4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
87 * Implementing inode permission operations in /proc is almost
88 * certainly an error. Permission checks need to happen during
89 * each system call not at open time. The reason is that most of
90 * what we wish to check for permissions in /proc varies at runtime.
92 * The classic example of a problem is opening file descriptors
93 * in /proc for a task before it execs a suid executable.
100 const struct inode_operations *iop;
101 const struct file_operations *fop;
105 #define NOD(NAME, MODE, IOP, FOP, OP) { \
107 .len = sizeof(NAME) - 1, \
114 #define DIR(NAME, MODE, iops, fops) \
115 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link) \
117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
118 &proc_pid_link_inode_operations, NULL, \
119 { .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops) \
121 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read) \
123 NOD(NAME, (S_IFREG|(MODE)), \
124 NULL, &proc_info_file_operations, \
125 { .proc_read = read } )
126 #define ONE(NAME, MODE, show) \
127 NOD(NAME, (S_IFREG|(MODE)), \
128 NULL, &proc_single_file_operations, \
129 { .proc_show = show } )
132 * Count the number of hardlinks for the pid_entry table, excluding the .
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
142 for (i = 0; i < n; ++i) {
143 if (S_ISDIR(entries[i].mode))
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
152 struct fs_struct *fs;
153 int result = -ENOENT;
158 read_lock(&fs->lock);
159 *path = root ? fs->root : fs->pwd;
161 read_unlock(&fs->lock);
168 static int get_nr_threads(struct task_struct *tsk)
173 if (lock_task_sighand(tsk, &flags)) {
174 count = atomic_read(&tsk->signal->count);
175 unlock_task_sighand(tsk, &flags);
180 static int proc_cwd_link(struct inode *inode, struct path *path)
182 struct task_struct *task = get_proc_task(inode);
183 int result = -ENOENT;
186 result = get_fs_path(task, path, 0);
187 put_task_struct(task);
192 static int proc_root_link(struct inode *inode, struct path *path)
194 struct task_struct *task = get_proc_task(inode);
195 int result = -ENOENT;
198 result = get_fs_path(task, path, 1);
199 put_task_struct(task);
205 * Return zero if current may access user memory in @task, -error if not.
207 static int check_mem_permission(struct task_struct *task)
210 * A task can always look at itself, in case it chooses
211 * to use system calls instead of load instructions.
217 * If current is actively ptrace'ing, and would also be
218 * permitted to freshly attach with ptrace now, permit it.
220 if (task_is_stopped_or_traced(task)) {
223 match = (tracehook_tracer_task(task) == current);
225 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
230 * Noone else is allowed.
235 struct mm_struct *mm_for_maps(struct task_struct *task)
237 struct mm_struct *mm = get_task_mm(task);
240 down_read(&mm->mmap_sem);
244 if (task->mm != current->mm &&
245 __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
251 up_read(&mm->mmap_sem);
256 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
260 struct mm_struct *mm = get_task_mm(task);
264 goto out_mm; /* Shh! No looking before we're done */
266 len = mm->arg_end - mm->arg_start;
271 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
273 // If the nul at the end of args has been overwritten, then
274 // assume application is using setproctitle(3).
275 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
276 len = strnlen(buffer, res);
280 len = mm->env_end - mm->env_start;
281 if (len > PAGE_SIZE - res)
282 len = PAGE_SIZE - res;
283 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
284 res = strnlen(buffer, res);
293 static int proc_pid_auxv(struct task_struct *task, char *buffer)
296 struct mm_struct *mm = get_task_mm(task);
298 unsigned int nwords = 0;
301 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
302 res = nwords * sizeof(mm->saved_auxv[0]);
305 memcpy(buffer, mm->saved_auxv, res);
312 #ifdef CONFIG_KALLSYMS
314 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
315 * Returns the resolved symbol. If that fails, simply return the address.
