x86: cleanup e820_setup_gap(), add e820_search_gap(), v2
[linux-2.6] / include / asm-x86 / system.h
1 #ifndef _ASM_X86_SYSTEM_H_
2 #define _ASM_X86_SYSTEM_H_
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 #ifdef CONFIG_X86_32
21
22 struct task_struct; /* one of the stranger aspects of C forward declarations */
23 struct task_struct *__switch_to(struct task_struct *prev,
24                                 struct task_struct *next);
25
26 /*
27  * Saving eflags is important. It switches not only IOPL between tasks,
28  * it also protects other tasks from NT leaking through sysenter etc.
29  */
30 #define switch_to(prev, next, last)                                     \
31 do {                                                                    \
32         /*                                                              \
33          * Context-switching clobbers all registers, so we clobber      \
34          * them explicitly, via unused output variables.                \
35          * (EAX and EBP is not listed because EBP is saved/restored     \
36          * explicitly for wchan access and EAX is the return value of   \
37          * __switch_to())                                               \
38          */                                                             \
39         unsigned long ebx, ecx, edx, esi, edi;                          \
40                                                                         \
41         asm volatile("pushfl\n\t"               /* save    flags */     \
42                      "pushl %%ebp\n\t"          /* save    EBP   */     \
43                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
44                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
45                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
46                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
47                      "jmp __switch_to\n"        /* regparm call  */     \
48                      "1:\t"                                             \
49                      "popl %%ebp\n\t"           /* restore EBP   */     \
50                      "popfl\n"                  /* restore flags */     \
51                                                                         \
52                      /* output parameters */                            \
53                      : [prev_sp] "=m" (prev->thread.sp),                \
54                        [prev_ip] "=m" (prev->thread.ip),                \
55                        "=a" (last),                                     \
56                                                                         \
57                        /* clobbered output registers: */                \
58                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
59                        "=S" (esi), "=D" (edi)                           \
60                                                                         \
61                        /* input parameters: */                          \
62                      : [next_sp]  "m" (next->thread.sp),                \
63                        [next_ip]  "m" (next->thread.ip),                \
64                                                                         \
65                        /* regparm parameters for __switch_to(): */      \
66                        [prev]     "a" (prev),                           \
67                        [next]     "d" (next));                          \
68 } while (0)
69
70 /*
71  * disable hlt during certain critical i/o operations
72  */
73 #define HAVE_DISABLE_HLT
74 #else
75 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
76 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
77
78 /* frame pointer must be last for get_wchan */
79 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
80 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
81
82 #define __EXTRA_CLOBBER  \
83         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
84           "r12", "r13", "r14", "r15"
85
86 /* Save restore flags to clear handle leaking NT */
87 #define switch_to(prev, next, last) \
88         asm volatile(SAVE_CONTEXT                                                   \
89              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
90              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
91              "call __switch_to\n\t"                                       \
92              ".globl thread_return\n"                                     \
93              "thread_return:\n\t"                                         \
94              "movq %%gs:%P[pda_pcurrent],%%rsi\n\t"                       \
95              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
96              LOCK_PREFIX "btr  %[tif_fork],%P[ti_flags](%%r8)\n\t"        \
97              "movq %%rax,%%rdi\n\t"                                       \
98              "jc   ret_from_fork\n\t"                                     \
99              RESTORE_CONTEXT                                              \
100              : "=a" (last)                                                \
101              : [next] "S" (next), [prev] "D" (prev),                      \
102                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
103                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
104                [tif_fork] "i" (TIF_FORK),                                 \
105                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
106                [pda_pcurrent] "i" (offsetof(struct x8664_pda, pcurrent))  \
107              : "memory", "cc" __EXTRA_CLOBBER)
108 #endif
109
110 #ifdef __KERNEL__
111 #define _set_base(addr, base) do { unsigned long __pr; \
112 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
113         "rorl $16,%%edx\n\t" \
114         "movb %%dl,%2\n\t" \
115         "movb %%dh,%3" \
116         :"=&d" (__pr) \
117         :"m" (*((addr)+2)), \
118          "m" (*((addr)+4)), \
119          "m" (*((addr)+7)), \
120          "0" (base) \
121         ); } while (0)
122
123 #define _set_limit(addr, limit) do { unsigned long __lr; \
124 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
125         "rorl $16,%%edx\n\t" \
126         "movb %2,%%dh\n\t" \
127         "andb $0xf0,%%dh\n\t" \
128         "orb %%dh,%%dl\n\t" \
129         "movb %%dl,%2" \
130         :"=&d" (__lr) \
131         :"m" (*(addr)), \
132          "m" (*((addr)+6)), \
133          "0" (limit) \
134         ); } while (0)
135
136 #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
137 #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
138
139 extern void load_gs_index(unsigned);
140
141 /*
142  * Load a segment. Fall back on loading the zero
143  * segment if something goes wrong..
