2 * Intel IO-APIC support for multi-Pentium hosts.
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
40 #include <acpi/acpi_bus.h>
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
51 #include <asm/proto.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
66 #include <mach_apic.h>
67 #include <mach_apicdef.h>
69 #define __apicdebuginit(type) static type __init
72 * Is the SiS APIC rmw bug present ?
73 * -1 = don't know, 0 = no, 1 = yes
75 int sis_apic_bug = -1;
77 static DEFINE_SPINLOCK(ioapic_lock);
78 static DEFINE_SPINLOCK(vector_lock);
81 * # of IRQ routing registers
83 int nr_ioapic_registers[MAX_IO_APICS];
85 /* I/O APIC entries */
86 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
89 /* MP IRQ source entries */
90 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
92 /* # of MP IRQ source entries */
95 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
96 int mp_bus_id_to_type[MAX_MP_BUSSES];
99 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
101 int skip_ioapic_setup;
103 static int __init parse_noapic(char *str)
105 /* disable IO-APIC */
106 disable_ioapic_setup();
109 early_param("noapic", parse_noapic);
114 * This is performance-critical, we want to do it O(1)
116 * the indexing order of this array favors 1:1 mappings
117 * between pins and IRQs.
120 struct irq_pin_list {
122 struct irq_pin_list *next;
125 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
127 struct irq_pin_list *pin;
130 node = cpu_to_node(cpu);
132 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
138 struct irq_pin_list *irq_2_pin;
139 cpumask_var_t domain;
140 cpumask_var_t old_domain;
141 unsigned move_cleanup_count;
143 u8 move_in_progress : 1;
144 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
145 u8 move_desc_pending : 1;
149 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
150 #ifdef CONFIG_SPARSE_IRQ
151 static struct irq_cfg irq_cfgx[] = {
153 static struct irq_cfg irq_cfgx[NR_IRQS] = {
155 [0] = { .vector = IRQ0_VECTOR, },
156 [1] = { .vector = IRQ1_VECTOR, },
157 [2] = { .vector = IRQ2_VECTOR, },
158 [3] = { .vector = IRQ3_VECTOR, },
159 [4] = { .vector = IRQ4_VECTOR, },
160 [5] = { .vector = IRQ5_VECTOR, },
161 [6] = { .vector = IRQ6_VECTOR, },
162 [7] = { .vector = IRQ7_VECTOR, },
163 [8] = { .vector = IRQ8_VECTOR, },
164 [9] = { .vector = IRQ9_VECTOR, },
165 [10] = { .vector = IRQ10_VECTOR, },
166 [11] = { .vector = IRQ11_VECTOR, },
167 [12] = { .vector = IRQ12_VECTOR, },
168 [13] = { .vector = IRQ13_VECTOR, },
169 [14] = { .vector = IRQ14_VECTOR, },
170 [15] = { .vector = IRQ15_VECTOR, },
173 int __init arch_early_irq_init(void)
176 struct irq_desc *desc;
181 count = ARRAY_SIZE(irq_cfgx);
183 for (i = 0; i < count; i++) {
184 desc = irq_to_desc(i);
185 desc->chip_data = &cfg[i];
186 alloc_bootmem_cpumask_var(&cfg[i].domain);
187 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
188 if (i < NR_IRQS_LEGACY)
189 cpumask_setall(cfg[i].domain);
195 #ifdef CONFIG_SPARSE_IRQ
196 static struct irq_cfg *irq_cfg(unsigned int irq)
198 struct irq_cfg *cfg = NULL;
199 struct irq_desc *desc;
201 desc = irq_to_desc(irq);
203 cfg = desc->chip_data;
208 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
213 node = cpu_to_node(cpu);
215 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
217 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
220 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
222 free_cpumask_var(cfg->domain);
226 cpumask_clear(cfg->domain);
227 cpumask_clear(cfg->old_domain);
234 int arch_init_chip_data(struct irq_desc *desc, int cpu)
238 cfg = desc->chip_data;
240 desc->chip_data = get_one_free_irq_cfg(cpu);
241 if (!desc->chip_data) {
242 printk(KERN_ERR "can not alloc irq_cfg\n");
250 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
253 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
255 struct irq_pin_list *old_entry, *head, *tail, *entry;
257 cfg->irq_2_pin = NULL;
258 old_entry = old_cfg->irq_2_pin;
262 entry = get_one_free_irq_2_pin(cpu);
266 entry->apic = old_entry->apic;
267 entry->pin = old_entry->pin;
270 old_entry = old_entry->next;
272 entry = get_one_free_irq_2_pin(cpu);
280 /* still use the old one */
283 entry->apic = old_entry->apic;
284 entry->pin = old_entry->pin;
287 old_entry = old_entry->next;
291 cfg->irq_2_pin = head;
294 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
296 struct irq_pin_list *entry, *next;
298 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
301 entry = old_cfg->irq_2_pin;
308 old_cfg->irq_2_pin = NULL;
311 void arch_init_copy_chip_data(struct irq_desc *old_desc,
312 struct irq_desc *desc, int cpu)
315 struct irq_cfg *old_cfg;
317 cfg = get_one_free_irq_cfg(cpu);
322 desc->chip_data = cfg;
324 old_cfg = old_desc->chip_data;
326 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
328 init_copy_irq_2_pin(old_cfg, cfg, cpu);
331 static void free_irq_cfg(struct irq_cfg *old_cfg)
336 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
338 struct irq_cfg *old_cfg, *cfg;
340 old_cfg = old_desc->chip_data;
341 cfg = desc->chip_data;
347 free_irq_2_pin(old_cfg, cfg);
348 free_irq_cfg(old_cfg);
349 old_desc->chip_data = NULL;
354 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
356 struct irq_cfg *cfg = desc->chip_data;
358 if (!cfg->move_in_progress) {
359 /* it means that domain is not changed */
360 if (!cpumask_intersects(desc->affinity, mask))
361 cfg->move_desc_pending = 1;
367 static struct irq_cfg *irq_cfg(unsigned int irq)
369 return irq < nr_irqs ? irq_cfgx + irq : NULL;
374 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
376 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
383 unsigned int unused[3];
387 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
389 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
390 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
393 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
395 struct io_apic __iomem *io_apic = io_apic_base(apic);
396 writel(reg, &io_apic->index);
397 return readl(&io_apic->data);
400 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
402 struct io_apic __iomem *io_apic = io_apic_base(apic);
403 writel(reg, &io_apic->index);
404 writel(value, &io_apic->data);
408 * Re-write a value: to be used for read-modify-write
409 * cycles where the read already set up the index register.
411 * Older SiS APIC requires we rewrite the index register
413 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
415 struct io_apic __iomem *io_apic = io_apic_base(apic);
418 writel(reg, &io_apic->index);
419 writel(value, &io_apic->data);
422 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
424 struct irq_pin_list *entry;
427 spin_lock_irqsave(&ioapic_lock, flags);
428 entry = cfg->irq_2_pin;
436 reg = io_apic_read(entry->apic, 0x10 + pin*2);
437 /* Is the remote IRR bit set? */
438 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
439 spin_unlock_irqrestore(&ioapic_lock, flags);
446 spin_unlock_irqrestore(&ioapic_lock, flags);
452 struct { u32 w1, w2; };
453 struct IO_APIC_route_entry entry;
456 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
458 union entry_union eu;
460 spin_lock_irqsave(&ioapic_lock, flags);
461 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
462 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
463 spin_unlock_irqrestore(&ioapic_lock, flags);
468 * When we write a new IO APIC routing entry, we need to write the high
469 * word first! If the mask bit in the low word is clear, we will enable
470 * the interrupt, and we need to make sure the entry is fully populated
471 * before that happens.
474 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
476 union entry_union eu;
478 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
479 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
482 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
485 spin_lock_irqsave(&ioapic_lock, flags);
486 __ioapic_write_entry(apic, pin, e);
487 spin_unlock_irqrestore(&ioapic_lock, flags);
491 * When we mask an IO APIC routing entry, we need to write the low
492 * word first, in order to set the mask bit before we change the
495 static void ioapic_mask_entry(int apic, int pin)
498 union entry_union eu = { .entry.mask = 1 };
500 spin_lock_irqsave(&ioapic_lock, flags);
501 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
502 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
503 spin_unlock_irqrestore(&ioapic_lock, flags);
507 static void send_cleanup_vector(struct irq_cfg *cfg)
509 cpumask_var_t cleanup_mask;
511 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
513 cfg->move_cleanup_count = 0;
514 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
515 cfg->move_cleanup_count++;
516 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
517 send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
519 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
520 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
521 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
522 free_cpumask_var(cleanup_mask);
524 cfg->move_in_progress = 0;
527 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
530 struct irq_pin_list *entry;
531 u8 vector = cfg->vector;
533 entry = cfg->irq_2_pin;
542 #ifdef CONFIG_INTR_REMAP
544 * With interrupt-remapping, destination information comes
545 * from interrupt-remapping table entry.
547 if (!irq_remapped(irq))
548 io_apic_write(apic, 0x11 + pin*2, dest);
550 io_apic_write(apic, 0x11 + pin*2, dest);
552 reg = io_apic_read(apic, 0x10 + pin*2);
553 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
555 io_apic_modify(apic, 0x10 + pin*2, reg);
563 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
566 * Either sets desc->affinity to a valid value, and returns cpu_mask_to_apicid
567 * of that, or returns BAD_APICID and leaves desc->affinity untouched.
570 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
575 if (!cpumask_intersects(mask, cpu_online_mask))
579 cfg = desc->chip_data;
580 if (assign_irq_vector(irq, cfg, mask))
583 cpumask_and(desc->affinity, cfg->domain, mask);
584 set_extra_move_desc(desc, mask);
585 return cpu_mask_to_apicid_and(desc->affinity, cpu_online_mask);
589 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
597 cfg = desc->chip_data;
599 spin_lock_irqsave(&ioapic_lock, flags);
600 dest = set_desc_affinity(desc, mask);
601 if (dest != BAD_APICID) {
602 /* Only the high 8 bits are valid. */
603 dest = SET_APIC_LOGICAL_ID(dest);
604 __target_IO_APIC_irq(irq, dest, cfg);
606 spin_unlock_irqrestore(&ioapic_lock, flags);
610 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
612 struct irq_desc *desc;
614 desc = irq_to_desc(irq);
616 set_ioapic_affinity_irq_desc(desc, mask);
618 #endif /* CONFIG_SMP */
621 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
622 * shared ISA-space IRQs, so we have to support them. We are super
623 * fast in the common case, and fast for shared ISA-space IRQs.
625 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
627 struct irq_pin_list *entry;
629 entry = cfg->irq_2_pin;
631 entry = get_one_free_irq_2_pin(cpu);
633 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
637 cfg->irq_2_pin = entry;
643 while (entry->next) {
644 /* not again, please */
645 if (entry->apic == apic && entry->pin == pin)
651 entry->next = get_one_free_irq_2_pin(cpu);
658 * Reroute an IRQ to a different pin.
