1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
35 #include <asm/irq_regs.h>
37 #include <asm/pgtable.h>
38 #include <asm/oplib.h>
39 #include <asm/uaccess.h>
40 #include <asm/timer.h>
41 #include <asm/starfire.h>
43 #include <asm/sections.h>
45 #include <asm/mdesc.h>
47 #include <asm/hypervisor.h>
49 extern void calibrate_delay(void);
51 int sparc64_multi_core __read_mostly;
53 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
54 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
55 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
57 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
59 EXPORT_SYMBOL(cpu_possible_map);
60 EXPORT_SYMBOL(cpu_online_map);
61 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
62 EXPORT_SYMBOL(cpu_core_map);
64 static cpumask_t smp_commenced_mask;
66 void smp_info(struct seq_file *m)
70 seq_printf(m, "State:\n");
71 for_each_online_cpu(i)
72 seq_printf(m, "CPU%d:\t\tonline\n", i);
75 void smp_bogo(struct seq_file *m)
79 for_each_online_cpu(i)
81 "Cpu%dClkTck\t: %016lx\n",
82 i, cpu_data(i).clock_tick);
85 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
87 extern void setup_sparc64_timer(void);
89 static volatile unsigned long callin_flag = 0;
91 void __devinit smp_callin(void)
93 int cpuid = hard_smp_processor_id();
95 __local_per_cpu_offset = __per_cpu_offset(cpuid);
97 if (tlb_type == hypervisor)
98 sun4v_ktsb_register();
102 setup_sparc64_timer();
104 if (cheetah_pcache_forced_on)
105 cheetah_enable_pcache();
110 __asm__ __volatile__("membar #Sync\n\t"
111 "flush %%g6" : : : "memory");
113 /* Clear this or we will die instantly when we
114 * schedule back to this idler...
116 current_thread_info()->new_child = 0;
118 /* Attach to the address space of init_task. */
119 atomic_inc(&init_mm.mm_count);
120 current->active_mm = &init_mm;
122 while (!cpu_isset(cpuid, smp_commenced_mask))
125 spin_lock(&call_lock);
126 cpu_set(cpuid, cpu_online_map);
127 spin_unlock(&call_lock);
129 /* idle thread is expected to have preempt disabled */
135 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
136 panic("SMP bolixed\n");
139 /* This tick register synchronization scheme is taken entirely from
140 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142 * The only change I've made is to rework it so that the master
143 * initiates the synchonization instead of the slave. -DaveM
147 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
149 #define NUM_ROUNDS 64 /* magic value */
150 #define NUM_ITERS 5 /* likewise */
152 static DEFINE_SPINLOCK(itc_sync_lock);
153 static unsigned long go[SLAVE + 1];
155 #define DEBUG_TICK_SYNC 0
157 static inline long get_delta (long *rt, long *master)
159 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
160 unsigned long tcenter, t0, t1, tm;
163 for (i = 0; i < NUM_ITERS; i++) {
164 t0 = tick_ops->get_tick();
167 while (!(tm = go[SLAVE]))
171 t1 = tick_ops->get_tick();
173 if (t1 - t0 < best_t1 - best_t0)
174 best_t0 = t0, best_t1 = t1, best_tm = tm;
177 *rt = best_t1 - best_t0;
178 *master = best_tm - best_t0;
180 /* average best_t0 and best_t1 without overflow: */
181 tcenter = (best_t0/2 + best_t1/2);
182 if (best_t0 % 2 + best_t1 % 2 == 2)
184 return tcenter - best_tm;
187 void smp_synchronize_tick_client(void)
189 long i, delta, adj, adjust_latency = 0, done = 0;
190 unsigned long flags, rt, master_time_stamp, bound;
193 long rt; /* roundtrip time */
194 long master; /* master's timestamp */
195 long diff; /* difference between midpoint and master's timestamp */
196 long lat; /* estimate of itc adjustment latency */
205 local_irq_save(flags);
207 for (i = 0; i < NUM_ROUNDS; i++) {
208 delta = get_delta(&rt, &master_time_stamp);
210 done = 1; /* let's lock on to this... */
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
221 tick_ops->add_tick(adj);
225 t[i].master = master_time_stamp;
227 t[i].lat = adjust_latency/4;
231 local_irq_restore(flags);
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
240 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
243 static void smp_start_sync_tick_client(int cpu);
245 static void smp_synchronize_one_tick(int cpu)
247 unsigned long flags, i;
251 smp_start_sync_tick_client(cpu);
253 /* wait for client to be ready */
