x86_64: fake pxm-to-node mapping for fake numa
[linux-2.6] / include / asm-i386 / system.h
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
3
4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8
9 #ifdef __KERNEL__
10
11 struct task_struct;     /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
13
14 /*
15  * Saving eflags is important. It switches not only IOPL between tasks,
16  * it also protects other tasks from NT leaking through sysenter etc.
17  */
18 #define switch_to(prev,next,last) do {                                  \
19         unsigned long esi,edi;                                          \
20         asm volatile("pushfl\n\t"               /* Save flags */        \
21                      "pushl %%ebp\n\t"                                  \
22                      "movl %%esp,%0\n\t"        /* save ESP */          \
23                      "movl %5,%%esp\n\t"        /* restore ESP */       \
24                      "movl $1f,%1\n\t"          /* save EIP */          \
25                      "pushl %6\n\t"             /* restore EIP */       \
26                      "jmp __switch_to\n"                                \
27                      "1:\t"                                             \
28                      "popl %%ebp\n\t"                                   \
29                      "popfl"                                            \
30                      :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
31                       "=a" (last),"=S" (esi),"=D" (edi)                 \
32                      :"m" (next->thread.esp),"m" (next->thread.eip),    \
33                       "2" (prev), "d" (next));                          \
34 } while (0)
35
36 #define _set_base(addr,base) do { unsigned long __pr; \
37 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
38         "rorl $16,%%edx\n\t" \
39         "movb %%dl,%2\n\t" \
40         "movb %%dh,%3" \
41         :"=&d" (__pr) \
42         :"m" (*((addr)+2)), \
43          "m" (*((addr)+4)), \
44          "m" (*((addr)+7)), \
45          "0" (base) \
46         ); } while(0)
47
48 #define _set_limit(addr,limit) do { unsigned long __lr; \
49 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
50         "rorl $16,%%edx\n\t" \
51         "movb %2,%%dh\n\t" \
52         "andb $0xf0,%%dh\n\t" \
53         "orb %%dh,%%dl\n\t" \
54         "movb %%dl,%2" \
55         :"=&d" (__lr) \
56         :"m" (*(addr)), \
57          "m" (*((addr)+6)), \
58          "0" (limit) \
59         ); } while(0)
60
61 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
62 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
63
64 /*
65  * Load a segment. Fall back on loading the zero
66  * segment if something goes wrong..
67  */
68 #define loadsegment(seg,value)                  \
69         asm volatile("\n"                       \
70                 "1:\t"                          \
71                 "mov %0,%%" #seg "\n"           \
72                 "2:\n"                          \
73                 ".section .fixup,\"ax\"\n"      \
74                 "3:\t"                          \
75                 "pushl $0\n\t"                  \
76                 "popl %%" #seg "\n\t"           \
77                 "jmp 2b\n"                      \
78                 ".previous\n"                   \
79                 ".section __ex_table,\"a\"\n\t" \
80                 ".align 4\n\t"                  \
81                 ".long 1b,3b\n"                 \
82                 ".previous"                     \
83                 : :"rm" (value))
84
85 /*
86  * Save a segment register away
87  */
88 #define savesegment(seg, value) \
89         asm volatile("mov %%" #seg ",%0":"=rm" (value))
90
91
92 static inline void native_clts(void)
93 {
94         asm volatile ("clts");
95 }
96
97 static inline unsigned long native_read_cr0(void)
98 {
99         unsigned long val;
100         asm volatile("movl %%cr0,%0\n\t" :"=r" (val));
101         return val;
102 }
103
104 static inline void native_write_cr0(unsigned long val)
105 {
106         asm volatile("movl %0,%%cr0": :"r" (val));
107 }
108
109 static inline unsigned long native_read_cr2(void)
110 {
111         unsigned long val;
112         asm volatile("movl %%cr2,%0\n\t" :"=r" (val));
113         return val;
114 }
115
116 static inline void native_write_cr2(unsigned long val)
117 {
118         asm volatile("movl %0,%%cr2": :"r" (val));
119 }
120
121 static inline unsigned long native_read_cr3(void)
122 {
123         unsigned long val;
124         asm volatile("movl %%cr3,%0\n\t" :"=r" (val));
125         return val;
126 }
127
128 static inline void native_write_cr3(unsigned long val)
129 {
130         asm volatile("movl %0,%%cr3": :"r" (val));
131 }
132
133 static inline unsigned long native_read_cr4(void)
134 {
135         unsigned long val;
136         asm volatile("movl %%cr4,%0\n\t" :"=r" (val));
137         return val;
138 }
139
140 static inline unsigned long native_read_cr4_safe(void)
141 {
142         unsigned long val;
143         /* This could fault if %cr4 does not exist */
144         asm("1: movl %%cr4, %0          \n"
145                 "2:                             \n"
146                 ".section __ex_table,\"a\"      \n"
147                 ".long 1b,2b                    \n"
148                 ".previous                      \n"
149                 : "=r" (val): "0" (0));
150         return val;
151 }
152
153 static inline void native_write_cr4(unsigned long val)
154 {
155         asm volatile("movl %0,%%cr4": :"r" (val));
156 }
157
158 static inline void native_wbinvd(void)
159 {
160         asm volatile("wbinvd": : :"memory");
161 }
162
163
164 #ifdef CONFIG_PARAVIRT
165 #include <asm/paravirt.h>
166 #else
167 #define read_cr0()      (native_read_cr0())
168 #define write_cr0(x)    (native_write_cr0(x))
169 #define read_cr2()      (native_read_cr2())
170 #define write_cr2(x)    (native_write_cr2(x))
171 #define read_cr3()      (native_read_cr3())
172 #define write_cr3(x)    (native_write_cr3(x))
173 #define read_cr4()      (native_read_cr4())
174 #define read_cr4_safe() (native_read_cr4_safe())
175 #define write_cr4(x)    (native_write_cr4(x))
176 #define wbinvd()        (native_wbinvd())
177
178 /* Clear the 'TS' bit */
179 #define clts()          (native_clts())
180
181 #endif/* CONFIG_PARAVIRT */
182
183 /* Set the 'TS' bit */
184 #define stts() write_cr0(8 | read_cr0())
185
186 #endif  /* __KERNEL__ */
187
188 static inline unsigned long get_limit(unsigned long segment)
189 {
190         unsigned long __limit;
191         __asm__("lsll %1,%0"
192                 :"=r" (__limit):"r" (segment));
193         return __limit+1;
194 }
195
196 #define nop() __asm__ __volatile__ ("nop")
197
198 /*
199  * Force strict CPU ordering.
