2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/hash.h>
19 #include <linux/rbtree.h>
20 #include <linux/interrupt.h>
26 * See Documentation/block/as-iosched.txt
30 * max time before a read is submitted.
32 #define default_read_expire (HZ / 8)
35 * ditto for writes, these limits are not hard, even
36 * if the disk is capable of satisfying them.
38 #define default_write_expire (HZ / 4)
41 * read_batch_expire describes how long we will allow a stream of reads to
42 * persist before looking to see whether it is time to switch over to writes.
44 #define default_read_batch_expire (HZ / 2)
47 * write_batch_expire describes how long we want a stream of writes to run for.
48 * This is not a hard limit, but a target we set for the auto-tuning thingy.
49 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
50 * a short amount of time...
52 #define default_write_batch_expire (HZ / 8)
55 * max time we may wait to anticipate a read (default around 6ms)
57 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
60 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
61 * however huge values tend to interfere and not decay fast enough. A program
62 * might be in a non-io phase of operation. Waiting on user input for example,
63 * or doing a lengthy computation. A small penalty can be justified there, and
64 * will still catch out those processes that constantly have large thinktimes.
66 #define MAX_THINKTIME (HZ/50UL)
68 /* Bits in as_io_context.state */
70 AS_TASK_RUNNING=0, /* Process has not exited */
71 AS_TASK_IOSTARTED, /* Process has started some IO */
72 AS_TASK_IORUNNING, /* Process has completed some IO */
75 enum anticipation_status {
76 ANTIC_OFF=0, /* Not anticipating (normal operation) */
77 ANTIC_WAIT_REQ, /* The last read has not yet completed */
78 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
79 last read (which has completed) */
80 ANTIC_FINISHED, /* Anticipating but have found a candidate
89 struct request_queue *q; /* the "owner" queue */
92 * requests (as_rq s) are present on both sort_list and fifo_list
94 struct rb_root sort_list[2];
95 struct list_head fifo_list[2];
97 struct as_rq *next_arq[2]; /* next in sort order */
98 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
99 struct hlist_head *hash; /* request hash */
101 unsigned long exit_prob; /* probability a task will exit while
103 unsigned long exit_no_coop; /* probablility an exited task will
104 not be part of a later cooperating
106 unsigned long new_ttime_total; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean;
108 u64 new_seek_total; /* mean seek on new proc */
109 sector_t new_seek_mean;
111 unsigned long current_batch_expires;
112 unsigned long last_check_fifo[2];
113 int changed_batch; /* 1: waiting for old batch to end */
114 int new_batch; /* 1: waiting on first read complete */
115 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count; /* max # of reqs in a write batch */
117 int current_write_count; /* how many requests left this batch */
118 int write_batch_idled; /* has the write batch gone idle? */
121 enum anticipation_status antic_status;
122 unsigned long antic_start; /* jiffies: when it started */
123 struct timer_list antic_timer; /* anticipatory scheduling timer */
124 struct work_struct antic_work; /* Deferred unplugging */
125 struct io_context *io_context; /* Identify the expected process */
126 int ioc_finished; /* IO associated with io_context is finished */
130 * settings that change how the i/o scheduler behaves
132 unsigned long fifo_expire[2];
133 unsigned long batch_expire[2];
134 unsigned long antic_expire;
137 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
143 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED, /* In the request queue. It belongs to the
146 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
148 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
151 AS_RQ_POSTSCHED, /* when they shouldn't be */
156 * rbtree index, key is the starting offset
158 struct rb_node rb_node;
161 struct request *request;
163 struct io_context *io_context; /* The submitting task */
166 * request hash, key is the ending offset (for back merge lookup)
168 struct hlist_node hash;
173 struct list_head fifo;
174 unsigned long expires;
176 unsigned int is_sync;
177 enum arq_state state;
180 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
182 static kmem_cache_t *arq_pool;
184 static atomic_t ioc_count = ATOMIC_INIT(0);
185 static struct completion *ioc_gone;
187 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
188 static void as_antic_stop(struct as_data *ad);
191 * IO Context helper functions
194 /* Called to deallocate the as_io_context */
195 static void free_as_io_context(struct as_io_context *aic)
198 if (atomic_dec_and_test(&ioc_count) && ioc_gone)
202 static void as_trim(struct io_context *ioc)
205 free_as_io_context(ioc->aic);
209 /* Called when the task exits */
210 static void exit_as_io_context(struct as_io_context *aic)
212 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
213 clear_bit(AS_TASK_RUNNING, &aic->state);
216 static struct as_io_context *alloc_as_io_context(void)
218 struct as_io_context *ret;
220 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
222 ret->dtor = free_as_io_context;
223 ret->exit = exit_as_io_context;
224 ret->state = 1 << AS_TASK_RUNNING;
225 atomic_set(&ret->nr_queued, 0);
226 atomic_set(&ret->nr_dispatched, 0);
227 spin_lock_init(&ret->lock);
228 ret->ttime_total = 0;
229 ret->ttime_samples = 0;
232 ret->seek_samples = 0;
234 atomic_inc(&ioc_count);
241 * If the current task has no AS IO context then create one and initialise it.
242 * Then take a ref on the task's io context and return it.
