()
2850 page_cache_release(e4b.bd_buddy_page);
2851 page_cache_release(e4b.bd_bitmap_page);
2853 ext4_unlock_group(sb, entry->group);
2854 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2856 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2857 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", sb->s_id,
2858 (unsigned long long) discard_block, entry->count);
2859 sb_issue_discard(sb, discard_block, entry->count);
2861 kmem_cache_free(ext4_free_ext_cachep, entry);
2862 ext4_mb_release_desc(&e4b);
2865 mb_debug("freed %u blocks in %u structures\n", count, count2);
2868 #define EXT4_MB_STATS_NAME "stats"
2869 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2870 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2871 #define EXT4_MB_ORDER2_REQ "order2_req"
2872 #define EXT4_MB_STREAM_REQ "stream_req"
2873 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2875 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2877 #ifdef CONFIG_PROC_FS
2878 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2879 struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 struct proc_dir_entry *proc;
2882 if (sbi->s_proc == NULL)
2885 EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2886 EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2887 EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2888 EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2889 EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2890 EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2894 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2895 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2896 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2897 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2898 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2899 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2906 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2908 #ifdef CONFIG_PROC_FS
2909 struct ext4_sb_info *sbi = EXT4_SB(sb);
2911 if (sbi->s_proc == NULL)
2914 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2915 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2916 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2917 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2918 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2919 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2924 int __init init_ext4_mballoc(void)
2926 ext4_pspace_cachep =
2927 kmem_cache_create("ext4_prealloc_space",
2928 sizeof(struct ext4_prealloc_space),
2929 0, SLAB_RECLAIM_ACCOUNT, NULL);
2930 if (ext4_pspace_cachep == NULL)
2934 kmem_cache_create("ext4_alloc_context",
2935 sizeof(struct ext4_allocation_context),
2936 0, SLAB_RECLAIM_ACCOUNT, NULL);
2937 if (ext4_ac_cachep == NULL) {
2938 kmem_cache_destroy(ext4_pspace_cachep);
2942 ext4_free_ext_cachep =
2943 kmem_cache_create("ext4_free_block_extents",
2944 sizeof(struct ext4_free_data),
2945 0, SLAB_RECLAIM_ACCOUNT, NULL);
2946 if (ext4_free_ext_cachep == NULL) {
2947 kmem_cache_destroy(ext4_pspace_cachep);
2948 kmem_cache_destroy(ext4_ac_cachep);
2954 void exit_ext4_mballoc(void)
2956 /* XXX: synchronize_rcu(); */
2957 kmem_cache_destroy(ext4_pspace_cachep);
2958 kmem_cache_destroy(ext4_ac_cachep);
2959 kmem_cache_destroy(ext4_free_ext_cachep);
2964 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2965 * Returns 0 if success or error code
2967 static noinline_for_stack int
2968 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2969 handle_t *handle, unsigned int reserv_blks)
2971 struct buffer_head *bitmap_bh = NULL;
2972 struct ext4_super_block *es;
2973 struct ext4_group_desc *gdp;
2974 struct buffer_head *gdp_bh;
2975 struct ext4_sb_info *sbi;
2976 struct super_block *sb;
2980 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2981 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2989 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2993 err = ext4_journal_get_write_access(handle, bitmap_bh);
2998 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3002 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3003 gdp->bg_free_blocks_count);
3005 err = ext4_journal_get_write_access(handle, gdp_bh);
3009 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3010 + ac->ac_b_ex.fe_start
3011 + le32_to_cpu(es->s_first_data_block);
3013 len = ac->ac_b_ex.fe_len;
3014 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3015 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3016 in_range(block, ext4_inode_table(sb, gdp),
3017 EXT4_SB(sb)->s_itb_per_group) ||
3018 in_range(block + len - 1, ext4_inode_table(sb, gdp),
3019 EXT4_SB(sb)->s_itb_per_group)) {
3020 ext4_error(sb, __func__,
3021 "Allocating block in system zone - block = %llu",
3023 /* File system mounted not to panic on error
3024 * Fix the bitmap and repeat the block allocation
3025 * We leak some of the blocks here.
3027 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3028 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3029 ac->ac_b_ex.fe_len);
3030 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3035 #ifdef AGGRESSIVE_CHECK
3038 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3039 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3040 bitmap_bh->b_data));
3044 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3045 mb_set_bits(NULL, bitmap_bh->b_data,
3046 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3047 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3048 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3049 ext4_free_blks_set(sb, gdp,
3050 ext4_free_blocks_after_init(sb,
3051 ac->ac_b_ex.fe_group, gdp));
3053 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3054 ext4_free_blks_set(sb, gdp, len);
3055 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3056 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3057 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3059 * Now reduce the dirty block count also. Should not go negative
3061 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3062 /* release all the reserved blocks if non delalloc */
3063 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3065 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3066 ac->ac_b_ex.fe_len);
3068 if (sbi->s_log_groups_per_flex) {
3069 ext4_group_t flex_group = ext4_flex_group(sbi,
3070 ac->ac_b_ex.fe_group);
3071 spin_lock(sb_bgl_lock(sbi, flex_group));
3072 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3073 spin_unlock(sb_bgl_lock(sbi, flex_group));
3076 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3079 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3088 * here we normalize request for locality group
3089 * Group request are normalized to s_strip size if we set the same via mount
3090 * option. If not we set it to s_mb_group_prealloc which can be configured via
3091 * /proc/fs/ext4/<partition>/group_prealloc
3093 * XXX: should we try to preallocate more than the group has now?