660 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
661 int oldapic, int oldpin,
662 int newapic, int newpin)
664 struct irq_pin_list *entry = cfg->irq_2_pin;
668 if (entry->apic == oldapic && entry->pin == oldpin) {
669 entry->apic = newapic;
672 /* every one is different, right? */
678 /* why? call replace before add? */
680 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
683 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
684 int mask_and, int mask_or,
685 void (*final)(struct irq_pin_list *entry))
688 struct irq_pin_list *entry;
690 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
693 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
696 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
702 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
704 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
708 static void io_apic_sync(struct irq_pin_list *entry)
711 * Synchronize the IO-APIC and the CPU by doing
712 * a dummy read from the IO-APIC
714 struct io_apic __iomem *io_apic;
715 io_apic = io_apic_base(entry->apic);
716 readl(&io_apic->data);
719 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
721 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
723 #else /* CONFIG_X86_32 */
724 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
726 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
729 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
731 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
732 IO_APIC_REDIR_MASKED, NULL);
735 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
737 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
738 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
740 #endif /* CONFIG_X86_32 */
742 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
744 struct irq_cfg *cfg = desc->chip_data;
749 spin_lock_irqsave(&ioapic_lock, flags);
750 __mask_IO_APIC_irq(cfg);
751 spin_unlock_irqrestore(&ioapic_lock, flags);
754 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
756 struct irq_cfg *cfg = desc->chip_data;
759 spin_lock_irqsave(&ioapic_lock, flags);
760 __unmask_IO_APIC_irq(cfg);
761 spin_unlock_irqrestore(&ioapic_lock, flags);
764 static void mask_IO_APIC_irq(unsigned int irq)
766 struct irq_desc *desc = irq_to_desc(irq);
768 mask_IO_APIC_irq_desc(desc);
770 static void unmask_IO_APIC_irq(unsigned int irq)
772 struct irq_desc *desc = irq_to_desc(irq);
774 unmask_IO_APIC_irq_desc(desc);
777 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
779 struct IO_APIC_route_entry entry;
781 /* Check delivery_mode to be sure we're not clearing an SMI pin */
782 entry = ioapic_read_entry(apic, pin);
783 if (entry.delivery_mode == dest_SMI)
786 * Disable it in the IO-APIC irq-routing table:
788 ioapic_mask_entry(apic, pin);
791 static void clear_IO_APIC (void)
795 for (apic = 0; apic < nr_ioapics; apic++)
796 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
797 clear_IO_APIC_pin(apic, pin);
800 #if !defined(CONFIG_SMP) && defined(CONFIG_X86_32)
801 void send_IPI_self(int vector)
808 apic_wait_icr_idle();
809 cfg = APIC_DM_FIXED | APIC_DEST_SELF | vector | apic->dest_logical;
811 * Send the IPI. The write to APIC_ICR fires this off.
813 apic_write(APIC_ICR, cfg);
815 #endif /* !CONFIG_SMP && CONFIG_X86_32*/
819 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
820 * specific CPU-side IRQs.
824 static int pirq_entries [MAX_PIRQS];
825 static int pirqs_enabled;
827 static int __init ioapic_pirq_setup(char *str)
830 int ints[MAX_PIRQS+1];
832 get_options(str, ARRAY_SIZE(ints), ints);
834 for (i = 0; i < MAX_PIRQS; i++)
835 pirq_entries[i] = -1;
838 apic_printk(APIC_VERBOSE, KERN_INFO
839 "PIRQ redirection, working around broken MP-BIOS.\n");
841 if (ints[0] < MAX_PIRQS)
844 for (i = 0; i < max; i++) {
845 apic_printk(APIC_VERBOSE, KERN_DEBUG
846 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
848 * PIRQs are mapped upside down, usually.
850 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
855 __setup("pirq=", ioapic_pirq_setup);
856 #endif /* CONFIG_X86_32 */
858 #ifdef CONFIG_INTR_REMAP
859 /* I/O APIC RTE contents at the OS boot up */
860 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
863 * Saves and masks all the unmasked IO-APIC RTE's
865 int save_mask_IO_APIC_setup(void)
867 union IO_APIC_reg_01 reg_01;
872 * The number of IO-APIC IRQ registers (== #pins):
874 for (apic = 0; apic < nr_ioapics; apic++) {
875 spin_lock_irqsave(&ioapic_lock, flags);
876 reg_01.raw = io_apic_read(apic, 1);
877 spin_unlock_irqrestore(&ioapic_lock, flags);
878 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
881 for (apic = 0; apic < nr_ioapics; apic++) {
882 early_ioapic_entries[apic] =
883 kzalloc(sizeof(struct IO_APIC_route_entry) *
884 nr_ioapic_registers[apic], GFP_KERNEL);
885 if (!early_ioapic_entries[apic])
889 for (apic = 0; apic < nr_ioapics; apic++)
890 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
891 struct IO_APIC_route_entry entry;
893 entry = early_ioapic_entries[apic][pin] =
894 ioapic_read_entry(apic, pin);
897 ioapic_write_entry(apic, pin, entry);
905 kfree(early_ioapic_entries[apic--]);
906 memset(early_ioapic_entries, 0,
907 ARRAY_SIZE(early_ioapic_entries));
912 void restore_IO_APIC_setup(void)
916 for (apic = 0; apic < nr_ioapics; apic++) {
917 if (!early_ioapic_entries[apic])
919 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
920 ioapic_write_entry(apic, pin,
921 early_ioapic_entries[apic][pin]);
922 kfree(early_ioapic_entries[apic]);
923 early_ioapic_entries[apic] = NULL;
927 void reinit_intr_remapped_IO_APIC(int intr_remapping)
930 * for now plain restore of previous settings.
931 * TBD: In the case of OS enabling interrupt-remapping,
932 * IO-APIC RTE's need to be setup to point to interrupt-remapping
933 * table entries. for now, do a plain restore, and wait for
934 * the setup_IO_APIC_irqs() to do proper initialization.
936 restore_IO_APIC_setup();
941 * Find the IRQ entry number of a certain pin.
943 static int find_irq_entry(int apic, int pin, int type)
947 for (i = 0; i < mp_irq_entries; i++)
948 if (mp_irqs[i].irqtype == type &&
949 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
950 mp_irqs[i].dstapic == MP_APIC_ALL) &&
951 mp_irqs[i].dstirq == pin)
958 * Find the pin to which IRQ[irq] (ISA) is connected
960 static int __init find_isa_irq_pin(int irq, int type)
964 for (i = 0; i < mp_irq_entries; i++) {
965 int lbus = mp_irqs[i].srcbus;
967 if (test_bit(lbus, mp_bus_not_pci) &&
968 (mp_irqs[i].irqtype == type) &&
969 (mp_irqs[i].srcbusirq == irq))
971 return mp_irqs[i].dstirq;
976 static int __init find_isa_irq_apic(int irq, int type)
980 for (i = 0; i < mp_irq_entries; i++) {
981 int lbus = mp_irqs[i].srcbus;
983 if (test_bit(lbus, mp_bus_not_pci) &&
984 (mp_irqs[i].irqtype == type) &&
985 (mp_irqs[i].srcbusirq == irq))
988 if (i < mp_irq_entries) {
990 for(apic = 0; apic < nr_ioapics; apic++) {
991 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
1000 * Find a specific PCI IRQ entry.
1001 * Not an __init, possibly needed by modules
1003 static int pin_2_irq(int idx, int apic, int pin);
1005 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1007 int apic, i, best_guess = -1;
1009 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1011 if (test_bit(bus, mp_bus_not_pci)) {
1012 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1015 for (i = 0; i < mp_irq_entries; i++) {
1016 int lbus = mp_irqs[i].srcbus;
1018 for (apic = 0; apic < nr_ioapics; apic++)
1019 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1020 mp_irqs[i].dstapic == MP_APIC_ALL)
1023 if (!test_bit(lbus, mp_bus_not_pci) &&
1024 !mp_irqs[i].irqtype &&
1026 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1027 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1029 if (!(apic || IO_APIC_IRQ(irq)))
1032 if (pin == (mp_irqs[i].srcbusirq & 3))
1035 * Use the first all-but-pin matching entry as a
1036 * best-guess fuzzy result for broken mptables.
1045 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1047 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1049 * EISA Edge/Level control register, ELCR
1051 static int EISA_ELCR(unsigned int irq)
1053 if (irq < NR_IRQS_LEGACY) {
1054 unsigned int port = 0x4d0 + (irq >> 3);
1055 return (inb(port) >> (irq & 7)) & 1;
1057 apic_printk(APIC_VERBOSE, KERN_INFO
1058 "Broken MPtable reports ISA irq %d\n", irq);
1064 /* ISA interrupts are always polarity zero edge triggered,
1065 * when listed as conforming in the MP table. */
1067 #define default_ISA_trigger(idx) (0)
1068 #define default_ISA_polarity(idx) (0)
1070 /* EISA interrupts are always polarity zero and can be edge or level
1071 * trigger depending on the ELCR value. If an interrupt is listed as
1072 * EISA conforming in the MP table, that means its trigger type must
1073 * be read in from the ELCR */
1075 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
1076 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
1078 /* PCI interrupts are always polarity one level triggered,
1079 * when listed as conforming in the MP table. */
1081 #define default_PCI_trigger(idx) (1)
1082 #define default_PCI_polarity(idx) (1)
1084 /* MCA interrupts are always polarity zero level triggered,
1085 * when listed as conforming in the MP table. */
1087 #define default_MCA_trigger(idx) (1)
1088 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1090 static int MPBIOS_polarity(int idx)
1092 int bus = mp_irqs[idx].srcbus;
1096 * Determine IRQ line polarity (high active or low active):
1098 switch (mp_irqs[idx].irqflag & 3)
1100 case 0: /* conforms, ie. bus-type dependent polarity */
1101 if (test_bit(bus, mp_bus_not_pci))
1102 polarity = default_ISA_polarity(idx);
1104 polarity = default_PCI_polarity(idx);
1106 case 1: /* high active */
1111 case 2: /* reserved */
1113 printk(KERN_WARNING "broken BIOS!!\n");
1117 case 3: /* low active */
1122 default: /* invalid */
1124 printk(KERN_WARNING "broken BIOS!!\n");
1132 static int MPBIOS_trigger(int idx)
1134 int bus = mp_irqs[idx].srcbus;
1138 * Determine IRQ trigger mode (edge or level sensitive):
1140 switch ((mp_irqs[idx].irqflag>>2) & 3)
1142 case 0: /* conforms, ie. bus-type dependent */
1143 if (test_bit(bus, mp_bus_not_pci))
1144 trigger = default_ISA_trigger(idx);
1146 trigger = default_PCI_trigger(idx);
1147 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1148 switch (mp_bus_id_to_type[bus]) {
1149 case MP_BUS_ISA: /* ISA pin */
1151 /* set before the switch */
1154 case MP_BUS_EISA: /* EISA pin */
1156 trigger = default_EISA_trigger(idx);
1159 case MP_BUS_PCI: /* PCI pin */
1161 /* set before the switch */
1164 case MP_BUS_MCA: /* MCA pin */
1166 trigger = default_MCA_trigger(idx);
1171 printk(KERN_WARNING "broken BIOS!!\n");
1183 case 2: /* reserved */
1185 printk(KERN_WARNING "broken BIOS!!\n");
1194 default: /* invalid */
1196 printk(KERN_WARNING "broken BIOS!!\n");
1204 static inline int irq_polarity(int idx)
1206 return MPBIOS_polarity(idx);
1209 static inline int irq_trigger(int idx)
1211 return MPBIOS_trigger(idx);
1214 int (*ioapic_renumber_irq)(int ioapic, int irq);
1215 static int pin_2_irq(int idx, int apic, int pin)
1218 int bus = mp_irqs[idx].srcbus;
1221 * Debugging check, we are in big trouble if this message pops up!