317 static int proc_pid_wchan(struct task_struct *task, char *buffer)
320 char symname[KSYM_NAME_LEN];
322 wchan = get_wchan(task);
324 if (lookup_symbol_name(wchan, symname) < 0)
325 if (!ptrace_may_access(task, PTRACE_MODE_READ))
328 return sprintf(buffer, "%lu", wchan);
330 return sprintf(buffer, "%s", symname);
332 #endif /* CONFIG_KALLSYMS */
334 #ifdef CONFIG_STACKTRACE
336 #define MAX_STACK_TRACE_DEPTH 64
338 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
339 struct pid *pid, struct task_struct *task)
341 struct stack_trace trace;
342 unsigned long *entries;
345 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
349 trace.nr_entries = 0;
350 trace.max_entries = MAX_STACK_TRACE_DEPTH;
351 trace.entries = entries;
353 save_stack_trace_tsk(task, &trace);
355 for (i = 0; i < trace.nr_entries; i++) {
356 seq_printf(m, "[<%p>] %pS\n",
357 (void *)entries[i], (void *)entries[i]);
365 #ifdef CONFIG_SCHEDSTATS
367 * Provides /proc/PID/schedstat
369 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
371 return sprintf(buffer, "%llu %llu %lu\n",
372 (unsigned long long)task->se.sum_exec_runtime,
373 (unsigned long long)task->sched_info.run_delay,
374 task->sched_info.pcount);
378 #ifdef CONFIG_LATENCYTOP
379 static int lstats_show_proc(struct seq_file *m, void *v)
382 struct inode *inode = m->private;
383 struct task_struct *task = get_proc_task(inode);
387 seq_puts(m, "Latency Top version : v0.1\n");
388 for (i = 0; i < 32; i++) {
389 if (task->latency_record[i].backtrace[0]) {
391 seq_printf(m, "%i %li %li ",
392 task->latency_record[i].count,
393 task->latency_record[i].time,
394 task->latency_record[i].max);
395 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
396 char sym[KSYM_SYMBOL_LEN];
398 if (!task->latency_record[i].backtrace[q])
400 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
402 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
403 c = strchr(sym, '+');
406 seq_printf(m, "%s ", sym);
412 put_task_struct(task);
416 static int lstats_open(struct inode *inode, struct file *file)
418 return single_open(file, lstats_show_proc, inode);
421 static ssize_t lstats_write(struct file *file, const char __user *buf,
422 size_t count, loff_t *offs)
424 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
428 clear_all_latency_tracing(task);
429 put_task_struct(task);
434 static const struct file_operations proc_lstats_operations = {
437 .write = lstats_write,
439 .release = single_release,
444 /* The badness from the OOM killer */
445 unsigned long badness(struct task_struct *p, unsigned long uptime);
446 static int proc_oom_score(struct task_struct *task, char *buffer)
448 unsigned long points;
449 struct timespec uptime;
451 do_posix_clock_monotonic_gettime(&uptime);
452 read_lock(&tasklist_lock);
453 points = badness(task, uptime.tv_sec);
454 read_unlock(&tasklist_lock);
455 return sprintf(buffer, "%lu\n", points);
463 static const struct limit_names lnames[RLIM_NLIMITS] = {
464 [RLIMIT_CPU] = {"Max cpu time", "ms"},
465 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
466 [RLIMIT_DATA] = {"Max data size", "bytes"},
467 [RLIMIT_STACK] = {"Max stack size", "bytes"},
468 [RLIMIT_CORE] = {"Max core file size", "bytes"},
469 [RLIMIT_RSS] = {"Max resident set", "bytes"},
470 [RLIMIT_NPROC] = {"Max processes", "processes"},
471 [RLIMIT_NOFILE] = {"Max open files", "files"},
472 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
473 [RLIMIT_AS] = {"Max address space", "bytes"},
474 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
475 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
476 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
477 [RLIMIT_NICE] = {"Max nice priority", NULL},
478 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
479 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
482 /* Display limits for a process */
483 static int proc_pid_limits(struct task_struct *task, char *buffer)
488 char *bufptr = buffer;
490 struct rlimit rlim[RLIM_NLIMITS];
492 if (!lock_task_sighand(task, &flags))
494 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
495 unlock_task_sighand(task, &flags);
498 * print the file header
500 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
501 "Limit", "Soft Limit", "Hard Limit", "Units");
503 for (i = 0; i < RLIM_NLIMITS; i++) {
504 if (rlim[i].rlim_cur == RLIM_INFINITY)
505 count += sprintf(&bufptr[count], "%-25s %-20s ",
506 lnames[i].name, "unlimited");
508 count += sprintf(&bufptr[count], "%-25s %-20lu ",
509 lnames[i].name, rlim[i].rlim_cur);
511 if (rlim[i].rlim_max == RLIM_INFINITY)
512 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
514 count += sprintf(&bufptr[count], "%-20lu ",
518 count += sprintf(&bufptr[count], "%-10s\n",
521 count += sprintf(&bufptr[count], "\n");