3095 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3097 struct super_block *sb = ac->ac_sb;
3098 struct ext4_locality_group *lg = ac->ac_lg;
3101 if (EXT4_SB(sb)->s_stripe)
3102 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3104 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3105 mb_debug("#%u: goal %u blocks for locality group\n",
3106 current->pid, ac->ac_g_ex.fe_len);
3110 * Normalization means making request better in terms of
3111 * size and alignment
3113 static noinline_for_stack void
3114 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3115 struct ext4_allocation_request *ar)
3119 loff_t size, orig_size, start_off;
3120 ext4_lblk_t start, orig_start;
3121 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3122 struct ext4_prealloc_space *pa;
3124 /* do normalize only data requests, metadata requests
3125 do not need preallocation */
3126 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3129 /* sometime caller may want exact blocks */
3130 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3133 /* caller may indicate that preallocation isn't
3134 * required (it's a tail, for example) */
3135 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3138 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3139 ext4_mb_normalize_group_request(ac);
3143 bsbits = ac->ac_sb->s_blocksize_bits;
3145 /* first, let's learn actual file size
3146 * given current request is allocated */
3147 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3148 size = size << bsbits;
3149 if (size < i_size_read(ac->ac_inode))
3150 size = i_size_read(ac->ac_inode);
3152 /* max size of free chunks */
3155 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3156 (req <= (size) || max <= (chunk_size))
3158 /* first, try to predict filesize */
3159 /* XXX: should this table be tunable? */
3161 if (size <= 16 * 1024) {
3163 } else if (size <= 32 * 1024) {
3165 } else if (size <= 64 * 1024) {
3167 } else if (size <= 128 * 1024) {
3169 } else if (size <= 256 * 1024) {
3171 } else if (size <= 512 * 1024) {
3173 } else if (size <= 1024 * 1024) {
3175 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3176 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3177 (21 - bsbits)) << 21;
3178 size = 2 * 1024 * 1024;
3179 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3180 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3181 (22 - bsbits)) << 22;
3182 size = 4 * 1024 * 1024;
3183 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3184 (8<<20)>>bsbits, max, 8 * 1024)) {
3185 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3186 (23 - bsbits)) << 23;
3187 size = 8 * 1024 * 1024;
3189 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3190 size = ac->ac_o_ex.fe_len << bsbits;
3192 orig_size = size = size >> bsbits;
3193 orig_start = start = start_off >> bsbits;
3195 /* don't cover already allocated blocks in selected range */
3196 if (ar->pleft && start <= ar->lleft) {
3197 size -= ar->lleft + 1 - start;
3198 start = ar->lleft + 1;
3200 if (ar->pright && start + size - 1 >= ar->lright)
3201 size -= start + size - ar->lright;
3205 /* check we don't cross already preallocated blocks */
3207 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3212 spin_lock(&pa->pa_lock);
3213 if (pa->pa_deleted) {
3214 spin_unlock(&pa->pa_lock);
3218 pa_end = pa->pa_lstart + pa->pa_len;
3220 /* PA must not overlap original request */
3221 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3222 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3224 /* skip PA normalized request doesn't overlap with */
3225 if (pa->pa_lstart >= end) {
3226 spin_unlock(&pa->pa_lock);
3229 if (pa_end <= start) {
3230 spin_unlock(&pa->pa_lock);
3233 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3235 if (pa_end <= ac->ac_o_ex.fe_logical) {
3236 BUG_ON(pa_end < start);
3240 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3241 BUG_ON(pa->pa_lstart > end);
3242 end = pa->pa_lstart;
3244 spin_unlock(&pa->pa_lock);
3249 /* XXX: extra loop to check we really don't overlap preallocations */
3251 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3253 spin_lock(&pa->pa_lock);
3254 if (pa->pa_deleted == 0) {
3255 pa_end = pa->pa_lstart + pa->pa_len;
3256 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3258 spin_unlock(&pa->pa_lock);
3262 if (start + size <= ac->ac_o_ex.fe_logical &&
3263 start > ac->ac_o_ex.fe_logical) {
3264 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3265 (unsigned long) start, (unsigned long) size,
3266 (unsigned long) ac->ac_o_ex.fe_logical);
3268 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3269 start > ac->ac_o_ex.fe_logical);
3270 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3272 /* now prepare goal request */
3274 /* XXX: is it better to align blocks WRT to logical
3275 * placement or satisfy big request as is */
3276 ac->ac_g_ex.fe_logical = start;
3277 ac->ac_g_ex.fe_len = size;
3279 /* define goal start in order to merge */
3280 if (ar->pright && (ar->lright == (start + size))) {
3281 /* merge to the right */
3282 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3283 &ac->ac_f_ex.fe_group,
3284 &ac->ac_f_ex.fe_start);
3285 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3287 if (ar->pleft && (ar->lleft + 1 == start)) {
3288 /* merge to the left */
3289 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3290 &ac->ac_f_ex.fe_group,
3291 &ac->ac_f_ex.fe_start);
3292 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3295 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3296 (unsigned) orig_size, (unsigned) start);
3299 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3301 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3303 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3304 atomic_inc(&sbi->s_bal_reqs);
3305 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3306 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3307 atomic_inc(&sbi->s_bal_success);
3308 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3309 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3310 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3311 atomic_inc(&sbi->s_bal_goals);
3312 if (ac->ac_found > sbi->s_mb_max_to_scan)
3313 atomic_inc(&sbi->s_bal_breaks);
3316 ext4_mb_store_history(ac);
3320 * use blocks preallocated to inode
3322 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3323 struct ext4_prealloc_space *pa)
3329 /* found preallocated blocks, use them */
3330 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3331 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3333 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3334 &ac->ac_b_ex.fe_start);
3335 ac->ac_b_ex.fe_len = len;
3336 ac->ac_status = AC_STATUS_FOUND;
3339 BUG_ON(start < pa->pa_pstart);
3340 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3341 BUG_ON(pa->pa_free < len);
3344 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3348 * use blocks preallocated to locality group
3350 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3351 struct ext4_prealloc_space *pa)
3353 unsigned int len = ac->ac_o_ex.fe_len;
3355 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3356 &ac->ac_b_ex.fe_group,
3357 &ac->ac_b_ex.fe_start);
3358 ac->ac_b_ex.fe_len = len;
3359 ac->ac_status = AC_STATUS_FOUND;
3362 /* we don't correct pa_pstart or pa_plen here to avoid
3363 * possible race when the group is being loaded concurrently
3364 * instead we correct pa later, after blocks are marked
3365 * in on-disk bitmap -- see ext4_mb_release_context()
3366 * Other CPUs are prevented from allocating from this pa by lg_mutex
3368 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3372 * Return the prealloc space that have minimal distance
3373 * from the goal block. @cpa is the prealloc
3374 * space that is having currently known minimal distance
3375 * from the goal block.
