2 * spidev.c -- simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
27 #include <linux/device.h>
28 #include <linux/list.h>
29 #include <linux/errno.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/spidev.h>
36 #include <asm/uaccess.h>
40 * This supports acccess to SPI devices using normal userspace I/O calls.
41 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42 * and often mask message boundaries, full SPI support requires full duplex
43 * transfers. There are several kinds of of internal message boundaries to
44 * handle chipselect management and other protocol options.
46 * SPI has a character major number assigned. We allocate minor numbers
47 * dynamically using a bitmask. You must use hotplug tools, such as udev
48 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49 * nodes, since there is no fixed association of minor numbers with any
50 * particular SPI bus or device.
52 #define SPIDEV_MAJOR 153 /* assigned */
53 #define N_SPI_MINORS 32 /* ... up to 256 */
55 static unsigned long minors[N_SPI_MINORS / BITS_PER_LONG];
58 /* Bit masks for spi_device.mode management */
59 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL)
64 struct spi_device *spi;
65 struct list_head device_entry;
67 struct mutex buf_lock;
72 static LIST_HEAD(device_list);
73 static DEFINE_MUTEX(device_list_lock);
75 static unsigned bufsiz = 4096;
76 module_param(bufsiz, uint, S_IRUGO);
77 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
79 /*-------------------------------------------------------------------------*/
81 /* Read-only message with current device setup */
83 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
85 struct spidev_data *spidev;
86 struct spi_device *spi;
89 /* chipselect only toggles at start or end of operation */
93 spidev = filp->private_data;
96 mutex_lock(&spidev->buf_lock);
97 status = spi_read(spi, spidev->buffer, count);
99 unsigned long missing;
101 missing = copy_to_user(buf, spidev->buffer, count);
102 if (count && missing == count)
105 status = count - missing;
107 mutex_unlock(&spidev->buf_lock);
112 /* Write-only message with current device setup */
114 spidev_write(struct file *filp, const char __user *buf,
115 size_t count, loff_t *f_pos)
117 struct spidev_data *spidev;
118 struct spi_device *spi;
120 unsigned long missing;
122 /* chipselect only toggles at start or end of operation */
126 spidev = filp->private_data;
129 mutex_lock(&spidev->buf_lock);
130 missing = copy_from_user(spidev->buffer, buf, count);
132 status = spi_write(spi, spidev->buffer, count);
137 mutex_unlock(&spidev->buf_lock);
142 static int spidev_message(struct spidev_data *spidev,
143 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
145 struct spi_message msg;
146 struct spi_transfer *k_xfers;
147 struct spi_transfer *k_tmp;
148 struct spi_ioc_transfer *u_tmp;
149 struct spi_device *spi = spidev->spi;
152 int status = -EFAULT;
154 spi_message_init(&msg);
155 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
159 /* Construct spi_message, copying any tx data to bounce buffer.
160 * We walk the array of user-provided transfers, using each one
161 * to initialize a kernel version of the same transfer.
163 mutex_lock(&spidev->buf_lock);
164 buf = spidev->buffer;
166 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
168 n--, k_tmp++, u_tmp++) {
169 k_tmp->len = u_tmp->len;
172 if (total > bufsiz) {
179 if (!access_ok(VERIFY_WRITE, u_tmp->rx_buf, u_tmp->len))
184 if (copy_from_user(buf, (const u8 __user *)u_tmp->tx_buf,
190 k_tmp->cs_change = !!u_tmp->cs_change;
191 k_tmp->bits_per_word = u_tmp->bits_per_word;
192 k_tmp->delay_usecs = u_tmp->delay_usecs;
193 k_tmp->speed_hz = u_tmp->speed_hz;
196 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
198 u_tmp->rx_buf ? "rx " : "",
199 u_tmp->tx_buf ? "tx " : "",
200 u_tmp->cs_change ? "cs " : "",
201 u_tmp->bits_per_word ? : spi->bits_per_word,
203 u_tmp->speed_hz ? : spi->max_speed_hz);
205 spi_message_add_tail(k_tmp, &msg);
208 status = spi_sync(spi, &msg);
212 /* copy any rx data out of bounce buffer */
213 buf = spidev->buffer;
214 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
216 if (__copy_to_user((u8 __user *)u_tmp->rx_buf, buf,
227 mutex_unlock(&spidev->buf_lock);
233 spidev_ioctl(struct inode *inode, struct file *filp,
234 unsigned int cmd, unsigned long arg)
238 struct spidev_data *spidev;
239 struct spi_device *spi;
242 struct spi_ioc_transfer *ioc;
244 /* Check type and command number */
245 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
248 /* Check access direction once here; don't repeat below.