200  * And yes, this is required on UP too when we're talking
201  * to devices.
202  *
203  * For now, "wmb()" doesn't actually do anything, as all
204  * Intel CPU's follow what Intel calls a *Processor Order*,
205  * in which all writes are seen in the program order even
206  * outside the CPU.
207  *
208  * I expect future Intel CPU's to have a weaker ordering,
209  * but I'd also expect them to finally get their act together
210  * and add some real memory barriers if so.
211  *
212  * Some non intel clones support out of order store. wmb() ceases to be a
213  * nop for these.
214  */
215  
216
217 /* 
218  * Actually only lfence would be needed for mb() because all stores done 
219  * by the kernel should be already ordered. But keep a full barrier for now. 
220  */
221
222 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
223 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
224
225 /**
226  * read_barrier_depends - Flush all pending reads that subsequents reads
227  * depend on.
228  *
229  * No data-dependent reads from memory-like regions are ever reordered
230  * over this barrier.  All reads preceding this primitive are guaranteed
231  * to access memory (but not necessarily other CPUs' caches) before any
232  * reads following this primitive that depend on the data return by
233  * any of the preceding reads.  This primitive is much lighter weight than
234  * rmb() on most CPUs, and is never heavier weight than is
235  * rmb().
236  *
237  * These ordering constraints are respected by both the local CPU
238  * and the compiler.
239  *
240  * Ordering is not guaranteed by anything other than these primitives,
241  * not even by data dependencies.  See the documentation for
242  * memory_barrier() for examples and URLs to more information.
243  *
244  * For example, the following code would force ordering (the initial
245  * value of "a" is zero, "b" is one, and "p" is "&a"):
246  *
247  * <programlisting>
248  *      CPU 0                           CPU 1
249  *
250  *      b = 2;
251  *      memory_barrier();
252  *      p = &b;                         q = p;
253  *                                      read_barrier_depends();
254  *                                      d = *q;
255  * </programlisting>
256  *
257  * because the read of "*q" depends on the read of "p" and these
258  * two reads are separated by a read_barrier_depends().  However,
259  * the following code, with the same initial values for "a" and "b":
260  *
261  * <programlisting>
262  *      CPU 0                           CPU 1
263  *
264  *      a = 2;
265  *      memory_barrier();
266  *      b = 3;                          y = b;
267  *                                      read_barrier_depends();
268  *                                      x = a;
269  * </programlisting>
270  *
271  * does not enforce ordering, since there is no data dependency between
272  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
273  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
274  * in cases like this where there are no data dependencies.
275  **/
276
277 #define read_barrier_depends()  do { } while(0)
278
279 #ifdef CONFIG_X86_OOSTORE
280 /* Actually there are no OOO store capable CPUs for now that do SSE, 
281    but make it already an possibility. */
282 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
283 #else
284 #define wmb()   __asm__ __volatile__ ("": : :"memory")
285 #endif
286
287 #ifdef CONFIG_SMP
288 #define smp_mb()        mb()
289 #define smp_rmb()       rmb()
290 #define smp_wmb()       wmb()
291 #define smp_read_barrier_depends()      read_barrier_depends()
292 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
293 #else
294 #define smp_mb()        barrier()
295 #define smp_rmb()       barrier()
296 #define smp_wmb()       barrier()
297 #define smp_read_barrier_depends()      do { } while(0)
298 #define set_mb(var, value) do { var = value; barrier(); } while (0)
299 #endif
300
301 #include <linux/irqflags.h>
302
303 /*
304  * disable hlt during certain critical i/o operations
305  */
306 #define HAVE_DISABLE_HLT
307 void disable_hlt(void);
308 void enable_hlt(void);
309
310 extern int es7000_plat;
311 void cpu_idle_wait(void);
312
313 extern unsigned long arch_align_stack(unsigned long sp);
314 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
315
316 void default_idle(void);
317
318 #endif