3377 static struct ext4_prealloc_space *
3378 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3379 struct ext4_prealloc_space *pa,
3380 struct ext4_prealloc_space *cpa)
3382 ext4_fsblk_t cur_distance, new_distance;
3385 atomic_inc(&pa->pa_count);
3388 cur_distance = abs(goal_block - cpa->pa_pstart);
3389 new_distance = abs(goal_block - pa->pa_pstart);
3391 if (cur_distance < new_distance)
3394 /* drop the previous reference */
3395 atomic_dec(&cpa->pa_count);
3396 atomic_inc(&pa->pa_count);
3401 * search goal blocks in preallocated space
3403 static noinline_for_stack int
3404 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3407 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3408 struct ext4_locality_group *lg;
3409 struct ext4_prealloc_space *pa, *cpa = NULL;
3410 ext4_fsblk_t goal_block;
3412 /* only data can be preallocated */
3413 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3416 /* first, try per-file preallocation */
3418 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3420 /* all fields in this condition don't change,
3421 * so we can skip locking for them */
3422 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3423 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3426 /* found preallocated blocks, use them */
3427 spin_lock(&pa->pa_lock);
3428 if (pa->pa_deleted == 0 && pa->pa_free) {
3429 atomic_inc(&pa->pa_count);
3430 ext4_mb_use_inode_pa(ac, pa);
3431 spin_unlock(&pa->pa_lock);
3432 ac->ac_criteria = 10;
3436 spin_unlock(&pa->pa_lock);
3440 /* can we use group allocation? */
3441 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3444 /* inode may have no locality group for some reason */
3448 order = fls(ac->ac_o_ex.fe_len) - 1;
3449 if (order > PREALLOC_TB_SIZE - 1)
3450 /* The max size of hash table is PREALLOC_TB_SIZE */
3451 order = PREALLOC_TB_SIZE - 1;
3453 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3454 ac->ac_g_ex.fe_start +
3455 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3457 * search for the prealloc space that is having
3458 * minimal distance from the goal block.
3460 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3462 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3464 spin_lock(&pa->pa_lock);
3465 if (pa->pa_deleted == 0 &&
3466 pa->pa_free >= ac->ac_o_ex.fe_len) {
3468 cpa = ext4_mb_check_group_pa(goal_block,
3471 spin_unlock(&pa->pa_lock);
3476 ext4_mb_use_group_pa(ac, cpa);
3477 ac->ac_criteria = 20;
3484 * the function goes through all block freed in the group
3485 * but not yet committed and marks them used in in-core bitmap.
3486 * buddy must be generated from this bitmap
3487 * Need to be called with ext4 group lock (ext4_lock_group)
3489 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3493 struct ext4_group_info *grp;
3494 struct ext4_free_data *entry;
3496 grp = ext4_get_group_info(sb, group);
3497 n = rb_first(&(grp->bb_free_root));
3500 entry = rb_entry(n, struct ext4_free_data, node);
3501 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3502 bitmap, entry->start_blk,
3510 * the function goes through all preallocation in this group and marks them
3511 * used in in-core bitmap. buddy must be generated from this bitmap
3512 * Need to be called with ext4 group lock (ext4_lock_group)
3514 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3517 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3518 struct ext4_prealloc_space *pa;
3519 struct list_head *cur;
3520 ext4_group_t groupnr;
3521 ext4_grpblk_t start;
3522 int preallocated = 0;
3526 /* all form of preallocation discards first load group,
3527 * so the only competing code is preallocation use.
3528 * we don't need any locking here
3529 * notice we do NOT ignore preallocations with pa_deleted
3530 * otherwise we could leave used blocks available for
3531 * allocation in buddy when concurrent ext4_mb_put_pa()
3532 * is dropping preallocation
3534 list_for_each(cur, &grp->bb_prealloc_list) {
3535 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3536 spin_lock(&pa->pa_lock);
3537 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3540 spin_unlock(&pa->pa_lock);
3541 if (unlikely(len == 0))
3543 BUG_ON(groupnr != group);
3544 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3545 bitmap, start, len);
3546 preallocated += len;
3549 mb_debug("prellocated %u for group %u\n", preallocated, group);
3552 static void ext4_mb_pa_callback(struct rcu_head *head)
3554 struct ext4_prealloc_space *pa;
3555 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3556 kmem_cache_free(ext4_pspace_cachep, pa);
3560 * drops a reference to preallocated space descriptor
3561 * if this was the last reference and the space is consumed
3563 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3564 struct super_block *sb, struct ext4_prealloc_space *pa)
3568 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3571 /* in this short window concurrent discard can set pa_deleted */
3572 spin_lock(&pa->pa_lock);
3573 if (pa->pa_deleted == 1) {
3574 spin_unlock(&pa->pa_lock);
3579 spin_unlock(&pa->pa_lock);
3581 /* -1 is to protect from crossing allocation group */
3582 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3587 * P1 (buddy init) P2 (regular allocation)
3588 * find block B in PA
3589 * copy on-disk bitmap to buddy
3590 * mark B in on-disk bitmap
3591 * drop PA from group
3592 * mark all PAs in buddy
3594 * thus, P1 initializes buddy with B available. to prevent this
3595 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3598 ext4_lock_group(sb, grp);
3599 list_del(&pa->pa_group_list);
3600 ext4_unlock_group(sb, grp);
3602 spin_lock(pa->pa_obj_lock);
3603 list_del_rcu(&pa->pa_inode_list);
3604 spin_unlock(pa->pa_obj_lock);
3606 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3610 * creates new preallocated space for given inode
3612 static noinline_for_stack int
3613 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3615 struct super_block *sb = ac->ac_sb;
3616 struct ext4_prealloc_space *pa;
3617 struct ext4_group_info *grp;
3618 struct ext4_inode_info *ei;
3620 /* preallocate only when found space is larger then requested */
3621 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3622 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3623 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3625 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3629 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3635 /* we can't allocate as much as normalizer wants.