1223 if (mp_irqs[idx].dstirq != pin)
1224 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1226 if (test_bit(bus, mp_bus_not_pci)) {
1227 irq = mp_irqs[idx].srcbusirq;
1230 * PCI IRQs are mapped in order
1234 irq += nr_ioapic_registers[i++];
1237 * For MPS mode, so far only needed by ES7000 platform
1239 if (ioapic_renumber_irq)
1240 irq = ioapic_renumber_irq(apic, irq);
1243 #ifdef CONFIG_X86_32
1245 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1247 if ((pin >= 16) && (pin <= 23)) {
1248 if (pirq_entries[pin-16] != -1) {
1249 if (!pirq_entries[pin-16]) {
1250 apic_printk(APIC_VERBOSE, KERN_DEBUG
1251 "disabling PIRQ%d\n", pin-16);
1253 irq = pirq_entries[pin-16];
1254 apic_printk(APIC_VERBOSE, KERN_DEBUG
1255 "using PIRQ%d -> IRQ %d\n",
1265 void lock_vector_lock(void)
1267 /* Used to the online set of cpus does not change
1268 * during assign_irq_vector.
1270 spin_lock(&vector_lock);
1273 void unlock_vector_lock(void)
1275 spin_unlock(&vector_lock);
1279 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1282 * NOTE! The local APIC isn't very good at handling
1283 * multiple interrupts at the same interrupt level.
1284 * As the interrupt level is determined by taking the
1285 * vector number and shifting that right by 4, we
1286 * want to spread these out a bit so that they don't
1287 * all fall in the same interrupt level.
1289 * Also, we've got to be careful not to trash gate
1290 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1292 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1293 unsigned int old_vector;
1295 cpumask_var_t tmp_mask;
1297 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1300 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1303 old_vector = cfg->vector;
1305 cpumask_and(tmp_mask, mask, cpu_online_mask);
1306 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1307 if (!cpumask_empty(tmp_mask)) {
1308 free_cpumask_var(tmp_mask);
1313 /* Only try and allocate irqs on cpus that are present */
1315 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1319 apic->vector_allocation_domain(cpu, tmp_mask);
1321 vector = current_vector;
1322 offset = current_offset;
1325 if (vector >= first_system_vector) {
1326 /* If out of vectors on large boxen, must share them. */
1327 offset = (offset + 1) % 8;
1328 vector = FIRST_DEVICE_VECTOR + offset;
1330 if (unlikely(current_vector == vector))
1333 if (test_bit(vector, used_vectors))
1336 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1337 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1340 current_vector = vector;
1341 current_offset = offset;
1343 cfg->move_in_progress = 1;
1344 cpumask_copy(cfg->old_domain, cfg->domain);
1346 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1347 per_cpu(vector_irq, new_cpu)[vector] = irq;
1348 cfg->vector = vector;
1349 cpumask_copy(cfg->domain, tmp_mask);
1353 free_cpumask_var(tmp_mask);
1358 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1361 unsigned long flags;
1363 spin_lock_irqsave(&vector_lock, flags);
1364 err = __assign_irq_vector(irq, cfg, mask);
1365 spin_unlock_irqrestore(&vector_lock, flags);
1369 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1373 BUG_ON(!cfg->vector);
1375 vector = cfg->vector;
1376 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1377 per_cpu(vector_irq, cpu)[vector] = -1;
1380 cpumask_clear(cfg->domain);
1382 if (likely(!cfg->move_in_progress))
1384 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1385 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1387 if (per_cpu(vector_irq, cpu)[vector] != irq)
1389 per_cpu(vector_irq, cpu)[vector] = -1;
1393 cfg->move_in_progress = 0;
1396 void __setup_vector_irq(int cpu)
1398 /* Initialize vector_irq on a new cpu */
1399 /* This function must be called with vector_lock held */
1401 struct irq_cfg *cfg;
1402 struct irq_desc *desc;
1404 /* Mark the inuse vectors */
1405 for_each_irq_desc(irq, desc) {
1406 cfg = desc->chip_data;
1407 if (!cpumask_test_cpu(cpu, cfg->domain))
1409 vector = cfg->vector;
1410 per_cpu(vector_irq, cpu)[vector] = irq;
1412 /* Mark the free vectors */
1413 for (vector = 0; vector < NR_VECTORS; ++vector) {
1414 irq = per_cpu(vector_irq, cpu)[vector];
1419 if (!cpumask_test_cpu(cpu, cfg->domain))
1420 per_cpu(vector_irq, cpu)[vector] = -1;
1424 static struct irq_chip ioapic_chip;
1425 #ifdef CONFIG_INTR_REMAP
1426 static struct irq_chip ir_ioapic_chip;
1429 #define IOAPIC_AUTO -1
1430 #define IOAPIC_EDGE 0
1431 #define IOAPIC_LEVEL 1
1433 #ifdef CONFIG_X86_32
1434 static inline int IO_APIC_irq_trigger(int irq)
1438 for (apic = 0; apic < nr_ioapics; apic++) {
1439 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1440 idx = find_irq_entry(apic, pin, mp_INT);
1441 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1442 return irq_trigger(idx);
1446 * nonexistent IRQs are edge default
1451 static inline int IO_APIC_irq_trigger(int irq)
1457 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1460 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1461 trigger == IOAPIC_LEVEL)
1462 desc->status |= IRQ_LEVEL;
1464 desc->status &= ~IRQ_LEVEL;
1466 #ifdef CONFIG_INTR_REMAP
1467 if (irq_remapped(irq)) {
1468 desc->status |= IRQ_MOVE_PCNTXT;
1470 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1474 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1475 handle_edge_irq, "edge");
1479 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1480 trigger == IOAPIC_LEVEL)
1481 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1485 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1486 handle_edge_irq, "edge");
1489 static int setup_ioapic_entry(int apic_id, int irq,
1490 struct IO_APIC_route_entry *entry,
1491 unsigned int destination, int trigger,
1492 int polarity, int vector)
1495 * add it to the IO-APIC irq-routing table:
1497 memset(entry,0,sizeof(*entry));
1499 #ifdef CONFIG_INTR_REMAP
1500 if (intr_remapping_enabled) {
1501 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1503 struct IR_IO_APIC_route_entry *ir_entry =
1504 (struct IR_IO_APIC_route_entry *) entry;
1508 panic("No mapping iommu for ioapic %d\n", apic_id);
1510 index = alloc_irte(iommu, irq, 1);
1512 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1514 memset(&irte, 0, sizeof(irte));
1517 irte.dst_mode = apic->irq_dest_mode;
1518 irte.trigger_mode = trigger;
1519 irte.dlvry_mode = apic->irq_delivery_mode;
1520 irte.vector = vector;
1521 irte.dest_id = IRTE_DEST(destination);
1523 modify_irte(irq, &irte);
1525 ir_entry->index2 = (index >> 15) & 0x1;
1527 ir_entry->format = 1;
1528 ir_entry->index = (index & 0x7fff);
1532 entry->delivery_mode = apic->irq_delivery_mode;
1533 entry->dest_mode = apic->irq_dest_mode;
1534 entry->dest = destination;
1537 entry->mask = 0; /* enable IRQ */
1538 entry->trigger = trigger;
1539 entry->polarity = polarity;
1540 entry->vector = vector;
1542 /* Mask level triggered irqs.
1543 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1550 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1551 int trigger, int polarity)
1553 struct irq_cfg *cfg;
1554 struct IO_APIC_route_entry entry;
1557 if (!IO_APIC_IRQ(irq))
1560 cfg = desc->chip_data;
1562 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1565 dest = cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1567 apic_printk(APIC_VERBOSE,KERN_DEBUG
1568 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1569 "IRQ %d Mode:%i Active:%i)\n",
1570 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1571 irq, trigger, polarity);
1574 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1575 dest, trigger, polarity, cfg->vector)) {
1576 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1577 mp_ioapics[apic_id].apicid, pin);
1578 __clear_irq_vector(irq, cfg);
1582 ioapic_register_intr(irq, desc, trigger);
1583 if (irq < NR_IRQS_LEGACY)
1584 disable_8259A_irq(irq);
1586 ioapic_write_entry(apic_id, pin, entry);
1589 static void __init setup_IO_APIC_irqs(void)
1591 int apic_id, pin, idx, irq;
1593 struct irq_desc *desc;
1594 struct irq_cfg *cfg;
1595 int cpu = boot_cpu_id;
1597 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1599 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1600 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1602 idx = find_irq_entry(apic_id, pin, mp_INT);
1606 apic_printk(APIC_VERBOSE,
1607 KERN_DEBUG " %d-%d",
1608 mp_ioapics[apic_id].apicid, pin);
1610 apic_printk(APIC_VERBOSE, " %d-%d",
1611 mp_ioapics[apic_id].apicid, pin);
1615 apic_printk(APIC_VERBOSE,
1616 " (apicid-pin) not connected\n");
1620 irq = pin_2_irq(idx, apic_id, pin);
1623 * Skip the timer IRQ if there's a quirk handler
1624 * installed and if it returns 1:
1626 if (apic->multi_timer_check &&
1627 apic->multi_timer_check(apic_id, irq))
1630 desc = irq_to_desc_alloc_cpu(irq, cpu);
1632 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1635 cfg = desc->chip_data;
1636 add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1638 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1639 irq_trigger(idx), irq_polarity(idx));
1644 apic_printk(APIC_VERBOSE,
1645 " (apicid-pin) not connected\n");
1649 * Set up the timer pin, possibly with the 8259A-master behind.
1651 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1654 struct IO_APIC_route_entry entry;
1656 #ifdef CONFIG_INTR_REMAP
1657 if (intr_remapping_enabled)
1661 memset(&entry, 0, sizeof(entry));
1664 * We use logical delivery to get the timer IRQ
1667 entry.dest_mode = apic->irq_dest_mode;
1668 entry.mask = 1; /* mask IRQ now */
1669 entry.dest = cpu_mask_to_apicid(apic->target_cpus());
1670 entry.delivery_mode = apic->irq_delivery_mode;
1673 entry.vector = vector;
1676 * The timer IRQ doesn't have to know that behind the
1677 * scene we may have a 8259A-master in AEOI mode ...
1679 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1682 * Add it to the IO-APIC irq-routing table:
1684 ioapic_write_entry(apic_id, pin, entry);
1688 __apicdebuginit(void) print_IO_APIC(void)
1691 union IO_APIC_reg_00 reg_00;
1692 union IO_APIC_reg_01 reg_01;
1693 union IO_APIC_reg_02 reg_02;
1694 union IO_APIC_reg_03 reg_03;
1695 unsigned long flags;
1696 struct irq_cfg *cfg;
1697 struct irq_desc *desc;
1700 if (apic_verbosity == APIC_QUIET)
1703 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1704 for (i = 0; i < nr_ioapics; i++)
1705 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1706 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1709 * We are a bit conservative about what we expect. We have to
1710 * know about every hardware change ASAP.