257 /* now let the client proceed into his loop */
261 spin_lock_irqsave(&itc_sync_lock, flags);
263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
268 go[SLAVE] = tick_ops->get_tick();
272 spin_unlock_irqrestore(&itc_sync_lock, flags);
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
279 unsigned long val = (unsigned long) p;
281 return kern_base + (val - KERNBASE);
284 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
286 extern unsigned long sparc64_ttable_tl0;
287 extern unsigned long kern_locked_tte_data;
288 extern int bigkernel;
289 struct hvtramp_descr *hdesc;
290 unsigned long trampoline_ra;
291 struct trap_per_cpu *tb;
292 u64 tte_vaddr, tte_data;
293 unsigned long hv_err;
295 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
297 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
303 hdesc->num_mappings = (bigkernel ? 2 : 1);
305 tb = &trap_block[cpu];
308 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
309 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311 hdesc->thread_reg = thread_reg;
313 tte_vaddr = (unsigned long) KERNBASE;
314 tte_data = kern_locked_tte_data;
316 hdesc->maps[0].vaddr = tte_vaddr;
317 hdesc->maps[0].tte = tte_data;
319 tte_vaddr += 0x400000;
320 tte_data += 0x400000;
321 hdesc->maps[1].vaddr = tte_vaddr;
322 hdesc->maps[1].tte = tte_data;
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
336 extern unsigned long sparc64_cpu_startup;
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
342 static struct thread_info *cpu_new_thread = NULL;
344 static int __devinit smp_boot_one_cpu(unsigned int cpu)
346 struct trap_per_cpu *tb = &trap_block[cpu];
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
358 cpu_new_thread = task_thread_info(p);
360 if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread);
367 prom_startcpu_cpuid(cpu, entry, cookie);
369 struct device_node *dp = of_find_node_by_cpuid(cpu);
371 prom_startcpu(dp->node, entry, cookie);
374 for (timeout = 0; timeout < 50000; timeout++) {
383 printk("Processor %d is stuck.\n", cpu);
386 cpu_new_thread = NULL;
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
408 target = (cpu << 14) | 0x70;
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
425 "stxa %%g0, [%7] %3\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
436 /* NOTE: PSTATE_IE is still clear. */
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
441 : "i" (ASI_INTR_DISPATCH_STAT));
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result);
462 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 for_each_cpu_mask(i, mask)
469 spitfire_xcall_helper(data0, data1, data2, pstate, i);
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
479 int nack_busy_id, is_jbus, need_more;
481 if (cpus_empty(mask))
484 /* Unfortunately, someone at Sun had the brilliant idea to make the
485 * busy/nack fields hard-coded by ITID number for this Ultra-III
486 * derivative processor.
488 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
489 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
490 (ver >> 32) == __SERRANO_ID);
492 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
496 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
497 : : "r" (pstate), "i" (PSTATE_IE));
499 /* Setup the dispatch data registers. */
500 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
501 "stxa %1, [%4] %6\n\t"
502 "stxa %2, [%5] %6\n\t"
505 : "r" (data0), "r" (data1), "r" (data2),
506 "r" (0x40), "r" (0x50), "r" (0x60),
513 for_each_cpu_mask(i, mask) {
514 u64 target = (i << 14) | 0x70;
517 target |= (nack_busy_id << 24);
518 __asm__ __volatile__(
519 "stxa %%g0, [%0] %1\n\t"
522 : "r" (target), "i" (ASI_INTR_W));
524 if (nack_busy_id == 32) {
531 /* Now, poll for completion. */
536 stuck = 100000 * nack_busy_id;
538 __asm__ __volatile__("ldxa [%%g0] %1, %0"
539 : "=r" (dispatch_stat)
540 : "i" (ASI_INTR_DISPATCH_STAT));
541 if (dispatch_stat == 0UL) {
542 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
544 if (unlikely(need_more)) {
546 for_each_cpu_mask(i, mask) {
558 } while (dispatch_stat & 0x5555555555555555UL);
560 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
564 /* Busy bits will not clear, continue instead
565 * of freezing up on this cpu.