144  */
145 #define loadsegment(seg, value)                 \
146         asm volatile("\n"                       \
147                      "1:\t"                     \
148                      "movl %k0,%%" #seg "\n"    \
149                      "2:\n"                     \
150                      ".section .fixup,\"ax\"\n" \
151                      "3:\t"                     \
152                      "movl %k1, %%" #seg "\n\t" \
153                      "jmp 2b\n"                 \
154                      ".previous\n"              \
155                      _ASM_EXTABLE(1b,3b)        \
156                      : :"r" (value), "r" (0) : "memory")
157
158
159 /*
160  * Save a segment register away
161  */
162 #define savesegment(seg, value)                         \
163         asm("mov %%" #seg ",%0":"=rm" (value) : : "memory")
164
165 static inline unsigned long get_limit(unsigned long segment)
166 {
167         unsigned long __limit;
168         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
169         return __limit + 1;
170 }
171
172 static inline void native_clts(void)
173 {
174         asm volatile("clts");
175 }
176
177 /*
178  * Volatile isn't enough to prevent the compiler from reordering the
179  * read/write functions for the control registers and messing everything up.
180  * A memory clobber would solve the problem, but would prevent reordering of
181  * all loads stores around it, which can hurt performance. Solution is to
182  * use a variable and mimic reads and writes to it to enforce serialization
183  */
184 static unsigned long __force_order;
185
186 static inline unsigned long native_read_cr0(void)
187 {
188         unsigned long val;
189         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
190         return val;
191 }
192
193 static inline void native_write_cr0(unsigned long val)
194 {
195         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
196 }
197
198 static inline unsigned long native_read_cr2(void)
199 {
200         unsigned long val;
201         asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
202         return val;
203 }
204
205 static inline void native_write_cr2(unsigned long val)
206 {
207         asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
208 }
209
210 static inline unsigned long native_read_cr3(void)
211 {
212         unsigned long val;
213         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
214         return val;
215 }
216
217 static inline void native_write_cr3(unsigned long val)
218 {
219         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
220 }
221
222 static inline unsigned long native_read_cr4(void)
223 {
224         unsigned long val;
225         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
226         return val;
227 }
228
229 static inline unsigned long native_read_cr4_safe(void)
230 {
231         unsigned long val;
232         /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
233          * exists, so it will never fail. */
234 #ifdef CONFIG_X86_32
235         asm volatile("1: mov %%cr4, %0\n"
236                      "2:\n"
237                      _ASM_EXTABLE(1b, 2b)
238                      : "=r" (val), "=m" (__force_order) : "0" (0));
239 #else
240         val = native_read_cr4();
241 #endif
242         return val;
243 }
244
245 static inline void native_write_cr4(unsigned long val)
246 {
247         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
248 }
249
250 #ifdef CONFIG_X86_64
251 static inline unsigned long native_read_cr8(void)
252 {
253         unsigned long cr8;
254         asm volatile("movq %%cr8,%0" : "=r" (cr8));
255         return cr8;
256 }
257
258 static inline void native_write_cr8(unsigned long val)
259 {
260         asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
261 }
262 #endif
263
264 static inline void native_wbinvd(void)
265 {
266         asm volatile("wbinvd": : :"memory");
267 }
268
269 #ifdef CONFIG_PARAVIRT
270 #include <asm/paravirt.h>
271 #else
272 #define read_cr0()      (native_read_cr0())
273 #define write_cr0(x)    (native_write_cr0(x))
274 #define read_cr2()      (native_read_cr2())
275 #define write_cr2(x)    (native_write_cr2(x))
276 #define read_cr3()      (native_read_cr3())
277 #define write_cr3(x)    (native_write_cr3(x))
278 #define read_cr4()      (native_read_cr4())
279 #define read_cr4_safe() (native_read_cr4_safe())
280 #define write_cr4(x)    (native_write_cr4(x))
281 #define wbinvd()        (native_wbinvd())
282 #ifdef CONFIG_X86_64
283 #define read_cr8()      (native_read_cr8())
284 #define write_cr8(x)    (native_write_cr8(x))
285 #endif
286
287 /* Clear the 'TS' bit */
288 #define clts()          (native_clts())
289
290 #endif/* CONFIG_PARAVIRT */
291
292 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
293
294 #endif /* __KERNEL__ */
295
296 static inline void clflush(volatile void *__p)
297 {
298         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
299 }
300
301 #define nop() asm volatile ("nop")
302
303 void disable_hlt(void);
304 void enable_hlt(void);
305
306 void cpu_idle_wait(void);
307
308 extern unsigned long arch_align_stack(unsigned long sp);
309 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
310
311 void default_idle(void);
312
313 /*
314  * Force strict CPU ordering.