1712 printk(KERN_INFO "testing the IO APIC.......................\n");
1714 for (apic = 0; apic < nr_ioapics; apic++) {
1716 spin_lock_irqsave(&ioapic_lock, flags);
1717 reg_00.raw = io_apic_read(apic, 0);
1718 reg_01.raw = io_apic_read(apic, 1);
1719 if (reg_01.bits.version >= 0x10)
1720 reg_02.raw = io_apic_read(apic, 2);
1721 if (reg_01.bits.version >= 0x20)
1722 reg_03.raw = io_apic_read(apic, 3);
1723 spin_unlock_irqrestore(&ioapic_lock, flags);
1726 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1727 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1728 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1729 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1730 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1732 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01);
1733 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1735 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1736 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1739 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1740 * but the value of reg_02 is read as the previous read register
1741 * value, so ignore it if reg_02 == reg_01.
1743 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1744 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1745 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1749 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1750 * or reg_03, but the value of reg_0[23] is read as the previous read
1751 * register value, so ignore it if reg_03 == reg_0[12].
1753 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1754 reg_03.raw != reg_01.raw) {
1755 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1756 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1759 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1761 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1762 " Stat Dmod Deli Vect: \n");
1764 for (i = 0; i <= reg_01.bits.entries; i++) {
1765 struct IO_APIC_route_entry entry;
1767 entry = ioapic_read_entry(apic, i);
1769 printk(KERN_DEBUG " %02x %03X ",
1774 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1779 entry.delivery_status,
1781 entry.delivery_mode,
1786 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1787 for_each_irq_desc(irq, desc) {
1788 struct irq_pin_list *entry;
1790 cfg = desc->chip_data;
1791 entry = cfg->irq_2_pin;
1794 printk(KERN_DEBUG "IRQ%d ", irq);
1796 printk("-> %d:%d", entry->apic, entry->pin);
1799 entry = entry->next;
1804 printk(KERN_INFO ".................................... done.\n");
1809 __apicdebuginit(void) print_APIC_bitfield(int base)
1814 if (apic_verbosity == APIC_QUIET)
1817 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1818 for (i = 0; i < 8; i++) {
1819 v = apic_read(base + i*0x10);
1820 for (j = 0; j < 32; j++) {
1830 __apicdebuginit(void) print_local_APIC(void *dummy)
1832 unsigned int v, ver, maxlvt;
1835 if (apic_verbosity == APIC_QUIET)
1838 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1839 smp_processor_id(), hard_smp_processor_id());
1840 v = apic_read(APIC_ID);
1841 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1842 v = apic_read(APIC_LVR);
1843 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1844 ver = GET_APIC_VERSION(v);
1845 maxlvt = lapic_get_maxlvt();
1847 v = apic_read(APIC_TASKPRI);
1848 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1850 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1851 if (!APIC_XAPIC(ver)) {
1852 v = apic_read(APIC_ARBPRI);
1853 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1854 v & APIC_ARBPRI_MASK);
1856 v = apic_read(APIC_PROCPRI);
1857 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1861 * Remote read supported only in the 82489DX and local APIC for
1862 * Pentium processors.
1864 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1865 v = apic_read(APIC_RRR);
1866 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1869 v = apic_read(APIC_LDR);
1870 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1871 if (!x2apic_enabled()) {
1872 v = apic_read(APIC_DFR);
1873 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1875 v = apic_read(APIC_SPIV);
1876 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1878 printk(KERN_DEBUG "... APIC ISR field:\n");
1879 print_APIC_bitfield(APIC_ISR);
1880 printk(KERN_DEBUG "... APIC TMR field:\n");
1881 print_APIC_bitfield(APIC_TMR);
1882 printk(KERN_DEBUG "... APIC IRR field:\n");
1883 print_APIC_bitfield(APIC_IRR);
1885 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1886 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1887 apic_write(APIC_ESR, 0);
1889 v = apic_read(APIC_ESR);
1890 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1893 icr = apic_icr_read();
1894 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1895 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1897 v = apic_read(APIC_LVTT);
1898 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1900 if (maxlvt > 3) { /* PC is LVT#4. */
1901 v = apic_read(APIC_LVTPC);
1902 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1904 v = apic_read(APIC_LVT0);
1905 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1906 v = apic_read(APIC_LVT1);
1907 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1909 if (maxlvt > 2) { /* ERR is LVT#3. */
1910 v = apic_read(APIC_LVTERR);
1911 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1914 v = apic_read(APIC_TMICT);
1915 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1916 v = apic_read(APIC_TMCCT);
1917 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1918 v = apic_read(APIC_TDCR);
1919 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1923 __apicdebuginit(void) print_all_local_APICs(void)
1928 for_each_online_cpu(cpu)
1929 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1933 __apicdebuginit(void) print_PIC(void)
1936 unsigned long flags;
1938 if (apic_verbosity == APIC_QUIET)
1941 printk(KERN_DEBUG "\nprinting PIC contents\n");
1943 spin_lock_irqsave(&i8259A_lock, flags);
1945 v = inb(0xa1) << 8 | inb(0x21);
1946 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1948 v = inb(0xa0) << 8 | inb(0x20);
1949 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1953 v = inb(0xa0) << 8 | inb(0x20);
1957 spin_unlock_irqrestore(&i8259A_lock, flags);
1959 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1961 v = inb(0x4d1) << 8 | inb(0x4d0);
1962 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1965 __apicdebuginit(int) print_all_ICs(void)
1968 print_all_local_APICs();
1974 fs_initcall(print_all_ICs);
1977 /* Where if anywhere is the i8259 connect in external int mode */
1978 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1980 void __init enable_IO_APIC(void)
1982 union IO_APIC_reg_01 reg_01;
1983 int i8259_apic, i8259_pin;
1985 unsigned long flags;
1987 #ifdef CONFIG_X86_32
1990 for (i = 0; i < MAX_PIRQS; i++)
1991 pirq_entries[i] = -1;
1995 * The number of IO-APIC IRQ registers (== #pins):
1997 for (apic = 0; apic < nr_ioapics; apic++) {
1998 spin_lock_irqsave(&ioapic_lock, flags);
1999 reg_01.raw = io_apic_read(apic, 1);
2000 spin_unlock_irqrestore(&ioapic_lock, flags);
2001 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2003 for(apic = 0; apic < nr_ioapics; apic++) {
2005 /* See if any of the pins is in ExtINT mode */
2006 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2007 struct IO_APIC_route_entry entry;
2008 entry = ioapic_read_entry(apic, pin);
2010 /* If the interrupt line is enabled and in ExtInt mode
2011 * I have found the pin where the i8259 is connected.
2013 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2014 ioapic_i8259.apic = apic;
2015 ioapic_i8259.pin = pin;
2021 /* Look to see what if the MP table has reported the ExtINT */
2022 /* If we could not find the appropriate pin by looking at the ioapic
2023 * the i8259 probably is not connected the ioapic but give the
2024 * mptable a chance anyway.
2026 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
2027 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2028 /* Trust the MP table if nothing is setup in the hardware */
2029 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2030 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2031 ioapic_i8259.pin = i8259_pin;
2032 ioapic_i8259.apic = i8259_apic;
2034 /* Complain if the MP table and the hardware disagree */
2035 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2036 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2038 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2042 * Do not trust the IO-APIC being empty at bootup
2048 * Not an __init, needed by the reboot code
2050 void disable_IO_APIC(void)
2053 * Clear the IO-APIC before rebooting:
2058 * If the i8259 is routed through an IOAPIC
2059 * Put that IOAPIC in virtual wire mode
2060 * so legacy interrupts can be delivered.
2062 if (ioapic_i8259.pin != -1) {
2063 struct IO_APIC_route_entry entry;
2065 memset(&entry, 0, sizeof(entry));
2066 entry.mask = 0; /* Enabled */
2067 entry.trigger = 0; /* Edge */
2069 entry.polarity = 0; /* High */
2070 entry.delivery_status = 0;
2071 entry.dest_mode = 0; /* Physical */
2072 entry.delivery_mode = dest_ExtINT; /* ExtInt */
2074 entry.dest = read_apic_id();
2077 * Add it to the IO-APIC irq-routing table:
2079 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2082 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
2085 #ifdef CONFIG_X86_32
2087 * function to set the IO-APIC physical IDs based on the
2088 * values stored in the MPC table.
2090 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2093 static void __init setup_ioapic_ids_from_mpc(void)
2095 union IO_APIC_reg_00 reg_00;
2096 physid_mask_t phys_id_present_map;
2099 unsigned char old_id;
2100 unsigned long flags;
2102 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2106 * Don't check I/O APIC IDs for xAPIC systems. They have
2107 * no meaning without the serial APIC bus.
2109 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2110 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2113 * This is broken; anything with a real cpu count has to
2114 * circumvent this idiocy regardless.
2116 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2119 * Set the IOAPIC ID to the value stored in the MPC table.
2121 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2123 /* Read the register 0 value */
2124 spin_lock_irqsave(&ioapic_lock, flags);
2125 reg_00.raw = io_apic_read(apic_id, 0);
2126 spin_unlock_irqrestore(&ioapic_lock, flags);
2128 old_id = mp_ioapics[apic_id].apicid;
2130 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2131 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2132 apic_id, mp_ioapics[apic_id].apicid);
2133 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2135 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2139 * Sanity check, is the ID really free? Every APIC in a
2140 * system must have a unique ID or we get lots of nice
2141 * 'stuck on smp_invalidate_needed IPI wait' messages.
2143 if (apic->check_apicid_used(phys_id_present_map,
2144 mp_ioapics[apic_id].apicid)) {
2145 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2146 apic_id, mp_ioapics[apic_id].apicid);
2147 for (i = 0; i < get_physical_broadcast(); i++)
2148 if (!physid_isset(i, phys_id_present_map))
2150 if (i >= get_physical_broadcast())
2151 panic("Max APIC ID exceeded!\n");
2152 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2154 physid_set(i, phys_id_present_map);
2155 mp_ioapics[apic_id].apicid = i;
2158 tmp = apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2159 apic_printk(APIC_VERBOSE, "Setting %d in the "
2160 "phys_id_present_map\n",
2161 mp_ioapics[apic_id].apicid);
2162 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2167 * We need to adjust the IRQ routing table
2168 * if the ID changed.
2170 if (old_id != mp_ioapics[apic_id].apicid)
2171 for (i = 0; i < mp_irq_entries; i++)
2172 if (mp_irqs[i].dstapic == old_id)
2174 = mp_ioapics[apic_id].apicid;
2177 * Read the right value from the MPC table and
2178 * write it into the ID register.