567 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
568 smp_processor_id(), dispatch_stat);
570 int i, this_busy_nack = 0;
572 /* Delay some random time with interrupts enabled
573 * to prevent deadlock.
575 udelay(2 * nack_busy_id);
577 /* Clear out the mask bits for cpus which did not
580 for_each_cpu_mask(i, mask) {
584 check_mask = (0x2UL << (2*i));
586 check_mask = (0x2UL <<
588 if ((dispatch_stat & check_mask) == 0)
591 if (this_busy_nack == 64)
600 /* Multi-cpu list version. */
601 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
603 struct trap_per_cpu *tb;
606 cpumask_t error_mask;
607 unsigned long flags, status;
608 int cnt, retries, this_cpu, prev_sent, i;
610 if (cpus_empty(mask))
613 /* We have to do this whole thing with interrupts fully disabled.
614 * Otherwise if we send an xcall from interrupt context it will
615 * corrupt both our mondo block and cpu list state.
617 * One consequence of this is that we cannot use timeout mechanisms
618 * that depend upon interrupts being delivered locally. So, for
619 * example, we cannot sample jiffies and expect it to advance.
621 * Fortunately, udelay() uses %stick/%tick so we can use that.
623 local_irq_save(flags);
625 this_cpu = smp_processor_id();
626 tb = &trap_block[this_cpu];
628 mondo = __va(tb->cpu_mondo_block_pa);
634 cpu_list = __va(tb->cpu_list_pa);
636 /* Setup the initial cpu list. */
638 for_each_cpu_mask(i, mask)
641 cpus_clear(error_mask);
645 int forward_progress, n_sent;
647 status = sun4v_cpu_mondo_send(cnt,
649 tb->cpu_mondo_block_pa);
651 /* HV_EOK means all cpus received the xcall, we're done. */
652 if (likely(status == HV_EOK))
655 /* First, see if we made any forward progress.
657 * The hypervisor indicates successful sends by setting
658 * cpu list entries to the value 0xffff.
661 for (i = 0; i < cnt; i++) {
662 if (likely(cpu_list[i] == 0xffff))
666 forward_progress = 0;
667 if (n_sent > prev_sent)
668 forward_progress = 1;
672 /* If we get a HV_ECPUERROR, then one or more of the cpus
673 * in the list are in error state. Use the cpu_state()
674 * hypervisor call to find out which cpus are in error state.
676 if (unlikely(status == HV_ECPUERROR)) {
677 for (i = 0; i < cnt; i++) {
685 err = sun4v_cpu_state(cpu);
687 err == HV_CPU_STATE_ERROR) {
688 cpu_list[i] = 0xffff;
689 cpu_set(cpu, error_mask);
692 } else if (unlikely(status != HV_EWOULDBLOCK))
693 goto fatal_mondo_error;
695 /* Don't bother rewriting the CPU list, just leave the
696 * 0xffff and non-0xffff entries in there and the
697 * hypervisor will do the right thing.
699 * Only advance timeout state if we didn't make any
702 if (unlikely(!forward_progress)) {
703 if (unlikely(++retries > 10000))
704 goto fatal_mondo_timeout;
706 /* Delay a little bit to let other cpus catch up
707 * on their cpu mondo queue work.