315  * And yes, this is required on UP too when we're talking
316  * to devices.
317  */
318 #ifdef CONFIG_X86_32
319 /*
320  * Some non-Intel clones support out of order store. wmb() ceases to be a
321  * nop for these.
322  */
323 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
324 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
325 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
326 #else
327 #define mb()    asm volatile("mfence":::"memory")
328 #define rmb()   asm volatile("lfence":::"memory")
329 #define wmb()   asm volatile("sfence" ::: "memory")
330 #endif
331
332 /**
333  * read_barrier_depends - Flush all pending reads that subsequents reads
334  * depend on.
335  *
336  * No data-dependent reads from memory-like regions are ever reordered
337  * over this barrier.  All reads preceding this primitive are guaranteed
338  * to access memory (but not necessarily other CPUs' caches) before any
339  * reads following this primitive that depend on the data return by
340  * any of the preceding reads.  This primitive is much lighter weight than
341  * rmb() on most CPUs, and is never heavier weight than is
342  * rmb().
343  *
344  * These ordering constraints are respected by both the local CPU
345  * and the compiler.
346  *
347  * Ordering is not guaranteed by anything other than these primitives,
348  * not even by data dependencies.  See the documentation for
349  * memory_barrier() for examples and URLs to more information.
350  *
351  * For example, the following code would force ordering (the initial
352  * value of "a" is zero, "b" is one, and "p" is "&a"):
353  *
354  * <programlisting>
355  *      CPU 0                           CPU 1
356  *
357  *      b = 2;
358  *      memory_barrier();
359  *      p = &b;                         q = p;
360  *                                      read_barrier_depends();
361  *                                      d = *q;
362  * </programlisting>
363  *
364  * because the read of "*q" depends on the read of "p" and these
365  * two reads are separated by a read_barrier_depends().  However,
366  * the following code, with the same initial values for "a" and "b":
367  *
368  * <programlisting>
369  *      CPU 0                           CPU 1
370  *
371  *      a = 2;
372  *      memory_barrier();
373  *      b = 3;                          y = b;
374  *                                      read_barrier_depends();
375  *                                      x = a;
376  * </programlisting>
377  *
378  * does not enforce ordering, since there is no data dependency between
379  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
380  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
381  * in cases like this where there are no data dependencies.
382  **/
383
384 #define read_barrier_depends()  do { } while (0)
385
386 #ifdef CONFIG_SMP
387 #define smp_mb()        mb()
388 #ifdef CONFIG_X86_PPRO_FENCE
389 # define smp_rmb()      rmb()
390 #else
391 # define smp_rmb()      barrier()
392 #endif
393 #ifdef CONFIG_X86_OOSTORE
394 # define smp_wmb()      wmb()
395 #else
396 # define smp_wmb()      barrier()
397 #endif
398 #define smp_read_barrier_depends()      read_barrier_depends()
399 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
400 #else
401 #define smp_mb()        barrier()
402 #define smp_rmb()       barrier()
403 #define smp_wmb()       barrier()
404 #define smp_read_barrier_depends()      do { } while (0)
405 #define set_mb(var, value) do { var = value; barrier(); } while (0)
406 #endif
407
408 /*
409  * Stop RDTSC speculation. This is needed when you need to use RDTSC
410  * (or get_cycles or vread that possibly accesses the TSC) in a defined
411  * code region.
412  *
413  * (Could use an alternative three way for this if there was one.)
414  */
415 static inline void rdtsc_barrier(void)
416 {
417         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
418         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
419 }
420
421 #endif