2180 apic_printk(APIC_VERBOSE, KERN_INFO
2181 "...changing IO-APIC physical APIC ID to %d ...",
2182 mp_ioapics[apic_id].apicid);
2184 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2185 spin_lock_irqsave(&ioapic_lock, flags);
2186 io_apic_write(apic_id, 0, reg_00.raw);
2187 spin_unlock_irqrestore(&ioapic_lock, flags);
2192 spin_lock_irqsave(&ioapic_lock, flags);
2193 reg_00.raw = io_apic_read(apic_id, 0);
2194 spin_unlock_irqrestore(&ioapic_lock, flags);
2195 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2196 printk("could not set ID!\n");
2198 apic_printk(APIC_VERBOSE, " ok.\n");
2203 int no_timer_check __initdata;
2205 static int __init notimercheck(char *s)
2210 __setup("no_timer_check", notimercheck);
2213 * There is a nasty bug in some older SMP boards, their mptable lies
2214 * about the timer IRQ. We do the following to work around the situation:
2216 * - timer IRQ defaults to IO-APIC IRQ
2217 * - if this function detects that timer IRQs are defunct, then we fall
2218 * back to ISA timer IRQs
2220 static int __init timer_irq_works(void)
2222 unsigned long t1 = jiffies;
2223 unsigned long flags;
2228 local_save_flags(flags);
2230 /* Let ten ticks pass... */
2231 mdelay((10 * 1000) / HZ);
2232 local_irq_restore(flags);
2235 * Expect a few ticks at least, to be sure some possible
2236 * glue logic does not lock up after one or two first
2237 * ticks in a non-ExtINT mode. Also the local APIC
2238 * might have cached one ExtINT interrupt. Finally, at
2239 * least one tick may be lost due to delays.
2243 if (time_after(jiffies, t1 + 4))
2249 * In the SMP+IOAPIC case it might happen that there are an unspecified
2250 * number of pending IRQ events unhandled. These cases are very rare,
2251 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2252 * better to do it this way as thus we do not have to be aware of
2253 * 'pending' interrupts in the IRQ path, except at this point.
2256 * Edge triggered needs to resend any interrupt
2257 * that was delayed but this is now handled in the device
2262 * Starting up a edge-triggered IO-APIC interrupt is
2263 * nasty - we need to make sure that we get the edge.
2264 * If it is already asserted for some reason, we need
2265 * return 1 to indicate that is was pending.
2267 * This is not complete - we should be able to fake
2268 * an edge even if it isn't on the 8259A...
2271 static unsigned int startup_ioapic_irq(unsigned int irq)
2273 int was_pending = 0;
2274 unsigned long flags;
2275 struct irq_cfg *cfg;
2277 spin_lock_irqsave(&ioapic_lock, flags);
2278 if (irq < NR_IRQS_LEGACY) {
2279 disable_8259A_irq(irq);
2280 if (i8259A_irq_pending(irq))
2284 __unmask_IO_APIC_irq(cfg);
2285 spin_unlock_irqrestore(&ioapic_lock, flags);
2290 #ifdef CONFIG_X86_64
2291 static int ioapic_retrigger_irq(unsigned int irq)
2294 struct irq_cfg *cfg = irq_cfg(irq);
2295 unsigned long flags;
2297 spin_lock_irqsave(&vector_lock, flags);
2298 send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2299 spin_unlock_irqrestore(&vector_lock, flags);
2304 static int ioapic_retrigger_irq(unsigned int irq)
2306 send_IPI_self(irq_cfg(irq)->vector);
2313 * Level and edge triggered IO-APIC interrupts need different handling,
2314 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2315 * handled with the level-triggered descriptor, but that one has slightly
2316 * more overhead. Level-triggered interrupts cannot be handled with the
2317 * edge-triggered handler, without risking IRQ storms and other ugly
2323 #ifdef CONFIG_INTR_REMAP
2324 static void ir_irq_migration(struct work_struct *work);
2326 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
2329 * Migrate the IO-APIC irq in the presence of intr-remapping.
2331 * For edge triggered, irq migration is a simple atomic update(of vector
2332 * and cpu destination) of IRTE and flush the hardware cache.
2334 * For level triggered, we need to modify the io-apic RTE aswell with the update
2335 * vector information, along with modifying IRTE with vector and destination.
2336 * So irq migration for level triggered is little bit more complex compared to
2337 * edge triggered migration. But the good news is, we use the same algorithm
2338 * for level triggered migration as we have today, only difference being,
2339 * we now initiate the irq migration from process context instead of the
2340 * interrupt context.
2342 * In future, when we do a directed EOI (combined with cpu EOI broadcast
2343 * suppression) to the IO-APIC, level triggered irq migration will also be
2344 * as simple as edge triggered migration and we can do the irq migration
2345 * with a simple atomic update to IO-APIC RTE.
2348 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2350 struct irq_cfg *cfg;
2352 int modify_ioapic_rte;
2354 unsigned long flags;
2357 if (!cpumask_intersects(mask, cpu_online_mask))
2361 if (get_irte(irq, &irte))
2364 cfg = desc->chip_data;
2365 if (assign_irq_vector(irq, cfg, mask))
2368 set_extra_move_desc(desc, mask);
2370 dest = cpu_mask_to_apicid_and(cfg->domain, mask);
2372 modify_ioapic_rte = desc->status & IRQ_LEVEL;
2373 if (modify_ioapic_rte) {
2374 spin_lock_irqsave(&ioapic_lock, flags);
2375 __target_IO_APIC_irq(irq, dest, cfg);
2376 spin_unlock_irqrestore(&ioapic_lock, flags);
2379 irte.vector = cfg->vector;
2380 irte.dest_id = IRTE_DEST(dest);
2383 * Modified the IRTE and flushes the Interrupt entry cache.
2385 modify_irte(irq, &irte);
2387 if (cfg->move_in_progress)
2388 send_cleanup_vector(cfg);
2390 cpumask_copy(desc->affinity, mask);
2393 static int migrate_irq_remapped_level_desc(struct irq_desc *desc)
2396 struct irq_cfg *cfg = desc->chip_data;
2398 mask_IO_APIC_irq_desc(desc);
2400 if (io_apic_level_ack_pending(cfg)) {
2402 * Interrupt in progress. Migrating irq now will change the
2403 * vector information in the IO-APIC RTE and that will confuse
2404 * the EOI broadcast performed by cpu.
2405 * So, delay the irq migration to the next instance.
2407 schedule_delayed_work(&ir_migration_work, 1);
2411 /* everthing is clear. we have right of way */
2412 migrate_ioapic_irq_desc(desc, desc->pending_mask);
2415 desc->status &= ~IRQ_MOVE_PENDING;
2416 cpumask_clear(desc->pending_mask);
2419 unmask_IO_APIC_irq_desc(desc);
2424 static void ir_irq_migration(struct work_struct *work)
2427 struct irq_desc *desc;
2429 for_each_irq_desc(irq, desc) {
2430 if (desc->status & IRQ_MOVE_PENDING) {
2431 unsigned long flags;
2433 spin_lock_irqsave(&desc->lock, flags);
2434 if (!desc->chip->set_affinity ||
2435 !(desc->status & IRQ_MOVE_PENDING)) {
2436 desc->status &= ~IRQ_MOVE_PENDING;
2437 spin_unlock_irqrestore(&desc->lock, flags);
2441 desc->chip->set_affinity(irq, desc->pending_mask);
2442 spin_unlock_irqrestore(&desc->lock, flags);
2448 * Migrates the IRQ destination in the process context.
2450 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2451 const struct cpumask *mask)
2453 if (desc->status & IRQ_LEVEL) {
2454 desc->status |= IRQ_MOVE_PENDING;
2455 cpumask_copy(desc->pending_mask, mask);
2456 migrate_irq_remapped_level_desc(desc);
2460 migrate_ioapic_irq_desc(desc, mask);
2462 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2463 const struct cpumask *mask)
2465 struct irq_desc *desc = irq_to_desc(irq);
2467 set_ir_ioapic_affinity_irq_desc(desc, mask);
2471 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2473 unsigned vector, me;
2479 me = smp_processor_id();
2480 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2482 struct irq_desc *desc;
2483 struct irq_cfg *cfg;
2484 irq = __get_cpu_var(vector_irq)[vector];
2489 desc = irq_to_desc(irq);
2494 spin_lock(&desc->lock);
2495 if (!cfg->move_cleanup_count)
2498 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2501 __get_cpu_var(vector_irq)[vector] = -1;
2502 cfg->move_cleanup_count--;
2504 spin_unlock(&desc->lock);
2510 static void irq_complete_move(struct irq_desc **descp)
2512 struct irq_desc *desc = *descp;
2513 struct irq_cfg *cfg = desc->chip_data;
2514 unsigned vector, me;
2516 if (likely(!cfg->move_in_progress)) {
2517 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2518 if (likely(!cfg->move_desc_pending))
2521 /* domain has not changed, but affinity did */
2522 me = smp_processor_id();
2523 if (cpumask_test_cpu(me, desc->affinity)) {
2524 *descp = desc = move_irq_desc(desc, me);
2525 /* get the new one */
2526 cfg = desc->chip_data;
2527 cfg->move_desc_pending = 0;
2533 vector = ~get_irq_regs()->orig_ax;
2534 me = smp_processor_id();
2535 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2536 *descp = desc = move_irq_desc(desc, me);
2537 /* get the new one */
2538 cfg = desc->chip_data;
2541 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2542 send_cleanup_vector(cfg);
2545 static inline void irq_complete_move(struct irq_desc **descp) {}
2548 #ifdef CONFIG_INTR_REMAP
2549 static void ack_x2apic_level(unsigned int irq)
2554 static void ack_x2apic_edge(unsigned int irq)
2561 static void ack_apic_edge(unsigned int irq)
2563 struct irq_desc *desc = irq_to_desc(irq);
2565 irq_complete_move(&desc);
2566 move_native_irq(irq);
2570 atomic_t irq_mis_count;
2572 static void ack_apic_level(unsigned int irq)
2574 struct irq_desc *desc = irq_to_desc(irq);
2576 #ifdef CONFIG_X86_32
2580 struct irq_cfg *cfg;
2581 int do_unmask_irq = 0;
2583 irq_complete_move(&desc);
2584 #ifdef CONFIG_GENERIC_PENDING_IRQ
2585 /* If we are moving the irq we need to mask it */
2586 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2588 mask_IO_APIC_irq_desc(desc);
2592 #ifdef CONFIG_X86_32
2594 * It appears there is an erratum which affects at least version 0x11
2595 * of I/O APIC (that's the 82093AA and cores integrated into various
2596 * chipsets). Under certain conditions a level-triggered interrupt is
2597 * erroneously delivered as edge-triggered one but the respective IRR
2598 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2599 * message but it will never arrive and further interrupts are blocked
2600 * from the source. The exact reason is so far unknown, but the
2601 * phenomenon was observed when two consecutive interrupt requests
2602 * from a given source get delivered to the same CPU and the source is
2603 * temporarily disabled in between.
2605 * A workaround is to simulate an EOI message manually. We achieve it
2606 * by setting the trigger mode to edge and then to level when the edge
2607 * trigger mode gets detected in the TMR of a local APIC for a
2608 * level-triggered interrupt. We mask the source for the time of the
2609 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2610 * The idea is from Manfred Spraul. --macro
2612 cfg = desc->chip_data;
2615 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2619 * We must acknowledge the irq before we move it or the acknowledge will
2620 * not propagate properly.
2624 /* Now we can move and renable the irq */
2625 if (unlikely(do_unmask_irq)) {
2626 /* Only migrate the irq if the ack has been received.
2628 * On rare occasions the broadcast level triggered ack gets
2629 * delayed going to ioapics, and if we reprogram the
2630 * vector while Remote IRR is still set the irq will never
2633 * To prevent this scenario we read the Remote IRR bit
2634 * of the ioapic. This has two effects.
2635 * - On any sane system the read of the ioapic will
2636 * flush writes (and acks) going to the ioapic from
2638 * - We get to see if the ACK has actually been delivered.