3636 * so, found space must get proper lstart
3637 * to cover original request */
3638 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3639 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3641 /* we're limited by original request in that
3642 * logical block must be covered any way
3643 * winl is window we can move our chunk within */
3644 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3646 /* also, we should cover whole original request */
3647 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3649 /* the smallest one defines real window */
3650 win = min(winl, wins);
3652 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3653 if (offs && offs < win)
3656 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3657 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3658 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3661 /* preallocation can change ac_b_ex, thus we store actually
3662 * allocated blocks for history */
3663 ac->ac_f_ex = ac->ac_b_ex;
3665 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3666 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3667 pa->pa_len = ac->ac_b_ex.fe_len;
3668 pa->pa_free = pa->pa_len;
3669 atomic_set(&pa->pa_count, 1);
3670 spin_lock_init(&pa->pa_lock);
3674 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3675 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3677 ext4_mb_use_inode_pa(ac, pa);
3678 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3680 ei = EXT4_I(ac->ac_inode);
3681 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3683 pa->pa_obj_lock = &ei->i_prealloc_lock;
3684 pa->pa_inode = ac->ac_inode;
3686 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3687 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3688 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3690 spin_lock(pa->pa_obj_lock);
3691 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3692 spin_unlock(pa->pa_obj_lock);
3698 * creates new preallocated space for locality group inodes belongs to
3700 static noinline_for_stack int
3701 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3703 struct super_block *sb = ac->ac_sb;
3704 struct ext4_locality_group *lg;
3705 struct ext4_prealloc_space *pa;
3706 struct ext4_group_info *grp;
3708 /* preallocate only when found space is larger then requested */
3709 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3710 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3711 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3713 BUG_ON(ext4_pspace_cachep == NULL);
3714 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3718 /* preallocation can change ac_b_ex, thus we store actually
3719 * allocated blocks for history */
3720 ac->ac_f_ex = ac->ac_b_ex;
3722 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3723 pa->pa_lstart = pa->pa_pstart;
3724 pa->pa_len = ac->ac_b_ex.fe_len;
3725 pa->pa_free = pa->pa_len;
3726 atomic_set(&pa->pa_count, 1);
3727 spin_lock_init(&pa->pa_lock);
3728 INIT_LIST_HEAD(&pa->pa_inode_list);
3732 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3733 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3735 ext4_mb_use_group_pa(ac, pa);
3736 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3738 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3742 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3743 pa->pa_inode = NULL;
3745 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3746 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3747 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3750 * We will later add the new pa to the right bucket
3751 * after updating the pa_free in ext4_mb_release_context
3756 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3760 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3761 err = ext4_mb_new_group_pa(ac);
3763 err = ext4_mb_new_inode_pa(ac);
3768 * finds all unused blocks in on-disk bitmap, frees them in
3769 * in-core bitmap and buddy.
3770 * @pa must be unlinked from inode and group lists, so that
3771 * nobody else can find/use it.
3772 * the caller MUST hold group/inode locks.
3773 * TODO: optimize the case when there are no in-core structures yet
3775 static noinline_for_stack int
3776 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3777 struct ext4_prealloc_space *pa,
3778 struct ext4_allocation_context *ac)
3780 struct super_block *sb = e4b->bd_sb;
3781 struct ext4_sb_info *sbi = EXT4_SB(sb);
3790 BUG_ON(pa->pa_deleted == 0);
3791 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3792 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3793 end = bit + pa->pa_len;
3797 ac->ac_inode = pa->pa_inode;
3798 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3802 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3805 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3806 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3807 le32_to_cpu(sbi->s_es->s_first_data_block);
3808 mb_debug(" free preallocated %u/%u in group %u\n",
3809 (unsigned) start, (unsigned) next - bit,
3814 ac->ac_b_ex.fe_group = group;
3815 ac->ac_b_ex.fe_start = bit;
3816 ac->ac_b_ex.fe_len = next - bit;
3817 ac->ac_b_ex.fe_logical = 0;
3818 ext4_mb_store_history(ac);
3821 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3824 if (free != pa->pa_free) {
3825 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3826 pa, (unsigned long) pa->pa_lstart,
3827 (unsigned long) pa->pa_pstart,
3828 (unsigned long) pa->pa_len);
3829 ext4_grp_locked_error(sb, group,
3830 __func__, "free %u, pa_free %u",
3833 * pa is already deleted so we use the value obtained
3834 * from the bitmap and continue.
3837 atomic_add(free, &sbi->s_mb_discarded);
3842 static noinline_for_stack int
3843 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3844 struct ext4_prealloc_space *pa,
3845 struct ext4_allocation_context *ac)
3847 struct super_block *sb = e4b->bd_sb;
3852 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3854 BUG_ON(pa->pa_deleted == 0);
3855 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3856 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3857 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3858 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3862 ac->ac_inode = NULL;
3863 ac->ac_b_ex.fe_group = group;
3864 ac->ac_b_ex.fe_start = bit;
3865 ac->ac_b_ex.fe_len = pa->pa_len;
3866 ac->ac_b_ex.fe_logical = 0;
3867 ext4_mb_store_history(ac);
3874 * releases all preallocations in given group
3876 * first, we need to decide discard policy:
3877 * - when do we discard
3879 * - how many do we discard
3880 * 1) how many requested
3882 static noinline_for_stack int
3883 ext4_mb_discard_group_preallocations(struct super_block *sb,
3884 ext4_group_t group, int needed)
3886 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3887 struct buffer_head *bitmap_bh = NULL;
3888 struct ext4_prealloc_space *pa, *tmp;
3889 struct ext4_allocation_context *ac;
3890 struct list_head list;
3891 struct ext4_buddy e4b;
3896 mb_debug("discard preallocation for group %u\n", group);
3898 if (list_empty(&grp->bb_prealloc_list))
3901 bitmap_bh = ext4_read_block_bitmap(sb, group);
3902 if (bitmap_bh == NULL) {
3903 ext4_error(sb, __func__, "Error in reading block "
3904 "bitmap for %u", group);
3908 err = ext4_mb_load_buddy(sb, group, &e4b);
3910 ext4_error(sb, __func__, "Error in loading buddy "
3911 "information for %u", group);
3917 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3919 INIT_LIST_HEAD(&list);
3920 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3922 ext4_lock_group(sb, group);
3923 list_for_each_entry_safe(pa, tmp,
3924 &grp->bb_prealloc_list, pa_group_list) {
3925 spin_lock(&pa->pa_lock);
3926 if (atomic_read(&pa->pa_count)) {
3927 spin_unlock(&pa->pa_lock);
3931 if (pa->pa_deleted) {
3932 spin_unlock(&pa->pa_lock);
3936 /* seems this one can be freed ... */
3939 /* we can trust pa_free ... */
3940 free += pa->pa_free;
3942 spin_unlock(&pa->pa_lock);
3944 list_del(&pa->pa_group_list);
3945 list_add(&pa->u.pa_tmp_list, &list);
3948 /* if we still need more blocks and some PAs were used, try again */
3949 if (free < needed && busy) {
3951 ext4_unlock_group(sb, group);
3953 * Yield the CPU here so that we don't get soft lockup
3954 * in non preempt case.