713 local_irq_restore(flags);
715 if (unlikely(!cpus_empty(error_mask)))
716 goto fatal_mondo_cpu_error;
720 fatal_mondo_cpu_error:
721 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
722 "were in error state\n",
724 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
725 for_each_cpu_mask(i, error_mask)
731 local_irq_restore(flags);
732 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
733 " progress after %d retries.\n",
735 goto dump_cpu_list_and_out;
738 local_irq_restore(flags);
739 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
741 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
742 "mondo_block_pa(%lx)\n",
743 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
745 dump_cpu_list_and_out:
746 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
747 for (i = 0; i < cnt; i++)
748 printk("%u ", cpu_list[i]);
752 /* Send cross call to all processors mentioned in MASK
755 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
757 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
758 int this_cpu = get_cpu();
760 cpus_and(mask, mask, cpu_online_map);
761 cpu_clear(this_cpu, mask);
763 if (tlb_type == spitfire)
764 spitfire_xcall_deliver(data0, data1, data2, mask);
765 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
766 cheetah_xcall_deliver(data0, data1, data2, mask);
768 hypervisor_xcall_deliver(data0, data1, data2, mask);
769 /* NOTE: Caller runs local copy on master. */
774 extern unsigned long xcall_sync_tick;
776 static void smp_start_sync_tick_client(int cpu)
778 cpumask_t mask = cpumask_of_cpu(cpu);
780 smp_cross_call_masked(&xcall_sync_tick,
784 /* Send cross call to all processors except self. */
785 #define smp_cross_call(func, ctx, data1, data2) \
786 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
788 struct call_data_struct {
789 void (*func) (void *info);
795 static struct call_data_struct *call_data;
797 extern unsigned long xcall_call_function;
800 * smp_call_function(): Run a function on all other CPUs.
801 * @func: The function to run. This must be fast and non-blocking.
802 * @info: An arbitrary pointer to pass to the function.
803 * @nonatomic: currently unused.
804 * @wait: If true, wait (atomically) until function has completed on other CPUs.
806 * Returns 0 on success, else a negative status code. Does not return until
807 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
809 * You must not call this function with disabled interrupts or from a
810 * hardware interrupt handler or from a bottom half handler.
812 static int smp_call_function_mask(void (*func)(void *info), void *info,
813 int nonatomic, int wait, cpumask_t mask)
815 struct call_data_struct data;
818 /* Can deadlock when called with interrupts disabled */
819 WARN_ON(irqs_disabled());
823 atomic_set(&data.finished, 0);
826 spin_lock(&call_lock);
828 cpu_clear(smp_processor_id(), mask);
829 cpus = cpus_weight(mask);
836 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
838 /* Wait for response */
839 while (atomic_read(&data.finished) != cpus)
843 spin_unlock(&call_lock);
848 int smp_call_function(void (*func)(void *info), void *info,
849 int nonatomic, int wait)
851 return smp_call_function_mask(func, info, nonatomic, wait,
855 void smp_call_function_client(int irq, struct pt_regs *regs)
857 void (*func) (void *info) = call_data->func;
858 void *info = call_data->info;
860 clear_softint(1 << irq);
861 if (call_data->wait) {
862 /* let initiator proceed only after completion */
864 atomic_inc(&call_data->finished);
866 /* let initiator proceed after getting data */
867 atomic_inc(&call_data->finished);
872 static void tsb_sync(void *info)
874 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
875 struct mm_struct *mm = info;
877 /* It is not valid to test "currrent->active_mm == mm" here.
879 * The value of "current" is not changed atomically with
880 * switch_mm(). But that's OK, we just need to check the
881 * current cpu's trap block PGD physical address.