244 static struct io_context *as_get_io_context(void)
246 struct io_context *ioc = get_io_context(GFP_ATOMIC);
247 if (ioc && !ioc->aic) {
248 ioc->aic = alloc_as_io_context();
257 static void as_put_io_context(struct as_rq *arq)
259 struct as_io_context *aic;
261 if (unlikely(!arq->io_context))
264 aic = arq->io_context->aic;
266 if (arq->is_sync == REQ_SYNC && aic) {
267 spin_lock(&aic->lock);
268 set_bit(AS_TASK_IORUNNING, &aic->state);
269 aic->last_end_request = jiffies;
270 spin_unlock(&aic->lock);
273 put_io_context(arq->io_context);
277 * the back merge hash support functions
279 static const int as_hash_shift = 6;
280 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
281 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
282 #define AS_HASH_ENTRIES (1 << as_hash_shift)
283 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
285 static inline void __as_del_arq_hash(struct as_rq *arq)
287 hlist_del_init(&arq->hash);
290 static inline void as_del_arq_hash(struct as_rq *arq)
292 if (!hlist_unhashed(&arq->hash))
293 __as_del_arq_hash(arq);
296 static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
298 struct request *rq = arq->request;
300 BUG_ON(!hlist_unhashed(&arq->hash));
302 hlist_add_head(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
306 * move hot entry to front of chain
308 static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
310 struct request *rq = arq->request;
311 struct hlist_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
313 if (hlist_unhashed(&arq->hash)) {
318 if (&arq->hash != head->first) {
319 hlist_del(&arq->hash);
320 hlist_add_head(&arq->hash, head);
324 static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
326 struct hlist_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
327 struct hlist_node *entry, *next;
330 hlist_for_each_entry_safe(arq, entry, next, hash_list, hash) {
331 struct request *__rq = arq->request;
333 BUG_ON(hlist_unhashed(&arq->hash));
335 if (!rq_mergeable(__rq)) {
336 as_del_arq_hash(arq);
340 if (rq_hash_key(__rq) == offset)
348 * rb tree support functions
350 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
351 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
352 #define rq_rb_key(rq) (rq)->sector
355 * as_find_first_arq finds the first (lowest sector numbered) request
356 * for the specified data_dir. Used to sweep back to the start of the disk
357 * (1-way elevator) after we process the last (highest sector) request.
359 static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
361 struct rb_node *n = ad->sort_list[data_dir].rb_node;
367 if (n->rb_left == NULL)
368 return rb_entry_arq(n);
375 * Add the request to the rb tree if it is unique. If there is an alias (an
376 * existing request against the same sector), which can happen when using
377 * direct IO, then return the alias.
379 static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
381 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
382 struct rb_node *parent = NULL;
384 struct request *rq = arq->request;
386 arq->rb_key = rq_rb_key(rq);
390 __arq = rb_entry_arq(parent);
392 if (arq->rb_key < __arq->rb_key)
394 else if (arq->rb_key > __arq->rb_key)
400 rb_link_node(&arq->rb_node, parent, p);
401 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
406 static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
410 while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
411 as_move_to_dispatch(ad, alias);
416 static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
418 if (!RB_EMPTY_NODE(&arq->rb_node)) {
423 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
424 RB_CLEAR_NODE(&arq->rb_node);
427 static struct request *
428 as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
430 struct rb_node *n = ad->sort_list[data_dir].rb_node;
434 arq = rb_entry_arq(n);
436 if (sector < arq->rb_key)
438 else if (sector > arq->rb_key)
448 * IO Scheduler proper
451 #define MAXBACK (1024 * 1024) /*
452 * Maximum distance the disk will go backward
456 #define BACK_PENALTY 2
459 * as_choose_req selects the preferred one of two requests of the same data_dir
460 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
462 static struct as_rq *
463 as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
466 sector_t last, s1, s2, d1, d2;
467 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
468 const sector_t maxback = MAXBACK;
470 if (arq1 == NULL || arq1 == arq2)
475 data_dir = arq1->is_sync;
477 last = ad->last_sector[data_dir];
478 s1 = arq1->request->sector;
479 s2 = arq2->request->sector;
481 BUG_ON(data_dir != arq2->is_sync);
484 * Strict one way elevator _except_ in the case where we allow
485 * short backward seeks which are biased as twice the cost of a
486 * similar forward seek.
490 else if (s1+maxback >= last)
491 d1 = (last - s1)*BACK_PENALTY;
494 d1 = 0; /* shut up, gcc */
499 else if (s2+maxback >= last)
500 d2 = (last - s2)*BACK_PENALTY;
506 /* Found required data */
507 if (!r1_wrap && r2_wrap)
509 else if (!r2_wrap && r1_wrap)
511 else if (r1_wrap && r2_wrap) {
512 /* both behind the head */
519 /* Both requests in front of the head */
533 * as_find_next_arq finds the next request after @prev in elevator order.
534 * this with as_choose_req form the basis for how the scheduler chooses
535 * what request to process next. Anticipation works on top of this.