3960 /* found anything to free? */
3961 if (list_empty(&list)) {
3966 /* now free all selected PAs */
3967 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3969 /* remove from object (inode or locality group) */
3970 spin_lock(pa->pa_obj_lock);
3971 list_del_rcu(&pa->pa_inode_list);
3972 spin_unlock(pa->pa_obj_lock);
3975 ext4_mb_release_group_pa(&e4b, pa, ac);
3977 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3979 list_del(&pa->u.pa_tmp_list);
3980 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3984 ext4_unlock_group(sb, group);
3986 kmem_cache_free(ext4_ac_cachep, ac);
3987 ext4_mb_release_desc(&e4b);
3993 * releases all non-used preallocated blocks for given inode
3995 * It's important to discard preallocations under i_data_sem
3996 * We don't want another block to be served from the prealloc
3997 * space when we are discarding the inode prealloc space.
3999 * FIXME!! Make sure it is valid at all the call sites
4001 void ext4_discard_preallocations(struct inode *inode)
4003 struct ext4_inode_info *ei = EXT4_I(inode);
4004 struct super_block *sb = inode->i_sb;
4005 struct buffer_head *bitmap_bh = NULL;
4006 struct ext4_prealloc_space *pa, *tmp;
4007 struct ext4_allocation_context *ac;
4008 ext4_group_t group = 0;
4009 struct list_head list;
4010 struct ext4_buddy e4b;
4013 if (!S_ISREG(inode->i_mode)) {
4014 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4018 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4020 INIT_LIST_HEAD(&list);
4022 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4024 /* first, collect all pa's in the inode */
4025 spin_lock(&ei->i_prealloc_lock);
4026 while (!list_empty(&ei->i_prealloc_list)) {
4027 pa = list_entry(ei->i_prealloc_list.next,
4028 struct ext4_prealloc_space, pa_inode_list);
4029 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4030 spin_lock(&pa->pa_lock);
4031 if (atomic_read(&pa->pa_count)) {
4032 /* this shouldn't happen often - nobody should
4033 * use preallocation while we're discarding it */
4034 spin_unlock(&pa->pa_lock);
4035 spin_unlock(&ei->i_prealloc_lock);
4036 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4038 schedule_timeout_uninterruptible(HZ);
4042 if (pa->pa_deleted == 0) {
4044 spin_unlock(&pa->pa_lock);
4045 list_del_rcu(&pa->pa_inode_list);
4046 list_add(&pa->u.pa_tmp_list, &list);
4050 /* someone is deleting pa right now */
4051 spin_unlock(&pa->pa_lock);
4052 spin_unlock(&ei->i_prealloc_lock);
4054 /* we have to wait here because pa_deleted
4055 * doesn't mean pa is already unlinked from
4056 * the list. as we might be called from
4057 * ->clear_inode() the inode will get freed
4058 * and concurrent thread which is unlinking
4059 * pa from inode's list may access already
4060 * freed memory, bad-bad-bad */
4062 /* XXX: if this happens too often, we can
4063 * add a flag to force wait only in case
4064 * of ->clear_inode(), but not in case of
4065 * regular truncate */
4066 schedule_timeout_uninterruptible(HZ);
4069 spin_unlock(&ei->i_prealloc_lock);
4071 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4072 BUG_ON(pa->pa_linear != 0);
4073 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4075 err = ext4_mb_load_buddy(sb, group, &e4b);
4077 ext4_error(sb, __func__, "Error in loading buddy "
4078 "information for %u", group);
4082 bitmap_bh = ext4_read_block_bitmap(sb, group);
4083 if (bitmap_bh == NULL) {
4084 ext4_error(sb, __func__, "Error in reading block "
4085 "bitmap for %u", group);
4086 ext4_mb_release_desc(&e4b);
4090 ext4_lock_group(sb, group);
4091 list_del(&pa->pa_group_list);
4092 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4093 ext4_unlock_group(sb, group);
4095 ext4_mb_release_desc(&e4b);
4098 list_del(&pa->u.pa_tmp_list);
4099 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4102 kmem_cache_free(ext4_ac_cachep, ac);
4106 * finds all preallocated spaces and return blocks being freed to them
4107 * if preallocated space becomes full (no block is used from the space)
4108 * then the function frees space in buddy
4109 * XXX: at the moment, truncate (which is the only way to free blocks)
4110 * discards all preallocations
4112 static void ext4_mb_return_to_preallocation(struct inode *inode,
4113 struct ext4_buddy *e4b,
4114 sector_t block, int count)
4116 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4119 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4121 struct super_block *sb = ac->ac_sb;
4124 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4125 " Allocation context details:\n");
4126 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4127 ac->ac_status, ac->ac_flags);
4128 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4129 "best %lu/%lu/%lu@%lu cr %d\n",
4130 (unsigned long)ac->ac_o_ex.fe_group,
4131 (unsigned long)ac->ac_o_ex.fe_start,
4132 (unsigned long)ac->ac_o_ex.fe_len,
4133 (unsigned long)ac->ac_o_ex.fe_logical,
4134 (unsigned long)ac->ac_g_ex.fe_group,
4135 (unsigned long)ac->ac_g_ex.fe_start,
4136 (unsigned long)ac->ac_g_ex.fe_len,
4137 (unsigned long)ac->ac_g_ex.fe_logical,
4138 (unsigned long)ac->ac_b_ex.fe_group,
4139 (unsigned long)ac->ac_b_ex.fe_start,
4140 (unsigned long)ac->ac_b_ex.fe_len,
4141 (unsigned long)ac->ac_b_ex.fe_logical,
4142 (int)ac->ac_criteria);
4143 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4145 printk(KERN_ERR "EXT4-fs: groups: \n");
4146 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4147 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4148 struct ext4_prealloc_space *pa;
4149 ext4_grpblk_t start;
4150 struct list_head *cur;
4151 ext4_lock_group(sb, i);
4152 list_for_each(cur, &grp->bb_prealloc_list) {
4153 pa = list_entry(cur, struct ext4_prealloc_space,
4155 spin_lock(&pa->pa_lock);
4156 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4158 spin_unlock(&pa->pa_lock);
4159 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4162 ext4_unlock_group(sb, i);
4164 if (grp->bb_free == 0)
4166 printk(KERN_ERR "%lu: %d/%d \n",
4167 i, grp->bb_free, grp->bb_fragments);
4169 printk(KERN_ERR "\n");
4172 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4179 * We use locality group preallocation for small size file. The size of the
4180 * file is determined by the current size or the resulting size after
4181 * allocation which ever is larger
4183 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4185 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4187 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4188 int bsbits = ac->ac_sb->s_blocksize_bits;
4191 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4194 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4195 isize = i_size_read(ac->ac_inode) >> bsbits;
4196 size = max(size, isize);
4198 /* don't use group allocation for large files */
4199 if (size >= sbi->s_mb_stream_request)
4202 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4205 BUG_ON(ac->ac_lg != NULL);
4207 * locality group prealloc space are per cpu. The reason for having
4208 * per cpu locality group is to reduce the contention between block
4209 * request from multiple CPUs.