527 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
528 static int proc_pid_syscall(struct task_struct *task, char *buffer)
531 unsigned long args[6], sp, pc;
533 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
534 return sprintf(buffer, "running\n");
537 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
539 return sprintf(buffer,
540 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
542 args[0], args[1], args[2], args[3], args[4], args[5],
545 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
547 /************************************************************************/
548 /* Here the fs part begins */
549 /************************************************************************/
551 /* permission checks */
552 static int proc_fd_access_allowed(struct inode *inode)
554 struct task_struct *task;
556 /* Allow access to a task's file descriptors if it is us or we
557 * may use ptrace attach to the process and find out that
560 task = get_proc_task(inode);
562 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
563 put_task_struct(task);
568 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
571 struct inode *inode = dentry->d_inode;
573 if (attr->ia_valid & ATTR_MODE)
576 error = inode_change_ok(inode, attr);
578 error = inode_setattr(inode, attr);
582 static const struct inode_operations proc_def_inode_operations = {
583 .setattr = proc_setattr,
586 static int mounts_open_common(struct inode *inode, struct file *file,
587 const struct seq_operations *op)
589 struct task_struct *task = get_proc_task(inode);
591 struct mnt_namespace *ns = NULL;
593 struct proc_mounts *p;
598 nsp = task_nsproxy(task);
605 if (ns && get_fs_path(task, &root, 1) == 0)
607 put_task_struct(task);
616 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
620 file->private_data = &p->m;
621 ret = seq_open(file, op);
628 p->event = ns->event;
642 static int mounts_release(struct inode *inode, struct file *file)
644 struct proc_mounts *p = file->private_data;
647 return seq_release(inode, file);
650 static unsigned mounts_poll(struct file *file, poll_table *wait)
652 struct proc_mounts *p = file->private_data;
653 struct mnt_namespace *ns = p->ns;
654 unsigned res = POLLIN | POLLRDNORM;
656 poll_wait(file, &ns->poll, wait);
658 spin_lock(&vfsmount_lock);
659 if (p->event != ns->event) {
660 p->event = ns->event;
661 res |= POLLERR | POLLPRI;
663 spin_unlock(&vfsmount_lock);
668 static int mounts_open(struct inode *inode, struct file *file)
670 return mounts_open_common(inode, file, &mounts_op);
673 static const struct file_operations proc_mounts_operations = {
677 .release = mounts_release,
681 static int mountinfo_open(struct inode *inode, struct file *file)
683 return mounts_open_common(inode, file, &mountinfo_op);
686 static const struct file_operations proc_mountinfo_operations = {
687 .open = mountinfo_open,
690 .release = mounts_release,
694 static int mountstats_open(struct inode *inode, struct file *file)
696 return mounts_open_common(inode, file, &mountstats_op);
699 static const struct file_operations proc_mountstats_operations = {
700 .open = mountstats_open,
703 .release = mounts_release,
706 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
708 static ssize_t proc_info_read(struct file * file, char __user * buf,
709 size_t count, loff_t *ppos)
711 struct inode * inode = file->f_path.dentry->d_inode;
714 struct task_struct *task = get_proc_task(inode);
720 if (count > PROC_BLOCK_SIZE)
721 count = PROC_BLOCK_SIZE;
724 if (!(page = __get_free_page(GFP_TEMPORARY)))
727 length = PROC_I(inode)->op.proc_read(task, (char*)page);
730 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
733 put_task_struct(task);
738 static const struct file_operations proc_info_file_operations = {
739 .read = proc_info_read,
742 static int proc_single_show(struct seq_file *m, void *v)
744 struct inode *inode = m->private;
745 struct pid_namespace *ns;
747 struct task_struct *task;
750 ns = inode->i_sb->s_fs_info;
751 pid = proc_pid(inode);
752 task = get_pid_task(pid, PIDTYPE_PID);
756 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
758 put_task_struct(task);
762 static int proc_single_open(struct inode *inode, struct file *filp)
765 ret = single_open(filp, proc_single_show, NULL);
767 struct seq_file *m = filp->private_data;
774 static const struct file_operations proc_single_file_operations = {
775 .open = proc_single_open,
778 .release = single_release,
781 static int mem_open(struct inode* inode, struct file* file)
783 file->private_data = (void*)((long)current->self_exec_id);
787 static ssize_t mem_read(struct file * file, char __user * buf,
788 size_t count, loff_t *ppos)
790 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
792 unsigned long src = *ppos;
794 struct mm_struct *mm;