2640 * Based on failed experiments of reprogramming the
2641 * ioapic entry from outside of irq context starting
2642 * with masking the ioapic entry and then polling until
2643 * Remote IRR was clear before reprogramming the
2644 * ioapic I don't trust the Remote IRR bit to be
2645 * completey accurate.
2647 * However there appears to be no other way to plug
2648 * this race, so if the Remote IRR bit is not
2649 * accurate and is causing problems then it is a hardware bug
2650 * and you can go talk to the chipset vendor about it.
2652 cfg = desc->chip_data;
2653 if (!io_apic_level_ack_pending(cfg))
2654 move_masked_irq(irq);
2655 unmask_IO_APIC_irq_desc(desc);
2658 #ifdef CONFIG_X86_32
2659 if (!(v & (1 << (i & 0x1f)))) {
2660 atomic_inc(&irq_mis_count);
2661 spin_lock(&ioapic_lock);
2662 __mask_and_edge_IO_APIC_irq(cfg);
2663 __unmask_and_level_IO_APIC_irq(cfg);
2664 spin_unlock(&ioapic_lock);
2669 static struct irq_chip ioapic_chip __read_mostly = {
2671 .startup = startup_ioapic_irq,
2672 .mask = mask_IO_APIC_irq,
2673 .unmask = unmask_IO_APIC_irq,
2674 .ack = ack_apic_edge,
2675 .eoi = ack_apic_level,
2677 .set_affinity = set_ioapic_affinity_irq,
2679 .retrigger = ioapic_retrigger_irq,
2682 #ifdef CONFIG_INTR_REMAP
2683 static struct irq_chip ir_ioapic_chip __read_mostly = {
2684 .name = "IR-IO-APIC",
2685 .startup = startup_ioapic_irq,
2686 .mask = mask_IO_APIC_irq,
2687 .unmask = unmask_IO_APIC_irq,
2688 .ack = ack_x2apic_edge,
2689 .eoi = ack_x2apic_level,
2691 .set_affinity = set_ir_ioapic_affinity_irq,
2693 .retrigger = ioapic_retrigger_irq,
2697 static inline void init_IO_APIC_traps(void)
2700 struct irq_desc *desc;
2701 struct irq_cfg *cfg;
2704 * NOTE! The local APIC isn't very good at handling
2705 * multiple interrupts at the same interrupt level.
2706 * As the interrupt level is determined by taking the
2707 * vector number and shifting that right by 4, we
2708 * want to spread these out a bit so that they don't
2709 * all fall in the same interrupt level.
2711 * Also, we've got to be careful not to trash gate
2712 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2714 for_each_irq_desc(irq, desc) {
2715 cfg = desc->chip_data;
2716 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2718 * Hmm.. We don't have an entry for this,
2719 * so default to an old-fashioned 8259
2720 * interrupt if we can..
2722 if (irq < NR_IRQS_LEGACY)
2723 make_8259A_irq(irq);
2725 /* Strange. Oh, well.. */
2726 desc->chip = &no_irq_chip;
2732 * The local APIC irq-chip implementation:
2735 static void mask_lapic_irq(unsigned int irq)
2739 v = apic_read(APIC_LVT0);
2740 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2743 static void unmask_lapic_irq(unsigned int irq)
2747 v = apic_read(APIC_LVT0);
2748 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2751 static void ack_lapic_irq(unsigned int irq)
2756 static struct irq_chip lapic_chip __read_mostly = {
2757 .name = "local-APIC",
2758 .mask = mask_lapic_irq,
2759 .unmask = unmask_lapic_irq,
2760 .ack = ack_lapic_irq,
2763 static void lapic_register_intr(int irq, struct irq_desc *desc)
2765 desc->status &= ~IRQ_LEVEL;
2766 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2770 static void __init setup_nmi(void)
2773 * Dirty trick to enable the NMI watchdog ...
2774 * We put the 8259A master into AEOI mode and
2775 * unmask on all local APICs LVT0 as NMI.
2777 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2778 * is from Maciej W. Rozycki - so we do not have to EOI from
2779 * the NMI handler or the timer interrupt.
2781 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2783 enable_NMI_through_LVT0();
2785 apic_printk(APIC_VERBOSE, " done.\n");
2789 * This looks a bit hackish but it's about the only one way of sending
2790 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2791 * not support the ExtINT mode, unfortunately. We need to send these
2792 * cycles as some i82489DX-based boards have glue logic that keeps the
2793 * 8259A interrupt line asserted until INTA. --macro
2795 static inline void __init unlock_ExtINT_logic(void)
2798 struct IO_APIC_route_entry entry0, entry1;
2799 unsigned char save_control, save_freq_select;
2801 pin = find_isa_irq_pin(8, mp_INT);
2806 apic = find_isa_irq_apic(8, mp_INT);
2812 entry0 = ioapic_read_entry(apic, pin);
2813 clear_IO_APIC_pin(apic, pin);
2815 memset(&entry1, 0, sizeof(entry1));
2817 entry1.dest_mode = 0; /* physical delivery */
2818 entry1.mask = 0; /* unmask IRQ now */
2819 entry1.dest = hard_smp_processor_id();
2820 entry1.delivery_mode = dest_ExtINT;
2821 entry1.polarity = entry0.polarity;
2825 ioapic_write_entry(apic, pin, entry1);
2827 save_control = CMOS_READ(RTC_CONTROL);
2828 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2829 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2831 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2836 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2840 CMOS_WRITE(save_control, RTC_CONTROL);
2841 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2842 clear_IO_APIC_pin(apic, pin);
2844 ioapic_write_entry(apic, pin, entry0);
2847 static int disable_timer_pin_1 __initdata;
2848 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2849 static int __init disable_timer_pin_setup(char *arg)
2851 disable_timer_pin_1 = 1;
2854 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2856 int timer_through_8259 __initdata;
2859 * This code may look a bit paranoid, but it's supposed to cooperate with
2860 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2861 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2862 * fanatically on his truly buggy board.
2864 * FIXME: really need to revamp this for all platforms.
2866 static inline void __init check_timer(void)
2868 struct irq_desc *desc = irq_to_desc(0);
2869 struct irq_cfg *cfg = desc->chip_data;
2870 int cpu = boot_cpu_id;
2871 int apic1, pin1, apic2, pin2;
2872 unsigned long flags;
2876 local_irq_save(flags);
2878 ver = apic_read(APIC_LVR);
2879 ver = GET_APIC_VERSION(ver);
2882 * get/set the timer IRQ vector:
2884 disable_8259A_irq(0);
2885 assign_irq_vector(0, cfg, apic->target_cpus());
2888 * As IRQ0 is to be enabled in the 8259A, the virtual
2889 * wire has to be disabled in the local APIC. Also
2890 * timer interrupts need to be acknowledged manually in
2891 * the 8259A for the i82489DX when using the NMI
2892 * watchdog as that APIC treats NMIs as level-triggered.
2893 * The AEOI mode will finish them in the 8259A
2896 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2898 #ifdef CONFIG_X86_32
2899 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2902 pin1 = find_isa_irq_pin(0, mp_INT);
2903 apic1 = find_isa_irq_apic(0, mp_INT);
2904 pin2 = ioapic_i8259.pin;
2905 apic2 = ioapic_i8259.apic;
2907 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2908 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2909 cfg->vector, apic1, pin1, apic2, pin2);
2912 * Some BIOS writers are clueless and report the ExtINTA
2913 * I/O APIC input from the cascaded 8259A as the timer
2914 * interrupt input. So just in case, if only one pin
2915 * was found above, try it both directly and through the
2919 #ifdef CONFIG_INTR_REMAP
2920 if (intr_remapping_enabled)
2921 panic("BIOS bug: timer not connected to IO-APIC");
2926 } else if (pin2 == -1) {
2933 * Ok, does IRQ0 through the IOAPIC work?
2936 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2937 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2939 unmask_IO_APIC_irq_desc(desc);
2940 if (timer_irq_works()) {
2941 if (nmi_watchdog == NMI_IO_APIC) {
2943 enable_8259A_irq(0);
2945 if (disable_timer_pin_1 > 0)
2946 clear_IO_APIC_pin(0, pin1);
2949 #ifdef CONFIG_INTR_REMAP
2950 if (intr_remapping_enabled)
2951 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2953 clear_IO_APIC_pin(apic1, pin1);
2955 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2956 "8254 timer not connected to IO-APIC\n");
2958 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2959 "(IRQ0) through the 8259A ...\n");
2960 apic_printk(APIC_QUIET, KERN_INFO
2961 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2963 * legacy devices should be connected to IO APIC #0
2965 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2966 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2967 unmask_IO_APIC_irq_desc(desc);
2968 enable_8259A_irq(0);
2969 if (timer_irq_works()) {
2970 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2971 timer_through_8259 = 1;
2972 if (nmi_watchdog == NMI_IO_APIC) {
2973 disable_8259A_irq(0);
2975 enable_8259A_irq(0);
2980 * Cleanup, just in case ...
2982 disable_8259A_irq(0);
2983 clear_IO_APIC_pin(apic2, pin2);
2984 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2987 if (nmi_watchdog == NMI_IO_APIC) {
2988 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2989 "through the IO-APIC - disabling NMI Watchdog!\n");
2990 nmi_watchdog = NMI_NONE;
2992 #ifdef CONFIG_X86_32
2996 apic_printk(APIC_QUIET, KERN_INFO
2997 "...trying to set up timer as Virtual Wire IRQ...\n");
2999 lapic_register_intr(0, desc);
3000 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3001 enable_8259A_irq(0);
3003 if (timer_irq_works()) {
3004 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3007 disable_8259A_irq(0);
3008 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3009 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3011 apic_printk(APIC_QUIET, KERN_INFO
3012 "...trying to set up timer as ExtINT IRQ...\n");
3016 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3018 unlock_ExtINT_logic();
3020 if (timer_irq_works()) {
3021 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3024 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3025 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3026 "report. Then try booting with the 'noapic' option.\n");
3028 local_irq_restore(flags);
3032 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3033 * to devices. However there may be an I/O APIC pin available for
3034 * this interrupt regardless. The pin may be left unconnected, but
3035 * typically it will be reused as an ExtINT cascade interrupt for
3036 * the master 8259A. In the MPS case such a pin will normally be
3037 * reported as an ExtINT interrupt in the MP table. With ACPI
3038 * there is no provision for ExtINT interrupts, and in the absence
3039 * of an override it would be treated as an ordinary ISA I/O APIC
3040 * interrupt, that is edge-triggered and unmasked by default. We
3041 * used to do this, but it caused problems on some systems because
3042 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3043 * the same ExtINT cascade interrupt to drive the local APIC of the
3044 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3045 * the I/O APIC in all cases now. No actual device should request
3046 * it anyway. --macro
3048 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3050 void __init setup_IO_APIC(void)
3053 #ifdef CONFIG_X86_32
3057 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3061 io_apic_irqs = ~PIC_IRQS;
3063 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3065 * Set up IO-APIC IRQ routing.