4211 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4213 /* we're going to use group allocation */
4214 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4216 /* serialize all allocations in the group */
4217 mutex_lock(&ac->ac_lg->lg_mutex);
4220 static noinline_for_stack int
4221 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4222 struct ext4_allocation_request *ar)
4224 struct super_block *sb = ar->inode->i_sb;
4225 struct ext4_sb_info *sbi = EXT4_SB(sb);
4226 struct ext4_super_block *es = sbi->s_es;
4230 ext4_grpblk_t block;
4232 /* we can't allocate > group size */
4235 /* just a dirty hack to filter too big requests */
4236 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4237 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4239 /* start searching from the goal */
4241 if (goal < le32_to_cpu(es->s_first_data_block) ||
4242 goal >= ext4_blocks_count(es))
4243 goal = le32_to_cpu(es->s_first_data_block);
4244 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4246 /* set up allocation goals */
4247 ac->ac_b_ex.fe_logical = ar->logical;
4248 ac->ac_b_ex.fe_group = 0;
4249 ac->ac_b_ex.fe_start = 0;
4250 ac->ac_b_ex.fe_len = 0;
4251 ac->ac_status = AC_STATUS_CONTINUE;
4252 ac->ac_groups_scanned = 0;
4253 ac->ac_ex_scanned = 0;
4256 ac->ac_inode = ar->inode;
4257 ac->ac_o_ex.fe_logical = ar->logical;
4258 ac->ac_o_ex.fe_group = group;
4259 ac->ac_o_ex.fe_start = block;
4260 ac->ac_o_ex.fe_len = len;
4261 ac->ac_g_ex.fe_logical = ar->logical;
4262 ac->ac_g_ex.fe_group = group;
4263 ac->ac_g_ex.fe_start = block;
4264 ac->ac_g_ex.fe_len = len;
4265 ac->ac_f_ex.fe_len = 0;
4266 ac->ac_flags = ar->flags;
4268 ac->ac_criteria = 0;
4270 ac->ac_bitmap_page = NULL;
4271 ac->ac_buddy_page = NULL;
4274 /* we have to define context: we'll we work with a file or
4275 * locality group. this is a policy, actually */
4276 ext4_mb_group_or_file(ac);
4278 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4279 "left: %u/%u, right %u/%u to %swritable\n",
4280 (unsigned) ar->len, (unsigned) ar->logical,
4281 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4282 (unsigned) ar->lleft, (unsigned) ar->pleft,
4283 (unsigned) ar->lright, (unsigned) ar->pright,
4284 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4289 static noinline_for_stack void
4290 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4291 struct ext4_locality_group *lg,
4292 int order, int total_entries)
4294 ext4_group_t group = 0;
4295 struct ext4_buddy e4b;
4296 struct list_head discard_list;
4297 struct ext4_prealloc_space *pa, *tmp;
4298 struct ext4_allocation_context *ac;
4300 mb_debug("discard locality group preallocation\n");
4302 INIT_LIST_HEAD(&discard_list);
4303 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4305 spin_lock(&lg->lg_prealloc_lock);
4306 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4308 spin_lock(&pa->pa_lock);
4309 if (atomic_read(&pa->pa_count)) {
4311 * This is the pa that we just used
4312 * for block allocation. So don't
4315 spin_unlock(&pa->pa_lock);
4318 if (pa->pa_deleted) {
4319 spin_unlock(&pa->pa_lock);
4322 /* only lg prealloc space */
4323 BUG_ON(!pa->pa_linear);
4325 /* seems this one can be freed ... */
4327 spin_unlock(&pa->pa_lock);
4329 list_del_rcu(&pa->pa_inode_list);
4330 list_add(&pa->u.pa_tmp_list, &discard_list);
4333 if (total_entries <= 5) {
4335 * we want to keep only 5 entries
4336 * allowing it to grow to 8. This
4337 * mak sure we don't call discard
4338 * soon for this list.
4343 spin_unlock(&lg->lg_prealloc_lock);
4345 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4347 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4348 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4349 ext4_error(sb, __func__, "Error in loading buddy "
4350 "information for %u", group);
4353 ext4_lock_group(sb, group);
4354 list_del(&pa->pa_group_list);
4355 ext4_mb_release_group_pa(&e4b, pa, ac);
4356 ext4_unlock_group(sb, group);
4358 ext4_mb_release_desc(&e4b);
4359 list_del(&pa->u.pa_tmp_list);
4360 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4363 kmem_cache_free(ext4_ac_cachep, ac);
4367 * We have incremented pa_count. So it cannot be freed at this
4368 * point. Also we hold lg_mutex. So no parallel allocation is
4369 * possible from this lg. That means pa_free cannot be updated.