537 static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
539 const int data_dir = last->is_sync;
541 struct rb_node *rbnext = rb_next(&last->rb_node);
542 struct rb_node *rbprev = rb_prev(&last->rb_node);
543 struct as_rq *arq_next, *arq_prev;
545 BUG_ON(!RB_EMPTY_NODE(&last->rb_node));
548 arq_prev = rb_entry_arq(rbprev);
553 arq_next = rb_entry_arq(rbnext);
555 arq_next = as_find_first_arq(ad, data_dir);
556 if (arq_next == last)
560 ret = as_choose_req(ad, arq_next, arq_prev);
566 * anticipatory scheduling functions follow
570 * as_antic_expired tells us when we have anticipated too long.
571 * The funny "absolute difference" math on the elapsed time is to handle
572 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
574 static int as_antic_expired(struct as_data *ad)
578 delta_jif = jiffies - ad->antic_start;
579 if (unlikely(delta_jif < 0))
580 delta_jif = -delta_jif;
581 if (delta_jif < ad->antic_expire)
588 * as_antic_waitnext starts anticipating that a nice request will soon be
589 * submitted. See also as_antic_waitreq
591 static void as_antic_waitnext(struct as_data *ad)
593 unsigned long timeout;
595 BUG_ON(ad->antic_status != ANTIC_OFF
596 && ad->antic_status != ANTIC_WAIT_REQ);
598 timeout = ad->antic_start + ad->antic_expire;
600 mod_timer(&ad->antic_timer, timeout);
602 ad->antic_status = ANTIC_WAIT_NEXT;
606 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
607 * until the request that we're anticipating on has finished. This means we
608 * are timing from when the candidate process wakes up hopefully.
610 static void as_antic_waitreq(struct as_data *ad)
612 BUG_ON(ad->antic_status == ANTIC_FINISHED);
613 if (ad->antic_status == ANTIC_OFF) {
614 if (!ad->io_context || ad->ioc_finished)
615 as_antic_waitnext(ad);
617 ad->antic_status = ANTIC_WAIT_REQ;
622 * This is called directly by the functions in this file to stop anticipation.
623 * We kill the timer and schedule a call to the request_fn asap.
625 static void as_antic_stop(struct as_data *ad)
627 int status = ad->antic_status;
629 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
630 if (status == ANTIC_WAIT_NEXT)
631 del_timer(&ad->antic_timer);
632 ad->antic_status = ANTIC_FINISHED;
633 /* see as_work_handler */
634 kblockd_schedule_work(&ad->antic_work);
639 * as_antic_timeout is the timer function set by as_antic_waitnext.
641 static void as_antic_timeout(unsigned long data)
643 struct request_queue *q = (struct request_queue *)data;
644 struct as_data *ad = q->elevator->elevator_data;
647 spin_lock_irqsave(q->queue_lock, flags);
648 if (ad->antic_status == ANTIC_WAIT_REQ
649 || ad->antic_status == ANTIC_WAIT_NEXT) {
650 struct as_io_context *aic = ad->io_context->aic;
652 ad->antic_status = ANTIC_FINISHED;
653 kblockd_schedule_work(&ad->antic_work);
655 if (aic->ttime_samples == 0) {
656 /* process anticipated on has exited or timed out*/
657 ad->exit_prob = (7*ad->exit_prob + 256)/8;
659 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
660 /* process not "saved" by a cooperating request */
661 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
664 spin_unlock_irqrestore(q->queue_lock, flags);
667 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
670 /* fixed point: 1.0 == 1<<8 */
671 if (aic->ttime_samples == 0) {
672 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
673 ad->new_ttime_mean = ad->new_ttime_total / 256;
675 ad->exit_prob = (7*ad->exit_prob)/8;
677 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
678 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
679 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
682 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
687 if (aic->seek_samples == 0) {
688 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
689 ad->new_seek_mean = ad->new_seek_total / 256;
693 * Don't allow the seek distance to get too large from the
694 * odd fragment, pagein, etc
696 if (aic->seek_samples <= 60) /* second&third seek */
697 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
699 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
701 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
702 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
703 total = aic->seek_total + (aic->seek_samples/2);
704 do_div(total, aic->seek_samples);
705 aic->seek_mean = (sector_t)total;
709 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
710 * updates @aic->ttime_mean based on that. It is called when a new
713 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
716 struct as_rq *arq = RQ_DATA(rq);
717 int data_dir = arq->is_sync;
718 unsigned long thinktime = 0;
724 if (data_dir == REQ_SYNC) {
725 unsigned long in_flight = atomic_read(&aic->nr_queued)
726 + atomic_read(&aic->nr_dispatched);
727 spin_lock(&aic->lock);
728 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
729 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
730 /* Calculate read -> read thinktime */
731 if (test_bit(AS_TASK_IORUNNING, &aic->state)
733 thinktime = jiffies - aic->last_end_request;
734 thinktime = min(thinktime, MAX_THINKTIME-1);
736 as_update_thinktime(ad, aic, thinktime);
738 /* Calculate read -> read seek distance */
739 if (aic->last_request_pos < rq->sector)
740 seek_dist = rq->sector - aic->last_request_pos;
742 seek_dist = aic->last_request_pos - rq->sector;
743 as_update_seekdist(ad, aic, seek_dist);
745 aic->last_request_pos = rq->sector + rq->nr_sectors;
746 set_bit(AS_TASK_IOSTARTED, &aic->state);
747 spin_unlock(&aic->lock);
752 * as_close_req decides if one request is considered "close" to the
753 * previous one issued.