3067 #ifdef CONFIG_X86_32
3069 setup_ioapic_ids_from_mpc();
3072 setup_IO_APIC_irqs();
3073 init_IO_APIC_traps();
3078 * Called after all the initialization is done. If we didnt find any
3079 * APIC bugs then we can allow the modify fast path
3082 static int __init io_apic_bug_finalize(void)
3084 if (sis_apic_bug == -1)
3089 late_initcall(io_apic_bug_finalize);
3091 struct sysfs_ioapic_data {
3092 struct sys_device dev;
3093 struct IO_APIC_route_entry entry[0];
3095 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3097 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3099 struct IO_APIC_route_entry *entry;
3100 struct sysfs_ioapic_data *data;
3103 data = container_of(dev, struct sysfs_ioapic_data, dev);
3104 entry = data->entry;
3105 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3106 *entry = ioapic_read_entry(dev->id, i);
3111 static int ioapic_resume(struct sys_device *dev)
3113 struct IO_APIC_route_entry *entry;
3114 struct sysfs_ioapic_data *data;
3115 unsigned long flags;
3116 union IO_APIC_reg_00 reg_00;
3119 data = container_of(dev, struct sysfs_ioapic_data, dev);
3120 entry = data->entry;
3122 spin_lock_irqsave(&ioapic_lock, flags);
3123 reg_00.raw = io_apic_read(dev->id, 0);
3124 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3125 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3126 io_apic_write(dev->id, 0, reg_00.raw);
3128 spin_unlock_irqrestore(&ioapic_lock, flags);
3129 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3130 ioapic_write_entry(dev->id, i, entry[i]);
3135 static struct sysdev_class ioapic_sysdev_class = {
3137 .suspend = ioapic_suspend,
3138 .resume = ioapic_resume,
3141 static int __init ioapic_init_sysfs(void)
3143 struct sys_device * dev;
3146 error = sysdev_class_register(&ioapic_sysdev_class);
3150 for (i = 0; i < nr_ioapics; i++ ) {
3151 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3152 * sizeof(struct IO_APIC_route_entry);
3153 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3154 if (!mp_ioapic_data[i]) {
3155 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3158 dev = &mp_ioapic_data[i]->dev;
3160 dev->cls = &ioapic_sysdev_class;
3161 error = sysdev_register(dev);
3163 kfree(mp_ioapic_data[i]);
3164 mp_ioapic_data[i] = NULL;
3165 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3173 device_initcall(ioapic_init_sysfs);
3176 * Dynamic irq allocate and deallocation
3178 unsigned int create_irq_nr(unsigned int irq_want)
3180 /* Allocate an unused irq */
3183 unsigned long flags;
3184 struct irq_cfg *cfg_new = NULL;
3185 int cpu = boot_cpu_id;
3186 struct irq_desc *desc_new = NULL;
3189 spin_lock_irqsave(&vector_lock, flags);
3190 for (new = irq_want; new < nr_irqs; new++) {
3191 if (platform_legacy_irq(new))
3194 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3196 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3199 cfg_new = desc_new->chip_data;
3201 if (cfg_new->vector != 0)
3203 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3207 spin_unlock_irqrestore(&vector_lock, flags);
3210 dynamic_irq_init(irq);
3211 /* restore it, in case dynamic_irq_init clear it */
3213 desc_new->chip_data = cfg_new;
3218 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3219 int create_irq(void)
3221 unsigned int irq_want;
3224 irq_want = nr_irqs_gsi;
3225 irq = create_irq_nr(irq_want);
3233 void destroy_irq(unsigned int irq)
3235 unsigned long flags;
3236 struct irq_cfg *cfg;
3237 struct irq_desc *desc;
3239 /* store it, in case dynamic_irq_cleanup clear it */
3240 desc = irq_to_desc(irq);
3241 cfg = desc->chip_data;
3242 dynamic_irq_cleanup(irq);
3243 /* connect back irq_cfg */
3245 desc->chip_data = cfg;
3247 #ifdef CONFIG_INTR_REMAP
3250 spin_lock_irqsave(&vector_lock, flags);
3251 __clear_irq_vector(irq, cfg);
3252 spin_unlock_irqrestore(&vector_lock, flags);
3256 * MSI message composition
3258 #ifdef CONFIG_PCI_MSI
3259 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3261 struct irq_cfg *cfg;
3269 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3273 dest = cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3275 #ifdef CONFIG_INTR_REMAP
3276 if (irq_remapped(irq)) {
3281 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3282 BUG_ON(ir_index == -1);
3284 memset (&irte, 0, sizeof(irte));
3287 irte.dst_mode = apic->irq_dest_mode;
3288 irte.trigger_mode = 0; /* edge */
3289 irte.dlvry_mode = apic->irq_delivery_mode;
3290 irte.vector = cfg->vector;
3291 irte.dest_id = IRTE_DEST(dest);
3293 modify_irte(irq, &irte);
3295 msg->address_hi = MSI_ADDR_BASE_HI;
3296 msg->data = sub_handle;
3297 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3299 MSI_ADDR_IR_INDEX1(ir_index) |
3300 MSI_ADDR_IR_INDEX2(ir_index);
3304 msg->address_hi = MSI_ADDR_BASE_HI;
3307 ((apic->irq_dest_mode == 0) ?
3308 MSI_ADDR_DEST_MODE_PHYSICAL:
3309 MSI_ADDR_DEST_MODE_LOGICAL) |
3310 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3311 MSI_ADDR_REDIRECTION_CPU:
3312 MSI_ADDR_REDIRECTION_LOWPRI) |
3313 MSI_ADDR_DEST_ID(dest);
3316 MSI_DATA_TRIGGER_EDGE |
3317 MSI_DATA_LEVEL_ASSERT |
3318 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3319 MSI_DATA_DELIVERY_FIXED:
3320 MSI_DATA_DELIVERY_LOWPRI) |
3321 MSI_DATA_VECTOR(cfg->vector);
3327 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3329 struct irq_desc *desc = irq_to_desc(irq);
3330 struct irq_cfg *cfg;
3334 dest = set_desc_affinity(desc, mask);
3335 if (dest == BAD_APICID)
3338 cfg = desc->chip_data;
3340 read_msi_msg_desc(desc, &msg);
3342 msg.data &= ~MSI_DATA_VECTOR_MASK;
3343 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3344 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3345 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3347 write_msi_msg_desc(desc, &msg);
3349 #ifdef CONFIG_INTR_REMAP
3351 * Migrate the MSI irq to another cpumask. This migration is
3352 * done in the process context using interrupt-remapping hardware.
3355 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3357 struct irq_desc *desc = irq_to_desc(irq);
3358 struct irq_cfg *cfg = desc->chip_data;
3362 if (get_irte(irq, &irte))
3365 dest = set_desc_affinity(desc, mask);
3366 if (dest == BAD_APICID)
3369 irte.vector = cfg->vector;
3370 irte.dest_id = IRTE_DEST(dest);
3373 * atomically update the IRTE with the new destination and vector.
3375 modify_irte(irq, &irte);
3378 * After this point, all the interrupts will start arriving
3379 * at the new destination. So, time to cleanup the previous
3380 * vector allocation.
3382 if (cfg->move_in_progress)
3383 send_cleanup_vector(cfg);
3387 #endif /* CONFIG_SMP */
3390 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3391 * which implement the MSI or MSI-X Capability Structure.
3393 static struct irq_chip msi_chip = {
3395 .unmask = unmask_msi_irq,
3396 .mask = mask_msi_irq,
3397 .ack = ack_apic_edge,
3399 .set_affinity = set_msi_irq_affinity,
3401 .retrigger = ioapic_retrigger_irq,
3404 #ifdef CONFIG_INTR_REMAP
3405 static struct irq_chip msi_ir_chip = {
3406 .name = "IR-PCI-MSI",
3407 .unmask = unmask_msi_irq,
3408 .mask = mask_msi_irq,
3409 .ack = ack_x2apic_edge,
3411 .set_affinity = ir_set_msi_irq_affinity,
3413 .retrigger = ioapic_retrigger_irq,
3417 * Map the PCI dev to the corresponding remapping hardware unit
3418 * and allocate 'nvec' consecutive interrupt-remapping table entries
3421 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3423 struct intel_iommu *iommu;
3426 iommu = map_dev_to_ir(dev);
3429 "Unable to map PCI %s to iommu\n", pci_name(dev));
3433 index = alloc_irte(iommu, irq, nvec);
3436 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3444 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3449 ret = msi_compose_msg(dev, irq, &msg);
3453 set_irq_msi(irq, msidesc);
3454 write_msi_msg(irq, &msg);
3456 #ifdef CONFIG_INTR_REMAP
3457 if (irq_remapped(irq)) {
3458 struct irq_desc *desc = irq_to_desc(irq);
3460 * irq migration in process context
3462 desc->status |= IRQ_MOVE_PCNTXT;
3463 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3466 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3468 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3473 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3476 int ret, sub_handle;
3477 struct msi_desc *msidesc;
3478 unsigned int irq_want;
3480 #ifdef CONFIG_INTR_REMAP
3481 struct intel_iommu *iommu = 0;
3485 irq_want = nr_irqs_gsi;
3487 list_for_each_entry(msidesc, &dev->msi_list, list) {
3488 irq = create_irq_nr(irq_want);
3492 #ifdef CONFIG_INTR_REMAP
3493 if (!intr_remapping_enabled)
3498 * allocate the consecutive block of IRTE's
3501 index = msi_alloc_irte(dev, irq, nvec);
3507 iommu = map_dev_to_ir(dev);
3513 * setup the mapping between the irq and the IRTE
3514 * base index, the sub_handle pointing to the
3515 * appropriate interrupt remap table entry.
3517 set_irte_irq(irq, iommu, index, sub_handle);
3521 ret = setup_msi_irq(dev, msidesc, irq);
3533 void arch_teardown_msi_irq(unsigned int irq)
3540 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3542 struct irq_desc *desc = irq_to_desc(irq);
3543 struct irq_cfg *cfg;
3547 dest = set_desc_affinity(desc, mask);
3548 if (dest == BAD_APICID)
3551 cfg = desc->chip_data;
3553 dmar_msi_read(irq, &msg);
3555 msg.data &= ~MSI_DATA_VECTOR_MASK;
3556 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3557 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3558 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3560 dmar_msi_write(irq, &msg);
3563 #endif /* CONFIG_SMP */
3565 struct irq_chip dmar_msi_type = {
3567 .unmask = dmar_msi_unmask,
3568 .mask = dmar_msi_mask,
3569 .ack = ack_apic_edge,
3571 .set_affinity = dmar_msi_set_affinity,
3573 .retrigger = ioapic_retrigger_irq,
3576 int arch_setup_dmar_msi(unsigned int irq)
3581 ret = msi_compose_msg(NULL, irq, &msg);
3584 dmar_msi_write(irq, &msg);
3585 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3591 #ifdef CONFIG_HPET_TIMER
3594 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3596 struct irq_desc *desc = irq_to_desc(irq);
3597 struct irq_cfg *cfg;
3601 dest = set_desc_affinity(desc, mask);
3602 if (dest == BAD_APICID)
3605 cfg = desc->chip_data;
3607 hpet_msi_read(irq, &msg);
3609 msg.data &= ~MSI_DATA_VECTOR_MASK;
3610 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3611 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3612 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3614 hpet_msi_write(irq, &msg);
3617 #endif /* CONFIG_SMP */
3619 struct irq_chip hpet_msi_type = {
3621 .unmask = hpet_msi_unmask,
3622 .mask = hpet_msi_mask,
3623 .ack = ack_apic_edge,
3625 .set_affinity = hpet_msi_set_affinity,
3627 .retrigger = ioapic_retrigger_irq,
3630 int arch_setup_hpet_msi(unsigned int irq)
3635 ret = msi_compose_msg(NULL, irq, &msg);
3639 hpet_msi_write(irq, &msg);
3640 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3647 #endif /* CONFIG_PCI_MSI */
3649 * Hypertransport interrupt support
3651 #ifdef CONFIG_HT_IRQ
3655 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3657 struct ht_irq_msg msg;
3658 fetch_ht_irq_msg(irq, &msg);
3660 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3661 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3663 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3664 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3666 write_ht_irq_msg(irq, &msg);
3669 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3671 struct irq_desc *desc = irq_to_desc(irq);
3672 struct irq_cfg *cfg;
3675 dest = set_desc_affinity(desc, mask);
3676 if (dest == BAD_APICID)
3679 cfg = desc->chip_data;
3681 target_ht_irq(irq, dest, cfg->vector);
3686 static struct irq_chip ht_irq_chip = {
3688 .mask = mask_ht_irq,
3689 .unmask = unmask_ht_irq,
3690 .ack = ack_apic_edge,
3692 .set_affinity = set_ht_irq_affinity,
3694 .retrigger = ioapic_retrigger_irq,
3697 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3699 struct irq_cfg *cfg;
3706 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3708 struct ht_irq_msg msg;
3711 dest = cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3713 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3717 HT_IRQ_LOW_DEST_ID(dest) |
3718 HT_IRQ_LOW_VECTOR(cfg->vector) |
3719 ((apic->irq_dest_mode == 0) ?