4371 * A parallel ext4_mb_discard_group_preallocations is possible.
4372 * which can cause the lg_prealloc_list to be updated.
4375 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4377 int order, added = 0, lg_prealloc_count = 1;
4378 struct super_block *sb = ac->ac_sb;
4379 struct ext4_locality_group *lg = ac->ac_lg;
4380 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4382 order = fls(pa->pa_free) - 1;
4383 if (order > PREALLOC_TB_SIZE - 1)
4384 /* The max size of hash table is PREALLOC_TB_SIZE */
4385 order = PREALLOC_TB_SIZE - 1;
4386 /* Add the prealloc space to lg */
4388 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4390 spin_lock(&tmp_pa->pa_lock);
4391 if (tmp_pa->pa_deleted) {
4392 spin_unlock(&pa->pa_lock);
4395 if (!added && pa->pa_free < tmp_pa->pa_free) {
4396 /* Add to the tail of the previous entry */
4397 list_add_tail_rcu(&pa->pa_inode_list,
4398 &tmp_pa->pa_inode_list);
4401 * we want to count the total
4402 * number of entries in the list
4405 spin_unlock(&tmp_pa->pa_lock);
4406 lg_prealloc_count++;
4409 list_add_tail_rcu(&pa->pa_inode_list,
4410 &lg->lg_prealloc_list[order]);
4413 /* Now trim the list to be not more than 8 elements */
4414 if (lg_prealloc_count > 8) {
4415 ext4_mb_discard_lg_preallocations(sb, lg,
4416 order, lg_prealloc_count);
4423 * release all resource we used in allocation
4425 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4427 struct ext4_prealloc_space *pa = ac->ac_pa;
4429 if (pa->pa_linear) {
4430 /* see comment in ext4_mb_use_group_pa() */
4431 spin_lock(&pa->pa_lock);
4432 pa->pa_pstart += ac->ac_b_ex.fe_len;
4433 pa->pa_lstart += ac->ac_b_ex.fe_len;
4434 pa->pa_free -= ac->ac_b_ex.fe_len;
4435 pa->pa_len -= ac->ac_b_ex.fe_len;
4436 spin_unlock(&pa->pa_lock);
4438 * We want to add the pa to the right bucket.
4439 * Remove it from the list and while adding
4440 * make sure the list to which we are adding
4443 if (likely(pa->pa_free)) {
4444 spin_lock(pa->pa_obj_lock);
4445 list_del_rcu(&pa->pa_inode_list);
4446 spin_unlock(pa->pa_obj_lock);
4447 ext4_mb_add_n_trim(ac);
4450 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4452 if (ac->ac_bitmap_page)
4453 page_cache_release(ac->ac_bitmap_page);
4454 if (ac->ac_buddy_page)
4455 page_cache_release(ac->ac_buddy_page);
4456 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4457 mutex_unlock(&ac->ac_lg->lg_mutex);
4458 ext4_mb_collect_stats(ac);
4462 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4468 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4469 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4478 * Main entry point into mballoc to allocate blocks
4479 * it tries to use preallocation first, then falls back
4480 * to usual allocation
4482 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4483 struct ext4_allocation_request *ar, int *errp)
4486 struct ext4_allocation_context *ac = NULL;
4487 struct ext4_sb_info *sbi;
4488 struct super_block *sb;
4489 ext4_fsblk_t block = 0;
4490 unsigned int inquota;
4491 unsigned int reserv_blks = 0;
4493 sb = ar->inode->i_sb;
4496 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4498 * With delalloc we already reserved the blocks
4500 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4501 /* let others to free the space */
4503 ar->len = ar->len >> 1;
4509 reserv_blks = ar->len;
4511 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4512 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4521 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4522 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4524 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4531 *errp = ext4_mb_initialize_context(ac, ar);
4537 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4538 if (!ext4_mb_use_preallocated(ac)) {
4539 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4540 ext4_mb_normalize_request(ac, ar);
4542 /* allocate space in core */
4543 ext4_mb_regular_allocator(ac);
4545 /* as we've just preallocated more space than
4546 * user requested orinally, we store allocated
4547 * space in a special descriptor */
4548 if (ac->ac_status == AC_STATUS_FOUND &&
4549 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4550 ext4_mb_new_preallocation(ac);
4553 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4554 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4555 if (*errp == -EAGAIN) {
4556 ac->ac_b_ex.fe_group = 0;
4557 ac->ac_b_ex.fe_start = 0;
4558 ac->ac_b_ex.fe_len = 0;
4559 ac->ac_status = AC_STATUS_CONTINUE;
4562 ac->ac_b_ex.fe_len = 0;
4564 ext4_mb_show_ac(ac);
4566 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4567 ar->len = ac->ac_b_ex.fe_len;
4570 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4574 ac->ac_b_ex.fe_len = 0;
4576 ext4_mb_show_ac(ac);
4579 ext4_mb_release_context(ac);
4582 kmem_cache_free(ext4_ac_cachep, ac);
4584 if (ar->len < inquota)
4585 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4591 * We can merge two free data extents only if the physical blocks
4592 * are contiguous, AND the extents were freed by the same transaction,
4593 * AND the blocks are associated with the same group.