883 if (tp->pgd_paddr == __pa(mm->pgd))
884 tsb_context_switch(mm);
887 void smp_tsb_sync(struct mm_struct *mm)
889 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
892 extern unsigned long xcall_flush_tlb_mm;
893 extern unsigned long xcall_flush_tlb_pending;
894 extern unsigned long xcall_flush_tlb_kernel_range;
895 extern unsigned long xcall_report_regs;
896 extern unsigned long xcall_receive_signal;
897 extern unsigned long xcall_new_mmu_context_version;
899 #ifdef DCACHE_ALIASING_POSSIBLE
900 extern unsigned long xcall_flush_dcache_page_cheetah;
902 extern unsigned long xcall_flush_dcache_page_spitfire;
904 #ifdef CONFIG_DEBUG_DCFLUSH
905 extern atomic_t dcpage_flushes;
906 extern atomic_t dcpage_flushes_xcall;
909 static __inline__ void __local_flush_dcache_page(struct page *page)
911 #ifdef DCACHE_ALIASING_POSSIBLE
912 __flush_dcache_page(page_address(page),
913 ((tlb_type == spitfire) &&
914 page_mapping(page) != NULL));
916 if (page_mapping(page) != NULL &&
917 tlb_type == spitfire)
918 __flush_icache_page(__pa(page_address(page)));
922 void smp_flush_dcache_page_impl(struct page *page, int cpu)
924 cpumask_t mask = cpumask_of_cpu(cpu);
927 if (tlb_type == hypervisor)
930 #ifdef CONFIG_DEBUG_DCFLUSH
931 atomic_inc(&dcpage_flushes);
934 this_cpu = get_cpu();
936 if (cpu == this_cpu) {
937 __local_flush_dcache_page(page);
938 } else if (cpu_online(cpu)) {
939 void *pg_addr = page_address(page);
942 if (tlb_type == spitfire) {
944 ((u64)&xcall_flush_dcache_page_spitfire);
945 if (page_mapping(page) != NULL)
946 data0 |= ((u64)1 << 32);
947 spitfire_xcall_deliver(data0,
951 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
952 #ifdef DCACHE_ALIASING_POSSIBLE
954 ((u64)&xcall_flush_dcache_page_cheetah);
955 cheetah_xcall_deliver(data0,
960 #ifdef CONFIG_DEBUG_DCFLUSH
961 atomic_inc(&dcpage_flushes_xcall);
968 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
970 void *pg_addr = page_address(page);
971 cpumask_t mask = cpu_online_map;
975 if (tlb_type == hypervisor)
978 this_cpu = get_cpu();
980 cpu_clear(this_cpu, mask);
982 #ifdef CONFIG_DEBUG_DCFLUSH
983 atomic_inc(&dcpage_flushes);
985 if (cpus_empty(mask))
987 if (tlb_type == spitfire) {
988 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
989 if (page_mapping(page) != NULL)
990 data0 |= ((u64)1 << 32);
991 spitfire_xcall_deliver(data0,
995 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
996 #ifdef DCACHE_ALIASING_POSSIBLE
997 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
998 cheetah_xcall_deliver(data0,
1003 #ifdef CONFIG_DEBUG_DCFLUSH
1004 atomic_inc(&dcpage_flushes_xcall);
1007 __local_flush_dcache_page(page);
1012 static void __smp_receive_signal_mask(cpumask_t mask)
1014 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1017 void smp_receive_signal(int cpu)
1019 cpumask_t mask = cpumask_of_cpu(cpu);
1021 if (cpu_online(cpu))
1022 __smp_receive_signal_mask(mask);
1025 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1027 clear_softint(1 << irq);
1030 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1032 struct mm_struct *mm;
1033 unsigned long flags;
1035 clear_softint(1 << irq);
1037 /* See if we need to allocate a new TLB context because
1038 * the version of the one we are using is now out of date.
1040 mm = current->active_mm;
1041 if (unlikely(!mm || (mm == &init_mm)))
1044 spin_lock_irqsave(&mm->context.lock, flags);
1046 if (unlikely(!CTX_VALID(mm->context)))
1047 get_new_mmu_context(mm);
1049 spin_unlock_irqrestore(&mm->context.lock, flags);
1051 load_secondary_context(mm);
1052 __flush_tlb_mm(CTX_HWBITS(mm->context),
1056 void smp_new_mmu_context_version(void)
1058 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1061 void smp_report_regs(void)
1063 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1066 /* We know that the window frames of the user have been flushed
1067 * to the stack before we get here because all callers of us
1068 * are flush_tlb_*() routines, and these run after flush_cache_*()
1069 * which performs the flushw.
1071 * The SMP TLB coherency scheme we use works as follows:
1073 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1074 * space has (potentially) executed on, this is the heuristic
1075 * we use to avoid doing cross calls.
1077 * Also, for flushing from kswapd and also for clones, we
1078 * use cpu_vm_mask as the list of cpus to make run the TLB.
1080 * 2) TLB context numbers are shared globally across all processors
1081 * in the system, this allows us to play several games to avoid
1084 * One invariant is that when a cpu switches to a process, and
1085 * that processes tsk->active_mm->cpu_vm_mask does not have the
1086 * current cpu's bit set, that tlb context is flushed locally.