249 * IOC_DIR is from the user perspective, while access_ok is
250 * from the kernel perspective; so they look reversed.
252 if (_IOC_DIR(cmd) & _IOC_READ)
253 err = !access_ok(VERIFY_WRITE,
254 (void __user *)arg, _IOC_SIZE(cmd));
255 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
256 err = !access_ok(VERIFY_READ,
257 (void __user *)arg, _IOC_SIZE(cmd));
261 spidev = filp->private_data;
266 case SPI_IOC_RD_MODE:
267 retval = __put_user(spi->mode & SPI_MODE_MASK,
270 case SPI_IOC_RD_LSB_FIRST:
271 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
274 case SPI_IOC_RD_BITS_PER_WORD:
275 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
277 case SPI_IOC_RD_MAX_SPEED_HZ:
278 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
282 case SPI_IOC_WR_MODE:
283 retval = __get_user(tmp, (u8 __user *)arg);
287 if (tmp & ~SPI_MODE_MASK) {
292 tmp |= spi->mode & ~SPI_MODE_MASK;
294 retval = spi_setup(spi);
298 dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
301 case SPI_IOC_WR_LSB_FIRST:
302 retval = __get_user(tmp, (__u8 __user *)arg);
307 spi->mode |= SPI_LSB_FIRST;
309 spi->mode &= ~SPI_LSB_FIRST;
310 retval = spi_setup(spi);
314 dev_dbg(&spi->dev, "%csb first\n",
318 case SPI_IOC_WR_BITS_PER_WORD:
319 retval = __get_user(tmp, (__u8 __user *)arg);
321 u8 save = spi->bits_per_word;
323 spi->bits_per_word = tmp;
324 retval = spi_setup(spi);
326 spi->bits_per_word = save;
328 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
331 case SPI_IOC_WR_MAX_SPEED_HZ:
332 retval = __get_user(tmp, (__u32 __user *)arg);
334 u32 save = spi->max_speed_hz;
336 spi->max_speed_hz = tmp;
337 retval = spi_setup(spi);
339 spi->max_speed_hz = save;
341 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
346 /* segmented and/or full-duplex I/O request */
347 if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
348 || _IOC_DIR(cmd) != _IOC_WRITE)
351 tmp = _IOC_SIZE(cmd);
352 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
356 n_ioc = tmp / sizeof(struct spi_ioc_transfer);
360 /* copy into scratch area */
361 ioc = kmalloc(tmp, GFP_KERNEL);
366 if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
372 /* translate to spi_message, execute */
373 retval = spidev_message(spidev, ioc, n_ioc);
380 static int spidev_open(struct inode *inode, struct file *filp)
382 struct spidev_data *spidev;
385 mutex_lock(&device_list_lock);
387 list_for_each_entry(spidev, &device_list, device_entry) {
388 if (spidev->dev.devt == inode->i_rdev) {
394 if (!spidev->buffer) {
395 spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
396 if (!spidev->buffer) {
397 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
403 filp->private_data = spidev;
404 nonseekable_open(inode, filp);
407 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
409 mutex_unlock(&device_list_lock);
413 static int spidev_release(struct inode *inode, struct file *filp)
415 struct spidev_data *spidev;
418 mutex_lock(&device_list_lock);
419 spidev = filp->private_data;
420 filp->private_data = NULL;
422 if (!spidev->users) {
423 kfree(spidev->buffer);
424 spidev->buffer = NULL;
426 mutex_unlock(&device_list_lock);
431 static struct file_operations spidev_fops = {
432 .owner = THIS_MODULE,
433 /* REVISIT switch to aio primitives, so that userspace
434 * gets more complete API coverage. It'll simplify things
435 * too, except for the locking.