755 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
758 unsigned long delay; /* milliseconds */
759 sector_t last = ad->last_sector[ad->batch_data_dir];
760 sector_t next = arq->request->sector;
761 sector_t delta; /* acceptable close offset (in sectors) */
764 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
767 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
771 else if (delay <= 20 && delay <= ad->antic_expire)
772 delta = 8192 << delay;
776 if ((last <= next + (delta>>1)) && (next <= last + delta))
784 if (aic->seek_samples == 0) {
786 * Process has just started IO. Use past statistics to
787 * gauge success possibility
789 if (ad->new_seek_mean > s) {
790 /* this request is better than what we're expecting */
795 if (aic->seek_mean > s) {
796 /* this request is better than what we're expecting */
805 * as_can_break_anticipation returns true if we have been anticipating this
808 * It also returns true if the process against which we are anticipating
809 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
810 * dispatch it ASAP, because we know that application will not be submitting
813 * If the task which has submitted the request has exited, break anticipation.
815 * If this task has queued some other IO, do not enter enticipation.
817 static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
819 struct io_context *ioc;
820 struct as_io_context *aic;
822 ioc = ad->io_context;
825 if (arq && ioc == arq->io_context) {
826 /* request from same process */
830 if (ad->ioc_finished && as_antic_expired(ad)) {
832 * In this situation status should really be FINISHED,
833 * however the timer hasn't had the chance to run yet.
842 if (atomic_read(&aic->nr_queued) > 0) {
843 /* process has more requests queued */
847 if (atomic_read(&aic->nr_dispatched) > 0) {
848 /* process has more requests dispatched */
852 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
854 * Found a close request that is not one of ours.
856 * This makes close requests from another process update
857 * our IO history. Is generally useful when there are
858 * two or more cooperating processes working in the same
861 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
862 if (aic->ttime_samples == 0)
863 ad->exit_prob = (7*ad->exit_prob + 256)/8;
865 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
868 as_update_iohist(ad, aic, arq->request);
872 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
873 /* process anticipated on has exited */
874 if (aic->ttime_samples == 0)
875 ad->exit_prob = (7*ad->exit_prob + 256)/8;
877 if (ad->exit_no_coop > 128)
881 if (aic->ttime_samples == 0) {
882 if (ad->new_ttime_mean > ad->antic_expire)
884 if (ad->exit_prob * ad->exit_no_coop > 128*256)
886 } else if (aic->ttime_mean > ad->antic_expire) {
887 /* the process thinks too much between requests */
895 * as_can_anticipate indicates whether we should either run arq
896 * or keep anticipating a better request.
898 static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
902 * Last request submitted was a write
906 if (ad->antic_status == ANTIC_FINISHED)
908 * Don't restart if we have just finished. Run the next request
912 if (as_can_break_anticipation(ad, arq))
914 * This request is a good candidate. Don't keep anticipating,
920 * OK from here, we haven't finished, and don't have a decent request!
921 * Status is either ANTIC_OFF so start waiting,
922 * ANTIC_WAIT_REQ so continue waiting for request to finish
923 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
930 * as_update_arq must be called whenever a request (arq) is added to
931 * the sort_list. This function keeps caches up to date, and checks if the
932 * request might be one we are "anticipating"
934 static void as_update_arq(struct as_data *ad, struct as_rq *arq)
936 const int data_dir = arq->is_sync;
938 /* keep the next_arq cache up to date */
939 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
942 * have we been anticipating this request?
943 * or does it come from the same process as the one we are anticipating
946 if (ad->antic_status == ANTIC_WAIT_REQ
947 || ad->antic_status == ANTIC_WAIT_NEXT) {
948 if (as_can_break_anticipation(ad, arq))
954 * Gathers timings and resizes the write batch automatically
956 static void update_write_batch(struct as_data *ad)
958 unsigned long batch = ad->batch_expire[REQ_ASYNC];
961 write_time = (jiffies - ad->current_batch_expires) + batch;
965 if (write_time > batch && !ad->write_batch_idled) {
966 if (write_time > batch * 3)
967 ad->write_batch_count /= 2;
969 ad->write_batch_count--;
970 } else if (write_time < batch && ad->current_write_count == 0) {
971 if (batch > write_time * 3)
972 ad->write_batch_count *= 2;
974 ad->write_batch_count++;
977 if (ad->write_batch_count < 1)
978 ad->write_batch_count = 1;
982 * as_completed_request is to be called when a request has completed and
983 * returned something to the requesting process, be it an error or data.