1088 * If the address space is non-shared (ie. mm->count == 1) we avoid
1089 * cross calls when we want to flush the currently running process's
1090 * tlb state. This is done by clearing all cpu bits except the current
1091 * processor's in current->active_mm->cpu_vm_mask and performing the
1092 * flush locally only. This will force any subsequent cpus which run
1093 * this task to flush the context from the local tlb if the process
1094 * migrates to another cpu (again).
1096 * 3) For shared address spaces (threads) and swapping we bite the
1097 * bullet for most cases and perform the cross call (but only to
1098 * the cpus listed in cpu_vm_mask).
1100 * The performance gain from "optimizing" away the cross call for threads is
1101 * questionable (in theory the big win for threads is the massive sharing of
1102 * address space state across processors).
1105 /* This currently is only used by the hugetlb arch pre-fault
1106 * hook on UltraSPARC-III+ and later when changing the pagesize
1107 * bits of the context register for an address space.
1109 void smp_flush_tlb_mm(struct mm_struct *mm)
1111 u32 ctx = CTX_HWBITS(mm->context);
1112 int cpu = get_cpu();
1114 if (atomic_read(&mm->mm_users) == 1) {
1115 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1116 goto local_flush_and_out;
1119 smp_cross_call_masked(&xcall_flush_tlb_mm,
1123 local_flush_and_out:
1124 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1129 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1131 u32 ctx = CTX_HWBITS(mm->context);
1132 int cpu = get_cpu();
1134 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1135 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1137 smp_cross_call_masked(&xcall_flush_tlb_pending,
1138 ctx, nr, (unsigned long) vaddrs,
1141 __flush_tlb_pending(ctx, nr, vaddrs);
1146 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1149 end = PAGE_ALIGN(end);
1151 smp_cross_call(&xcall_flush_tlb_kernel_range,
1154 __flush_tlb_kernel_range(start, end);
1159 /* #define CAPTURE_DEBUG */
1160 extern unsigned long xcall_capture;
1162 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1163 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1164 static unsigned long penguins_are_doing_time;
1166 void smp_capture(void)
1168 int result = atomic_add_ret(1, &smp_capture_depth);
1171 int ncpus = num_online_cpus();
1173 #ifdef CAPTURE_DEBUG
1174 printk("CPU[%d]: Sending penguins to jail...",
1175 smp_processor_id());
1177 penguins_are_doing_time = 1;
1178 membar_storestore_loadstore();
1179 atomic_inc(&smp_capture_registry);
1180 smp_cross_call(&xcall_capture, 0, 0, 0);
1181 while (atomic_read(&smp_capture_registry) != ncpus)
1183 #ifdef CAPTURE_DEBUG
1189 void smp_release(void)
1191 if (atomic_dec_and_test(&smp_capture_depth)) {
1192 #ifdef CAPTURE_DEBUG
1193 printk("CPU[%d]: Giving pardon to "
1194 "imprisoned penguins\n",
1195 smp_processor_id());
1197 penguins_are_doing_time = 0;
1198 membar_storeload_storestore();
1199 atomic_dec(&smp_capture_registry);
1203 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1204 * can service tlb flush xcalls...