4595 static int can_merge(struct ext4_free_data *entry1,
4596 struct ext4_free_data *entry2)
4598 if ((entry1->t_tid == entry2->t_tid) &&
4599 (entry1->group == entry2->group) &&
4600 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4605 static noinline_for_stack int
4606 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4607 struct ext4_free_data *new_entry)
4609 ext4_grpblk_t block;
4610 struct ext4_free_data *entry;
4611 struct ext4_group_info *db = e4b->bd_info;
4612 struct super_block *sb = e4b->bd_sb;
4613 struct ext4_sb_info *sbi = EXT4_SB(sb);
4614 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4615 struct rb_node *parent = NULL, *new_node;
4617 BUG_ON(!ext4_handle_valid(handle));
4618 BUG_ON(e4b->bd_bitmap_page == NULL);
4619 BUG_ON(e4b->bd_buddy_page == NULL);
4621 new_node = &new_entry->node;
4622 block = new_entry->start_blk;
4625 /* first free block exent. We need to
4626 protect buddy cache from being freed,
4627 * otherwise we'll refresh it from
4628 * on-disk bitmap and lose not-yet-available
4630 page_cache_get(e4b->bd_buddy_page);
4631 page_cache_get(e4b->bd_bitmap_page);
4635 entry = rb_entry(parent, struct ext4_free_data, node);
4636 if (block < entry->start_blk)
4638 else if (block >= (entry->start_blk + entry->count))
4639 n = &(*n)->rb_right;
4641 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4642 "Double free of blocks %d (%d %d)",
4643 block, entry->start_blk, entry->count);
4648 rb_link_node(new_node, parent, n);
4649 rb_insert_color(new_node, &db->bb_free_root);
4651 /* Now try to see the extent can be merged to left and right */
4652 node = rb_prev(new_node);
4654 entry = rb_entry(node, struct ext4_free_data, node);
4655 if (can_merge(entry, new_entry)) {
4656 new_entry->start_blk = entry->start_blk;
4657 new_entry->count += entry->count;
4658 rb_erase(node, &(db->bb_free_root));
4659 spin_lock(&sbi->s_md_lock);
4660 list_del(&entry->list);
4661 spin_unlock(&sbi->s_md_lock);
4662 kmem_cache_free(ext4_free_ext_cachep, entry);
4666 node = rb_next(new_node);
4668 entry = rb_entry(node, struct ext4_free_data, node);
4669 if (can_merge(new_entry, entry)) {
4670 new_entry->count += entry->count;
4671 rb_erase(node, &(db->bb_free_root));
4672 spin_lock(&sbi->s_md_lock);
4673 list_del(&entry->list);
4674 spin_unlock(&sbi->s_md_lock);
4675 kmem_cache_free(ext4_free_ext_cachep, entry);
4678 /* Add the extent to transaction's private list */
4679 spin_lock(&sbi->s_md_lock);
4680 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4681 spin_unlock(&sbi->s_md_lock);
4686 * Main entry point into mballoc to free blocks
4688 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4689 unsigned long block, unsigned long count,
4690 int metadata, unsigned long *freed)
4692 struct buffer_head *bitmap_bh = NULL;
4693 struct super_block *sb = inode->i_sb;
4694 struct ext4_allocation_context *ac = NULL;
4695 struct ext4_group_desc *gdp;
4696 struct ext4_super_block *es;
4697 unsigned int overflow;
4699 struct buffer_head *gd_bh;
4700 ext4_group_t block_group;
4701 struct ext4_sb_info *sbi;
4702 struct ext4_buddy e4b;
4709 es = EXT4_SB(sb)->s_es;
4710 if (block < le32_to_cpu(es->s_first_data_block) ||
4711 block + count < block ||
4712 block + count > ext4_blocks_count(es)) {
4713 ext4_error(sb, __func__,
4714 "Freeing blocks not in datazone - "
4715 "block = %lu, count = %lu", block, count);
4719 ext4_debug("freeing block %lu\n", block);
4721 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4723 ac->ac_op = EXT4_MB_HISTORY_FREE;
4724 ac->ac_inode = inode;
4730 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4733 * Check to see if we are freeing blocks across a group
4736 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4737 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4740 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4745 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4751 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4752 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4753 in_range(block, ext4_inode_table(sb, gdp),
4754 EXT4_SB(sb)->s_itb_per_group) ||
4755 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4756 EXT4_SB(sb)->s_itb_per_group)) {
4758 ext4_error(sb, __func__,
4759 "Freeing blocks in system zone - "
4760 "Block = %lu, count = %lu", block, count);
4761 /* err = 0. ext4_std_error should be a no op */
4765 BUFFER_TRACE(bitmap_bh, "getting write access");
4766 err = ext4_journal_get_write_access(handle, bitmap_bh);
4771 * We are about to modify some metadata. Call the journal APIs
4772 * to unshare ->b_data if a currently-committing transaction is
4775 BUFFER_TRACE(gd_bh, "get_write_access");
4776 err = ext4_journal_get_write_access(handle, gd_bh);
4779 #ifdef AGGRESSIVE_CHECK
4782 for (i = 0; i < count; i++)
4783 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4787 ac->ac_b_ex.fe_group = block_group;
4788 ac->ac_b_ex.fe_start = bit;
4789 ac->ac_b_ex.fe_len = count;
4790 ext4_mb_store_history(ac);
4793 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4796 if (metadata && ext4_handle_valid(handle)) {
4797 struct ext4_free_data *new_entry;
4799 * blocks being freed are metadata. these blocks shouldn't
4800 * be used until this transaction is committed
4802 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4803 new_entry->start_blk = bit;
4804 new_entry->group = block_group;
4805 new_entry->count = count;
4806 new_entry->t_tid = handle->h_transaction->t_tid;
4807 ext4_lock_group(sb, block_group);
4808 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4810 ext4_mb_free_metadata(handle, &e4b, new_entry);
4811 ext4_unlock_group(sb, block_group);
4813 ext4_lock_group(sb, block_group);
4814 /* need to update group_info->bb_free and bitmap
4815 * with group lock held. generate_buddy look at
4816 * them with group lock_held
4818 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4820 mb_free_blocks(inode, &e4b, bit, count);
4821 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4822 ext4_unlock_group(sb, block_group);
4825 spin_lock(sb_bgl_lock(sbi, block_group));
4826 ret = ext4_free_blks_count(sb, gdp) + count;
4827 ext4_free_blks_set(sb, gdp, ret);
4828 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4829 spin_unlock(sb_bgl_lock(sbi, block_group));
4830 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4832 if (sbi->s_log_groups_per_flex) {
4833 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4834 spin_lock(sb_bgl_lock(sbi, flex_group));
4835 sbi->s_flex_groups[flex_group].free_blocks += count;
4836 spin_unlock(sb_bgl_lock(sbi, flex_group));
4839 ext4_mb_release_desc(&e4b);
4843 /* We dirtied the bitmap block */
4844 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4845 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4847 /* And the group descriptor block */
4848 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4849 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4853 if (overflow && !err) {
4862 ext4_std_error(sb, err);
4864 kmem_cache_free(ext4_ac_cachep, ac);