437 .write = spidev_write,
439 .ioctl = spidev_ioctl,
441 .release = spidev_release,
444 /*-------------------------------------------------------------------------*/
446 /* The main reason to have this class is to make mdev/udev create the
447 * /dev/spidevB.C character device nodes exposing our userspace API.
448 * It also simplifies memory management.
451 static void spidev_classdev_release(struct device *dev)
453 struct spidev_data *spidev;
455 spidev = container_of(dev, struct spidev_data, dev);
459 static struct class spidev_class = {
461 .owner = THIS_MODULE,
462 .dev_release = spidev_classdev_release,
465 /*-------------------------------------------------------------------------*/
467 static int spidev_probe(struct spi_device *spi)
469 struct spidev_data *spidev;
473 /* Allocate driver data */
474 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
478 /* Initialize the driver data */
480 mutex_init(&spidev->buf_lock);
482 INIT_LIST_HEAD(&spidev->device_entry);
484 /* If we can allocate a minor number, hook up this device.
485 * Reusing minors is fine so long as udev or mdev is working.
487 mutex_lock(&device_list_lock);
488 minor = find_first_zero_bit(minors, N_SPI_MINORS);
489 if (minor < N_SPI_MINORS) {
490 spidev->dev.parent = &spi->dev;
491 spidev->dev.class = &spidev_class;
492 spidev->dev.devt = MKDEV(SPIDEV_MAJOR, minor);
493 snprintf(spidev->dev.bus_id, sizeof spidev->dev.bus_id,
495 spi->master->bus_num, spi->chip_select);
496 status = device_register(&spidev->dev);
498 dev_dbg(&spi->dev, "no minor number available!\n");
502 set_bit(minor, minors);
503 dev_set_drvdata(&spi->dev, spidev);
504 list_add(&spidev->device_entry, &device_list);
506 mutex_unlock(&device_list_lock);
514 static int spidev_remove(struct spi_device *spi)
516 struct spidev_data *spidev = dev_get_drvdata(&spi->dev);
518 mutex_lock(&device_list_lock);
520 list_del(&spidev->device_entry);
521 dev_set_drvdata(&spi->dev, NULL);
522 clear_bit(MINOR(spidev->dev.devt), minors);
523 device_unregister(&spidev->dev);
525 mutex_unlock(&device_list_lock);
530 static struct spi_driver spidev_spi = {
533 .owner = THIS_MODULE,
535 .probe = spidev_probe,
536 .remove = __devexit_p(spidev_remove),
538 /* NOTE: suspend/resume methods are not necessary here.
539 * We don't do anything except pass the requests to/from
540 * the underlying controller. The refrigerator handles
541 * most issues; the controller driver handles the rest.
545 /*-------------------------------------------------------------------------*/
547 static int __init spidev_init(void)
551 /* Claim our 256 reserved device numbers. Then register a class
552 * that will key udev/mdev to add/remove /dev nodes. Last, register
553 * the driver which manages those device numbers.
555 BUILD_BUG_ON(N_SPI_MINORS > 256);
556 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
560 status = class_register(&spidev_class);
562 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
566 status = spi_register_driver(&spidev_spi);
568 class_unregister(&spidev_class);
569 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
573 module_init(spidev_init);
575 static void __exit spidev_exit(void)
577 spi_unregister_driver(&spidev_spi);
578 class_unregister(&spidev_class);
579 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
581 module_exit(spidev_exit);
583 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
584 MODULE_DESCRIPTION("User mode SPI device interface");
585 MODULE_LICENSE("GPL");