1206 extern void prom_world(int);
1208 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1210 clear_softint(1 << irq);
1214 __asm__ __volatile__("flushw");
1216 atomic_inc(&smp_capture_registry);
1217 membar_storeload_storestore();
1218 while (penguins_are_doing_time)
1220 atomic_dec(&smp_capture_registry);
1226 /* /proc/profile writes can call this, don't __init it please. */
1227 int setup_profiling_timer(unsigned int multiplier)
1232 void __init smp_prepare_cpus(unsigned int max_cpus)
1236 void __devinit smp_prepare_boot_cpu(void)
1240 void __devinit smp_fill_in_sib_core_maps(void)
1244 for_each_present_cpu(i) {
1247 cpus_clear(cpu_core_map[i]);
1248 if (cpu_data(i).core_id == 0) {
1249 cpu_set(i, cpu_core_map[i]);
1253 for_each_present_cpu(j) {
1254 if (cpu_data(i).core_id ==
1255 cpu_data(j).core_id)
1256 cpu_set(j, cpu_core_map[i]);
1260 for_each_present_cpu(i) {
1263 cpus_clear(per_cpu(cpu_sibling_map, i));
1264 if (cpu_data(i).proc_id == -1) {
1265 cpu_set(i, per_cpu(cpu_sibling_map, i));
1269 for_each_present_cpu(j) {
1270 if (cpu_data(i).proc_id ==
1271 cpu_data(j).proc_id)
1272 cpu_set(j, per_cpu(cpu_sibling_map, i));
1277 int __cpuinit __cpu_up(unsigned int cpu)
1279 int ret = smp_boot_one_cpu(cpu);
1282 cpu_set(cpu, smp_commenced_mask);
1283 while (!cpu_isset(cpu, cpu_online_map))
1285 if (!cpu_isset(cpu, cpu_online_map)) {
1288 /* On SUN4V, writes to %tick and %stick are
1291 if (tlb_type != hypervisor)
1292 smp_synchronize_one_tick(cpu);
1298 #ifdef CONFIG_HOTPLUG_CPU
1299 void cpu_play_dead(void)
1301 int cpu = smp_processor_id();
1302 unsigned long pstate;
1306 if (tlb_type == hypervisor) {
1307 struct trap_per_cpu *tb = &trap_block[cpu];
1309 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1310 tb->cpu_mondo_pa, 0);
1311 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1312 tb->dev_mondo_pa, 0);
1313 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1314 tb->resum_mondo_pa, 0);
1315 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1316 tb->nonresum_mondo_pa, 0);
1319 cpu_clear(cpu, smp_commenced_mask);
1320 membar_safe("#Sync");
1322 local_irq_disable();
1324 __asm__ __volatile__(
1325 "rdpr %%pstate, %0\n\t"
1326 "wrpr %0, %1, %%pstate"
1334 int __cpu_disable(void)
1336 int cpu = smp_processor_id();
1340 for_each_cpu_mask(i, cpu_core_map[cpu])
1341 cpu_clear(cpu, cpu_core_map[i]);
1342 cpus_clear(cpu_core_map[cpu]);
1344 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1345 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1346 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1353 spin_lock(&call_lock);
1354 cpu_clear(cpu, cpu_online_map);
1355 spin_unlock(&call_lock);
1359 /* Make sure no interrupts point to this cpu. */
1364 local_irq_disable();
1369 void __cpu_die(unsigned int cpu)
1373 for (i = 0; i < 100; i++) {
1375 if (!cpu_isset(cpu, smp_commenced_mask))
1379 if (cpu_isset(cpu, smp_commenced_mask)) {
1380 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1382 #if defined(CONFIG_SUN_LDOMS)
1383 unsigned long hv_err;
1387 hv_err = sun4v_cpu_stop(cpu);
1388 if (hv_err == HV_EOK) {
1389 cpu_clear(cpu, cpu_present_map);
1392 } while (--limit > 0);
1394 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1402 void __init smp_cpus_done(unsigned int max_cpus)
1406 void smp_send_reschedule(int cpu)
1408 smp_receive_signal(cpu);
1411 /* This is a nop because we capture all other cpus
1412 * anyways when making the PROM active.
1414 void smp_send_stop(void)
1418 unsigned long __per_cpu_base __read_mostly;
1419 unsigned long __per_cpu_shift __read_mostly;
1421 EXPORT_SYMBOL(__per_cpu_base);
1422 EXPORT_SYMBOL(__per_cpu_shift);
1424 void __init real_setup_per_cpu_areas(void)
1426 unsigned long goal, size, i;
1429 /* Copy section for each CPU (we discard the original) */
1430 goal = PERCPU_ENOUGH_ROOM;
1432 __per_cpu_shift = PAGE_SHIFT;
1433 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1436 ptr = alloc_bootmem_pages(size * NR_CPUS);
1438 __per_cpu_base = ptr - __per_cpu_start;
1440 for (i = 0; i < NR_CPUS; i++, ptr += size)
1441 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1443 /* Setup %g5 for the boot cpu. */
1444 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());