799 if (check_mem_permission(task))
803 page = (char *)__get_free_page(GFP_TEMPORARY);
809 mm = get_task_mm(task);
815 if (file->private_data != (void*)((long)current->self_exec_id))
821 int this_len, retval;
823 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
824 retval = access_process_vm(task, src, page, this_len, 0);
825 if (!retval || check_mem_permission(task)) {
831 if (copy_to_user(buf, page, retval)) {
846 free_page((unsigned long) page);
848 put_task_struct(task);
853 #define mem_write NULL
856 /* This is a security hazard */
857 static ssize_t mem_write(struct file * file, const char __user *buf,
858 size_t count, loff_t *ppos)
862 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
863 unsigned long dst = *ppos;
869 if (check_mem_permission(task))
873 page = (char *)__get_free_page(GFP_TEMPORARY);
879 int this_len, retval;
881 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
882 if (copy_from_user(page, buf, this_len)) {
886 retval = access_process_vm(task, dst, page, this_len, 1);
898 free_page((unsigned long) page);
900 put_task_struct(task);
906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
910 file->f_pos = offset;
913 file->f_pos += offset;
918 force_successful_syscall_return();
922 static const struct file_operations proc_mem_operations = {
929 static ssize_t environ_read(struct file *file, char __user *buf,
930 size_t count, loff_t *ppos)
932 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
934 unsigned long src = *ppos;
936 struct mm_struct *mm;
941 if (!ptrace_may_access(task, PTRACE_MODE_READ))
945 page = (char *)__get_free_page(GFP_TEMPORARY);
951 mm = get_task_mm(task);
956 int this_len, retval, max_len;
958 this_len = mm->env_end - (mm->env_start + src);
963 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
964 this_len = (this_len > max_len) ? max_len : this_len;
966 retval = access_process_vm(task, (mm->env_start + src),
974 if (copy_to_user(buf, page, retval)) {
988 free_page((unsigned long) page);
990 put_task_struct(task);
995 static const struct file_operations proc_environ_operations = {
996 .read = environ_read,
999 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1000 size_t count, loff_t *ppos)
1002 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1003 char buffer[PROC_NUMBUF];
1009 oom_adjust = task->oomkilladj;
1010 put_task_struct(task);
1012 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1014 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1017 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1018 size_t count, loff_t *ppos)
1020 struct task_struct *task;
1021 char buffer[PROC_NUMBUF], *end;
1024 memset(buffer, 0, sizeof(buffer));
1025 if (count > sizeof(buffer) - 1)
1026 count = sizeof(buffer) - 1;
1027 if (copy_from_user(buffer, buf, count))
1029 oom_adjust = simple_strtol(buffer, &end, 0);
1030 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1031 oom_adjust != OOM_DISABLE)
1035 task = get_proc_task(file->f_path.dentry->d_inode);
1038 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1039 put_task_struct(task);
1042 task->oomkilladj = oom_adjust;
1043 put_task_struct(task);
1044 if (end - buffer == 0)
1046 return end - buffer;
1049 static const struct file_operations proc_oom_adjust_operations = {
1050 .read = oom_adjust_read,
1051 .write = oom_adjust_write,
1054 #ifdef CONFIG_AUDITSYSCALL
1055 #define TMPBUFLEN 21
1056 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1057 size_t count, loff_t *ppos)
1059 struct inode * inode = file->f_path.dentry->d_inode;
1060 struct task_struct *task = get_proc_task(inode);
1062 char tmpbuf[TMPBUFLEN];
1066 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1067 audit_get_loginuid(task));
1068 put_task_struct(task);
1069 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1072 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1073 size_t count, loff_t *ppos)
1075 struct inode * inode = file->f_path.dentry->d_inode;
1080 if (!capable(CAP_AUDIT_CONTROL))
1083 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1086 if (count >= PAGE_SIZE)
1087 count = PAGE_SIZE - 1;
1090 /* No partial writes. */
1093 page = (char*)__get_free_page(GFP_TEMPORARY);
1097 if (copy_from_user(page, buf, count))
1101 loginuid = simple_strtoul(page, &tmp, 10);
1107 length = audit_set_loginuid(current, loginuid);
1108 if (likely(length == 0))
1112 free_page((unsigned long) page);
1116 static const struct file_operations proc_loginuid_operations = {
1117 .read = proc_loginuid_read,
1118 .write = proc_loginuid_write,
1121 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1122 size_t count, loff_t *ppos)
1124 struct inode * inode = file->f_path.dentry->d_inode;
1125 struct task_struct *task = get_proc_task(inode);
1127 char tmpbuf[TMPBUFLEN];