985 static void as_completed_request(request_queue_t *q, struct request *rq)
987 struct as_data *ad = q->elevator->elevator_data;
988 struct as_rq *arq = RQ_DATA(rq);
990 WARN_ON(!list_empty(&rq->queuelist));
992 if (arq->state != AS_RQ_REMOVED) {
993 printk("arq->state %d\n", arq->state);
998 if (ad->changed_batch && ad->nr_dispatched == 1) {
999 kblockd_schedule_work(&ad->antic_work);
1000 ad->changed_batch = 0;
1002 if (ad->batch_data_dir == REQ_SYNC)
1005 WARN_ON(ad->nr_dispatched == 0);
1006 ad->nr_dispatched--;
1009 * Start counting the batch from when a request of that direction is
1010 * actually serviced. This should help devices with big TCQ windows
1011 * and writeback caches
1013 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
1014 update_write_batch(ad);
1015 ad->current_batch_expires = jiffies +
1016 ad->batch_expire[REQ_SYNC];
1020 if (ad->io_context == arq->io_context && ad->io_context) {
1021 ad->antic_start = jiffies;
1022 ad->ioc_finished = 1;
1023 if (ad->antic_status == ANTIC_WAIT_REQ) {
1025 * We were waiting on this request, now anticipate
1028 as_antic_waitnext(ad);
1032 as_put_io_context(arq);
1034 arq->state = AS_RQ_POSTSCHED;
1038 * as_remove_queued_request removes a request from the pre dispatch queue
1039 * without updating refcounts. It is expected the caller will drop the
1040 * reference unless it replaces the request at somepart of the elevator
1041 * (ie. the dispatch queue)
1043 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1045 struct as_rq *arq = RQ_DATA(rq);
1046 const int data_dir = arq->is_sync;
1047 struct as_data *ad = q->elevator->elevator_data;
1049 WARN_ON(arq->state != AS_RQ_QUEUED);
1051 if (arq->io_context && arq->io_context->aic) {
1052 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1053 atomic_dec(&arq->io_context->aic->nr_queued);
1057 * Update the "next_arq" cache if we are about to remove its
1060 if (ad->next_arq[data_dir] == arq)
1061 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1063 list_del_init(&arq->fifo);
1064 as_del_arq_hash(arq);
1065 as_del_arq_rb(ad, arq);
1069 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1070 * 1 otherwise. It is ratelimited so that we only perform the check once per
1071 * `fifo_expire' interval. Otherwise a large number of expired requests
1072 * would create a hopeless seekstorm.
1074 * See as_antic_expired comment.
1076 static int as_fifo_expired(struct as_data *ad, int adir)
1081 delta_jif = jiffies - ad->last_check_fifo[adir];
1082 if (unlikely(delta_jif < 0))
1083 delta_jif = -delta_jif;
1084 if (delta_jif < ad->fifo_expire[adir])
1087 ad->last_check_fifo[adir] = jiffies;
1089 if (list_empty(&ad->fifo_list[adir]))
1092 arq = list_entry_fifo(ad->fifo_list[adir].next);
1094 return time_after(jiffies, arq->expires);
1098 * as_batch_expired returns true if the current batch has expired. A batch
1099 * is a set of reads or a set of writes.
1101 static inline int as_batch_expired(struct as_data *ad)
1103 if (ad->changed_batch || ad->new_batch)
1106 if (ad->batch_data_dir == REQ_SYNC)
1107 /* TODO! add a check so a complete fifo gets written? */
1108 return time_after(jiffies, ad->current_batch_expires);
1110 return time_after(jiffies, ad->current_batch_expires)
1111 || ad->current_write_count == 0;
1115 * move an entry to dispatch queue
1117 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1119 struct request *rq = arq->request;
1120 const int data_dir = arq->is_sync;
1122 BUG_ON(!RB_EMPTY_NODE(&arq->rb_node));
1125 ad->antic_status = ANTIC_OFF;
1128 * This has to be set in order to be correctly updated by
1131 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1133 if (data_dir == REQ_SYNC) {
1134 /* In case we have to anticipate after this */
1135 copy_io_context(&ad->io_context, &arq->io_context);
1137 if (ad->io_context) {
1138 put_io_context(ad->io_context);
1139 ad->io_context = NULL;
1142 if (ad->current_write_count != 0)
1143 ad->current_write_count--;
1145 ad->ioc_finished = 0;
1147 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1150 * take it off the sort and fifo list, add to dispatch queue
1152 as_remove_queued_request(ad->q, rq);
1153 WARN_ON(arq->state != AS_RQ_QUEUED);
1155 elv_dispatch_sort(ad->q, rq);
1157 arq->state = AS_RQ_DISPATCHED;
1158 if (arq->io_context && arq->io_context->aic)
1159 atomic_inc(&arq->io_context->aic->nr_dispatched);
1160 ad->nr_dispatched++;
1164 * as_dispatch_request selects the best request according to
1165 * read/write expire, batch expire, etc, and moves it to the dispatch
1166 * queue. Returns 1 if a request was found, 0 otherwise.
1168 static int as_dispatch_request(request_queue_t *q, int force)
1170 struct as_data *ad = q->elevator->elevator_data;
1172 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1173 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1175 if (unlikely(force)) {
1177 * Forced dispatch, accounting is useless. Reset
1178 * accounting states and dump fifo_lists. Note that
1179 * batch_data_dir is reset to REQ_SYNC to avoid
1180 * screwing write batch accounting as write batch
1181 * accounting occurs on W->R transition.