3720 HT_IRQ_LOW_DM_PHYSICAL :
3721 HT_IRQ_LOW_DM_LOGICAL) |
3722 HT_IRQ_LOW_RQEOI_EDGE |
3723 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3724 HT_IRQ_LOW_MT_FIXED :
3725 HT_IRQ_LOW_MT_ARBITRATED) |
3726 HT_IRQ_LOW_IRQ_MASKED;
3728 write_ht_irq_msg(irq, &msg);
3730 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3731 handle_edge_irq, "edge");
3733 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3737 #endif /* CONFIG_HT_IRQ */
3739 #ifdef CONFIG_X86_UV
3741 * Re-target the irq to the specified CPU and enable the specified MMR located
3742 * on the specified blade to allow the sending of MSIs to the specified CPU.
3744 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3745 unsigned long mmr_offset)
3747 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3748 struct irq_cfg *cfg;
3750 unsigned long mmr_value;
3751 struct uv_IO_APIC_route_entry *entry;
3752 unsigned long flags;
3757 err = assign_irq_vector(irq, cfg, eligible_cpu);
3761 spin_lock_irqsave(&vector_lock, flags);
3762 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3764 spin_unlock_irqrestore(&vector_lock, flags);
3767 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3768 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3770 entry->vector = cfg->vector;
3771 entry->delivery_mode = apic->irq_delivery_mode;
3772 entry->dest_mode = apic->irq_dest_mode;
3773 entry->polarity = 0;
3776 entry->dest = cpu_mask_to_apicid(eligible_cpu);
3778 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3779 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3785 * Disable the specified MMR located on the specified blade so that MSIs are
3786 * longer allowed to be sent.
3788 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3790 unsigned long mmr_value;
3791 struct uv_IO_APIC_route_entry *entry;
3795 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3796 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3800 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3801 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3803 #endif /* CONFIG_X86_64 */
3805 int __init io_apic_get_redir_entries (int ioapic)
3807 union IO_APIC_reg_01 reg_01;
3808 unsigned long flags;
3810 spin_lock_irqsave(&ioapic_lock, flags);
3811 reg_01.raw = io_apic_read(ioapic, 1);
3812 spin_unlock_irqrestore(&ioapic_lock, flags);
3814 return reg_01.bits.entries;
3817 void __init probe_nr_irqs_gsi(void)
3822 for (idx = 0; idx < nr_ioapics; idx++)
3823 nr += io_apic_get_redir_entries(idx) + 1;
3825 if (nr > nr_irqs_gsi)
3829 #ifdef CONFIG_SPARSE_IRQ
3830 int __init arch_probe_nr_irqs(void)
3834 nr = ((8 * nr_cpu_ids) > (32 * nr_ioapics) ?
3835 (NR_VECTORS + (8 * nr_cpu_ids)) :
3836 (NR_VECTORS + (32 * nr_ioapics)));
3838 if (nr < nr_irqs && nr > nr_irqs_gsi)
3845 /* --------------------------------------------------------------------------
3846 ACPI-based IOAPIC Configuration
3847 -------------------------------------------------------------------------- */
3851 #ifdef CONFIG_X86_32
3852 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3854 union IO_APIC_reg_00 reg_00;
3855 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3857 unsigned long flags;
3861 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3862 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3863 * supports up to 16 on one shared APIC bus.
3865 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3866 * advantage of new APIC bus architecture.
3869 if (physids_empty(apic_id_map))
3870 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3872 spin_lock_irqsave(&ioapic_lock, flags);
3873 reg_00.raw = io_apic_read(ioapic, 0);
3874 spin_unlock_irqrestore(&ioapic_lock, flags);
3876 if (apic_id >= get_physical_broadcast()) {
3877 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3878 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3879 apic_id = reg_00.bits.ID;
3883 * Every APIC in a system must have a unique ID or we get lots of nice
3884 * 'stuck on smp_invalidate_needed IPI wait' messages.
3886 if (apic->check_apicid_used(apic_id_map, apic_id)) {
3888 for (i = 0; i < get_physical_broadcast(); i++) {
3889 if (!apic->check_apicid_used(apic_id_map, i))
3893 if (i == get_physical_broadcast())
3894 panic("Max apic_id exceeded!\n");
3896 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3897 "trying %d\n", ioapic, apic_id, i);
3902 tmp = apicid_to_cpu_present(apic_id);
3903 physids_or(apic_id_map, apic_id_map, tmp);
3905 if (reg_00.bits.ID != apic_id) {
3906 reg_00.bits.ID = apic_id;
3908 spin_lock_irqsave(&ioapic_lock, flags);
3909 io_apic_write(ioapic, 0, reg_00.raw);
3910 reg_00.raw = io_apic_read(ioapic, 0);
3911 spin_unlock_irqrestore(&ioapic_lock, flags);
3914 if (reg_00.bits.ID != apic_id) {
3915 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3920 apic_printk(APIC_VERBOSE, KERN_INFO
3921 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3926 int __init io_apic_get_version(int ioapic)
3928 union IO_APIC_reg_01 reg_01;
3929 unsigned long flags;
3931 spin_lock_irqsave(&ioapic_lock, flags);
3932 reg_01.raw = io_apic_read(ioapic, 1);
3933 spin_unlock_irqrestore(&ioapic_lock, flags);
3935 return reg_01.bits.version;
3939 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3941 struct irq_desc *desc;
3942 struct irq_cfg *cfg;
3943 int cpu = boot_cpu_id;
3945 if (!IO_APIC_IRQ(irq)) {
3946 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3951 desc = irq_to_desc_alloc_cpu(irq, cpu);
3953 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3958 * IRQs < 16 are already in the irq_2_pin[] map
3960 if (irq >= NR_IRQS_LEGACY) {
3961 cfg = desc->chip_data;
3962 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3965 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3971 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3975 if (skip_ioapic_setup)
3978 for (i = 0; i < mp_irq_entries; i++)
3979 if (mp_irqs[i].irqtype == mp_INT &&
3980 mp_irqs[i].srcbusirq == bus_irq)
3982 if (i >= mp_irq_entries)
3985 *trigger = irq_trigger(i);
3986 *polarity = irq_polarity(i);
3990 #endif /* CONFIG_ACPI */
3993 * This function currently is only a helper for the i386 smp boot process where
3994 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3995 * so mask in all cases should simply be apic->target_cpus()
3998 void __init setup_ioapic_dest(void)
4000 int pin, ioapic, irq, irq_entry;
4001 struct irq_desc *desc;
4002 struct irq_cfg *cfg;
4003 const struct cpumask *mask;
4005 if (skip_ioapic_setup == 1)
4008 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4009 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4010 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4011 if (irq_entry == -1)
4013 irq = pin_2_irq(irq_entry, ioapic, pin);
4015 /* setup_IO_APIC_irqs could fail to get vector for some device
4016 * when you have too many devices, because at that time only boot
4019 desc = irq_to_desc(irq);
4020 cfg = desc->chip_data;
4022 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4023 irq_trigger(irq_entry),
4024 irq_polarity(irq_entry));
4030 * Honour affinities which have been set in early boot
4033 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4034 mask = desc->affinity;
4036 mask = apic->target_cpus();
4038 #ifdef CONFIG_INTR_REMAP
4039 if (intr_remapping_enabled)
4040 set_ir_ioapic_affinity_irq_desc(desc, mask);
4043 set_ioapic_affinity_irq_desc(desc, mask);
4050 #define IOAPIC_RESOURCE_NAME_SIZE 11
4052 static struct resource *ioapic_resources;
4054 static struct resource * __init ioapic_setup_resources(void)
4057 struct resource *res;
4061 if (nr_ioapics <= 0)
4064 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4067 mem = alloc_bootmem(n);
4071 mem += sizeof(struct resource) * nr_ioapics;
4073 for (i = 0; i < nr_ioapics; i++) {
4075 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4076 sprintf(mem, "IOAPIC %u", i);
4077 mem += IOAPIC_RESOURCE_NAME_SIZE;
4081 ioapic_resources = res;
4086 void __init ioapic_init_mappings(void)
4088 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4089 struct resource *ioapic_res;
4092 ioapic_res = ioapic_setup_resources();
4093 for (i = 0; i < nr_ioapics; i++) {
4094 if (smp_found_config) {
4095 ioapic_phys = mp_ioapics[i].apicaddr;
4096 #ifdef CONFIG_X86_32
4099 "WARNING: bogus zero IO-APIC "
4100 "address found in MPTABLE, "
4101 "disabling IO/APIC support!\n");
4102 smp_found_config = 0;
4103 skip_ioapic_setup = 1;
4104 goto fake_ioapic_page;
4108 #ifdef CONFIG_X86_32
4111 ioapic_phys = (unsigned long)
4112 alloc_bootmem_pages(PAGE_SIZE);
4113 ioapic_phys = __pa(ioapic_phys);
4115 set_fixmap_nocache(idx, ioapic_phys);
4116 apic_printk(APIC_VERBOSE,
4117 "mapped IOAPIC to %08lx (%08lx)\n",
4118 __fix_to_virt(idx), ioapic_phys);
4121 if (ioapic_res != NULL) {
4122 ioapic_res->start = ioapic_phys;
4123 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4129 static int __init ioapic_insert_resources(void)
4132 struct resource *r = ioapic_resources;
4136 "IO APIC resources could be not be allocated.\n");
4140 for (i = 0; i < nr_ioapics; i++) {
4141 insert_resource(&iomem_resource, r);
4148 /* Insert the IO APIC resources after PCI initialization has occured to handle
4149 * IO APICS that are mapped in on a BAR in PCI space. */
4150 late_initcall(ioapic_insert_resources);