1185 ad->batch_data_dir = REQ_SYNC;
1186 ad->changed_batch = 0;
1189 while (ad->next_arq[REQ_SYNC]) {
1190 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1193 ad->last_check_fifo[REQ_SYNC] = jiffies;
1195 while (ad->next_arq[REQ_ASYNC]) {
1196 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1199 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1204 /* Signal that the write batch was uncontended, so we can't time it */
1205 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1206 if (ad->current_write_count == 0 || !writes)
1207 ad->write_batch_idled = 1;
1210 if (!(reads || writes)
1211 || ad->antic_status == ANTIC_WAIT_REQ
1212 || ad->antic_status == ANTIC_WAIT_NEXT
1213 || ad->changed_batch)
1216 if (!(reads && writes && as_batch_expired(ad))) {
1218 * batch is still running or no reads or no writes
1220 arq = ad->next_arq[ad->batch_data_dir];
1222 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1223 if (as_fifo_expired(ad, REQ_SYNC))
1226 if (as_can_anticipate(ad, arq)) {
1227 as_antic_waitreq(ad);
1233 /* we have a "next request" */
1234 if (reads && !writes)
1235 ad->current_batch_expires =
1236 jiffies + ad->batch_expire[REQ_SYNC];
1237 goto dispatch_request;
1242 * at this point we are not running a batch. select the appropriate
1243 * data direction (read / write)
1247 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
1249 if (writes && ad->batch_data_dir == REQ_SYNC)
1251 * Last batch was a read, switch to writes
1253 goto dispatch_writes;
1255 if (ad->batch_data_dir == REQ_ASYNC) {
1256 WARN_ON(ad->new_batch);
1257 ad->changed_batch = 1;
1259 ad->batch_data_dir = REQ_SYNC;
1260 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1261 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1262 goto dispatch_request;
1266 * the last batch was a read
1271 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
1273 if (ad->batch_data_dir == REQ_SYNC) {
1274 ad->changed_batch = 1;
1277 * new_batch might be 1 when the queue runs out of
1278 * reads. A subsequent submission of a write might
1279 * cause a change of batch before the read is finished.
1283 ad->batch_data_dir = REQ_ASYNC;
1284 ad->current_write_count = ad->write_batch_count;
1285 ad->write_batch_idled = 0;
1286 arq = ad->next_arq[ad->batch_data_dir];
1287 goto dispatch_request;
1295 * If a request has expired, service it.
1298 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1300 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1301 BUG_ON(arq == NULL);
1304 if (ad->changed_batch) {
1305 WARN_ON(ad->new_batch);
1307 if (ad->nr_dispatched)
1310 if (ad->batch_data_dir == REQ_ASYNC)
1311 ad->current_batch_expires = jiffies +
1312 ad->batch_expire[REQ_ASYNC];
1316 ad->changed_batch = 0;
1320 * arq is the selected appropriate request.
1322 as_move_to_dispatch(ad, arq);
1328 * add arq to rbtree and fifo
1330 static void as_add_request(request_queue_t *q, struct request *rq)
1332 struct as_data *ad = q->elevator->elevator_data;
1333 struct as_rq *arq = RQ_DATA(rq);
1336 arq->state = AS_RQ_NEW;
1338 if (rq_data_dir(arq->request) == READ
1339 || (arq->request->flags & REQ_RW_SYNC))
1343 data_dir = arq->is_sync;
1345 arq->io_context = as_get_io_context();
1347 if (arq->io_context) {
1348 as_update_iohist(ad, arq->io_context->aic, arq->request);
1349 atomic_inc(&arq->io_context->aic->nr_queued);
1352 as_add_arq_rb(ad, arq);
1353 if (rq_mergeable(arq->request))
1354 as_add_arq_hash(ad, arq);
1357 * set expire time (only used for reads) and add to fifo list
1359 arq->expires = jiffies + ad->fifo_expire[data_dir];
1360 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1362 as_update_arq(ad, arq); /* keep state machine up to date */
1363 arq->state = AS_RQ_QUEUED;
1366 static void as_activate_request(request_queue_t *q, struct request *rq)
1368 struct as_rq *arq = RQ_DATA(rq);
1370 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1371 arq->state = AS_RQ_REMOVED;
1372 if (arq->io_context && arq->io_context->aic)
1373 atomic_dec(&arq->io_context->aic->nr_dispatched);
1376 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1378 struct as_rq *arq = RQ_DATA(rq);
1380 WARN_ON(arq->state != AS_RQ_REMOVED);
1381 arq->state = AS_RQ_DISPATCHED;
1382 if (arq->io_context && arq->io_context->aic)
1383 atomic_inc(&arq->io_context->aic->nr_dispatched);
1387 * as_queue_empty tells us if there are requests left in the device. It may
1388 * not be the case that a driver can get the next request even if the queue
1389 * is not empty - it is used in the block layer to check for plugging and
1390 * merging opportunities
1392 static int as_queue_empty(request_queue_t *q)
1394 struct as_data *ad = q->elevator->elevator_data;
1396 return list_empty(&ad->fifo_list[REQ_ASYNC])
1397 && list_empty(&ad->fifo_list[REQ_SYNC]);
1400 static struct request *as_former_request(request_queue_t *q,
1403 struct as_rq *arq = RQ_DATA(rq);
1404 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1405 struct request *ret = NULL;
1408 ret = rb_entry_arq(rbprev)->request;
1413 static struct request *as_latter_request(request_queue_t *q,
1416 struct as_rq *arq = RQ_DATA(rq);
1417 struct rb_node *rbnext = rb_next(&arq->rb_node);
1418 struct request *ret = NULL;
1421 ret = rb_entry_arq(rbnext)->request;
1427 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1429 struct as_data *ad = q->elevator->elevator_data;
1430 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1431 struct request *__rq;
1435 * see if the merge hash can satisfy a back merge
1437 __rq = as_find_arq_hash(ad, bio->bi_sector);
1439 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1441 if (elv_rq_merge_ok(__rq, bio)) {
1442 ret = ELEVATOR_BACK_MERGE;
1448 * check for front merge
1450 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1452 BUG_ON(rb_key != rq_rb_key(__rq));
1454 if (elv_rq_merge_ok(__rq, bio)) {
1455 ret = ELEVATOR_FRONT_MERGE;
1460 return ELEVATOR_NO_MERGE;
1463 if (rq_mergeable(__rq))
1464 as_hot_arq_hash(ad, RQ_DATA(__rq));
1470 static void as_merged_request(request_queue_t *q, struct request *req)
1472 struct as_data *ad = q->elevator->elevator_data;
1473 struct as_rq *arq = RQ_DATA(req);
1476 * hash always needs to be repositioned, key is end sector
1478 as_del_arq_hash(arq);
1479 as_add_arq_hash(ad, arq);
1482 * if the merge was a front merge, we need to reposition request
1484 if (rq_rb_key(req) != arq->rb_key) {
1485 as_del_arq_rb(ad, arq);
1486 as_add_arq_rb(ad, arq);
1488 * Note! At this stage of this and the next function, our next
1489 * request may not be optimal - eg the request may have "grown"
1490 * behind the disk head. We currently don't bother adjusting.
1495 static void as_merged_requests(request_queue_t *q, struct request *req,
1496 struct request *next)
1498 struct as_data *ad = q->elevator->elevator_data;
1499 struct as_rq *arq = RQ_DATA(req);
1500 struct as_rq *anext = RQ_DATA(next);
1506 * reposition arq (this is the merged request) in hash, and in rbtree
1507 * in case of a front merge
1509 as_del_arq_hash(arq);
1510 as_add_arq_hash(ad, arq);
1512 if (rq_rb_key(req) != arq->rb_key) {
1513 as_del_arq_rb(ad, arq);
1514 as_add_arq_rb(ad, arq);
1518 * if anext expires before arq, assign its expire time to arq
1519 * and move into anext position (anext will be deleted) in fifo
1521 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1522 if (time_before(anext->expires, arq->expires)) {
1523 list_move(&arq->fifo, &anext->fifo);
1524 arq->expires = anext->expires;
1526 * Don't copy here but swap, because when anext is
1527 * removed below, it must contain the unused context
1529 swap_io_context(&arq->io_context, &anext->io_context);
1534 * kill knowledge of next, this one is a goner
1536 as_remove_queued_request(q, next);
1537 as_put_io_context(anext);
1539 anext->state = AS_RQ_MERGED;
1543 * This is executed in a "deferred" process context, by kblockd. It calls the
1544 * driver's request_fn so the driver can submit that request.
1546 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1547 * state before calling, and don't rely on any state over calls.
1549 * FIXME! dispatch queue is not a queue at all!
1551 static void as_work_handler(void *data)
1553 struct request_queue *q = data;
1554 unsigned long flags;
1556 spin_lock_irqsave(q->queue_lock, flags);
1557 if (!as_queue_empty(q))
1559 spin_unlock_irqrestore(q->queue_lock, flags);
1562 static void as_put_request(request_queue_t *q, struct request *rq)
1564 struct as_data *ad = q->elevator->elevator_data;
1565 struct as_rq *arq = RQ_DATA(rq);
1572 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1573 arq->state != AS_RQ_PRESCHED &&
1574 arq->state != AS_RQ_MERGED)) {
1575 printk("arq->state %d\n", arq->state);
1579 mempool_free(arq, ad->arq_pool);
1580 rq->elevator_private = NULL;
1583 static int as_set_request(request_queue_t *q, struct request *rq,
1584 struct bio *bio, gfp_t gfp_mask)
1586 struct as_data *ad = q->elevator->elevator_data;
1587 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1590 memset(arq, 0, sizeof(*arq));
1591 RB_CLEAR_NODE(&arq->rb_node);
1593 arq->state = AS_RQ_PRESCHED;
1594 arq->io_context = NULL;
1595 INIT_HLIST_NODE(&arq->hash);
1596 INIT_LIST_HEAD(&arq->fifo);
1597 rq->elevator_private = arq;
1604 static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1606 int ret = ELV_MQUEUE_MAY;
1607 struct as_data *ad = q->elevator->elevator_data;
1608 struct io_context *ioc;
1609 if (ad->antic_status == ANTIC_WAIT_REQ ||
1610 ad->antic_status == ANTIC_WAIT_NEXT) {
1611 ioc = as_get_io_context();
1612 if (ad->io_context == ioc)
1613 ret = ELV_MQUEUE_MUST;
1614 put_io_context(ioc);
1620 static void as_exit_queue(elevator_t *e)
1622 struct as_data *ad = e->elevator_data;
1624 del_timer_sync(&ad->antic_timer);
1627 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1628 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1630 mempool_destroy(ad->arq_pool);
1631 put_io_context(ad->io_context);
1637 * initialize elevator private data (as_data), and alloc a arq for
1638 * each request on the free lists
1640 static void *as_init_queue(request_queue_t *q, elevator_t *e)
1648 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1651 memset(ad, 0, sizeof(*ad));
1653 ad->q = q; /* Identify what queue the data belongs to */
1655 ad->hash = kmalloc_node(sizeof(struct hlist_head)*AS_HASH_ENTRIES,
1656 GFP_KERNEL, q->node);
1662 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1663 mempool_free_slab, arq_pool, q->node);
1664 if (!ad->arq_pool) {
1670 /* anticipatory scheduling helpers */
1671 ad->antic_timer.function = as_antic_timeout;
1672 ad->antic_timer.data = (unsigned long)q;
1673 init_timer(&ad->antic_timer);
1674 INIT_WORK(&ad->antic_work, as_work_handler, q);
1676 for (i = 0; i < AS_HASH_ENTRIES; i++)
1677 INIT_HLIST_HEAD(&ad->hash[i]);
1679 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1680 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1681 ad->sort_list[REQ_SYNC] = RB_ROOT;
1682 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1683 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1684 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1685 ad->antic_expire = default_antic_expire;
1686 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1687 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1689 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1690 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1691 if (ad->write_batch_count < 2)
1692 ad->write_batch_count = 2;
1702 as_var_show(unsigned int var, char *page)
1704 return sprintf(page, "%d\n", var);
1708 as_var_store(unsigned long *var, const char *page, size_t count)
1710 char *p = (char *) page;
1712 *var = simple_strtoul(p, &p, 10);
1716 static ssize_t est_time_show(elevator_t *e, char *page)
1718 struct as_data *ad = e->elevator_data;
1721 pos += sprintf(page+pos, "%lu %% exit probability\n",
1722 100*ad->exit_prob/256);
1723 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1724 "cooperating process submitting IO\n",
1725 100*ad->exit_no_coop/256);
1726 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1727 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1728 (unsigned long long)ad->new_seek_mean);
1733 #define SHOW_FUNCTION(__FUNC, __VAR) \
1734 static ssize_t __FUNC(elevator_t *e, char *page) \
1736 struct as_data *ad = e->elevator_data; \
1737 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1739 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1740 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1741 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1742 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1743 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1744 #undef SHOW_FUNCTION
1746 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1747 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1749 struct as_data *ad = e->elevator_data; \
1750 int ret = as_var_store(__PTR, (page), count); \
1751 if (*(__PTR) < (MIN)) \
1753 else if (*(__PTR) > (MAX)) \
1755 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1758 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1759 STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1760 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1761 STORE_FUNCTION(as_read_batch_expire_store,
1762 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1763 STORE_FUNCTION(as_write_batch_expire_store,
1764 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1765 #undef STORE_FUNCTION
1767 #define AS_ATTR(name) \
1768 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1770 static struct elv_fs_entry as_attrs[] = {
1771 __ATTR_RO(est_time),
1772 AS_ATTR(read_expire),
1773 AS_ATTR(write_expire),
1774 AS_ATTR(antic_expire),
1775 AS_ATTR(read_batch_expire),
1776 AS_ATTR(write_batch_expire),
1780 static struct elevator_type iosched_as = {
1782 .elevator_merge_fn = as_merge,
1783 .elevator_merged_fn = as_merged_request,
1784 .elevator_merge_req_fn = as_merged_requests,
1785 .elevator_dispatch_fn = as_dispatch_request,
1786 .elevator_add_req_fn = as_add_request,
1787 .elevator_activate_req_fn = as_activate_request,
1788 .elevator_deactivate_req_fn = as_deactivate_request,
1789 .elevator_queue_empty_fn = as_queue_empty,
1790 .elevator_completed_req_fn = as_completed_request,
1791 .elevator_former_req_fn = as_former_request,
1792 .elevator_latter_req_fn = as_latter_request,
1793 .elevator_set_req_fn = as_set_request,
1794 .elevator_put_req_fn = as_put_request,
1795 .elevator_may_queue_fn = as_may_queue,
1796 .elevator_init_fn = as_init_queue,
1797 .elevator_exit_fn = as_exit_queue,
1801 .elevator_attrs = as_attrs,
1802 .elevator_name = "anticipatory",
1803 .elevator_owner = THIS_MODULE,
1806 static int __init as_init(void)
1810 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1815 ret = elv_register(&iosched_as);
1818 * don't allow AS to get unregistered, since we would have
1819 * to browse all tasks in the system and release their
1820 * as_io_context first
1822 __module_get(THIS_MODULE);
1826 kmem_cache_destroy(arq_pool);
1830 static void __exit as_exit(void)
1832 DECLARE_COMPLETION(all_gone);
1833 elv_unregister(&iosched_as);
1834 ioc_gone = &all_gone;
1835 /* ioc_gone's update must be visible before reading ioc_count */
1837 if (atomic_read(&ioc_count))
1838 wait_for_completion(ioc_gone);
1840 kmem_cache_destroy(arq_pool);
1843 module_init(as_init);
1844 module_exit(as_exit);
1846 MODULE_AUTHOR("Nick Piggin");
1847 MODULE_LICENSE("GPL");
1848 MODULE_DESCRIPTION("anticipatory IO scheduler");