1131 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1132 audit_get_sessionid(task));
1133 put_task_struct(task);
1134 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1137 static const struct file_operations proc_sessionid_operations = {
1138 .read = proc_sessionid_read,
1142 #ifdef CONFIG_FAULT_INJECTION
1143 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1144 size_t count, loff_t *ppos)
1146 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1147 char buffer[PROC_NUMBUF];
1153 make_it_fail = task->make_it_fail;
1154 put_task_struct(task);
1156 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1158 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1161 static ssize_t proc_fault_inject_write(struct file * file,
1162 const char __user * buf, size_t count, loff_t *ppos)
1164 struct task_struct *task;
1165 char buffer[PROC_NUMBUF], *end;
1168 if (!capable(CAP_SYS_RESOURCE))
1170 memset(buffer, 0, sizeof(buffer));
1171 if (count > sizeof(buffer) - 1)
1172 count = sizeof(buffer) - 1;
1173 if (copy_from_user(buffer, buf, count))
1175 make_it_fail = simple_strtol(buffer, &end, 0);
1178 task = get_proc_task(file->f_dentry->d_inode);
1181 task->make_it_fail = make_it_fail;
1182 put_task_struct(task);
1183 if (end - buffer == 0)
1185 return end - buffer;
1188 static const struct file_operations proc_fault_inject_operations = {
1189 .read = proc_fault_inject_read,
1190 .write = proc_fault_inject_write,
1195 #ifdef CONFIG_SCHED_DEBUG
1197 * Print out various scheduling related per-task fields:
1199 static int sched_show(struct seq_file *m, void *v)
1201 struct inode *inode = m->private;
1202 struct task_struct *p;
1204 p = get_proc_task(inode);
1207 proc_sched_show_task(p, m);
1215 sched_write(struct file *file, const char __user *buf,
1216 size_t count, loff_t *offset)
1218 struct inode *inode = file->f_path.dentry->d_inode;
1219 struct task_struct *p;
1221 p = get_proc_task(inode);
1224 proc_sched_set_task(p);
1231 static int sched_open(struct inode *inode, struct file *filp)
1235 ret = single_open(filp, sched_show, NULL);
1237 struct seq_file *m = filp->private_data;
1244 static const struct file_operations proc_pid_sched_operations = {
1247 .write = sched_write,
1248 .llseek = seq_lseek,
1249 .release = single_release,
1255 * We added or removed a vma mapping the executable. The vmas are only mapped
1256 * during exec and are not mapped with the mmap system call.
1257 * Callers must hold down_write() on the mm's mmap_sem for these
1259 void added_exe_file_vma(struct mm_struct *mm)
1261 mm->num_exe_file_vmas++;
1264 void removed_exe_file_vma(struct mm_struct *mm)
1266 mm->num_exe_file_vmas--;
1267 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1269 mm->exe_file = NULL;
1274 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1277 get_file(new_exe_file);
1280 mm->exe_file = new_exe_file;
1281 mm->num_exe_file_vmas = 0;
1284 struct file *get_mm_exe_file(struct mm_struct *mm)
1286 struct file *exe_file;
1288 /* We need mmap_sem to protect against races with removal of
1289 * VM_EXECUTABLE vmas */
1290 down_read(&mm->mmap_sem);
1291 exe_file = mm->exe_file;
1294 up_read(&mm->mmap_sem);
1298 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1300 /* It's safe to write the exe_file pointer without exe_file_lock because
1301 * this is called during fork when the task is not yet in /proc */
1302 newmm->exe_file = get_mm_exe_file(oldmm);
1305 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1307 struct task_struct *task;
1308 struct mm_struct *mm;
1309 struct file *exe_file;
1311 task = get_proc_task(inode);
1314 mm = get_task_mm(task);
1315 put_task_struct(task);
1318 exe_file = get_mm_exe_file(mm);
1321 *exe_path = exe_file->f_path;
1322 path_get(&exe_file->f_path);
1329 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1331 struct inode *inode = dentry->d_inode;
1332 int error = -EACCES;
1334 /* We don't need a base pointer in the /proc filesystem */
1335 path_put(&nd->path);
1337 /* Are we allowed to snoop on the tasks file descriptors? */
1338 if (!proc_fd_access_allowed(inode))
1341 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1342 nd->last_type = LAST_BIND;
1344 return ERR_PTR(error);
1347 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1349 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1356 pathname = d_path(path, tmp, PAGE_SIZE);
1357 len = PTR_ERR(pathname);
1358 if (IS_ERR(pathname))
1360 len = tmp + PAGE_SIZE - 1 - pathname;
1364 if (copy_to_user(buffer, pathname, len))
1367 free_page((unsigned long)tmp);
1371 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1373 int error = -EACCES;
1374 struct inode *inode = dentry->d_inode;
1377 /* Are we allowed to snoop on the tasks file descriptors? */
1378 if (!proc_fd_access_allowed(inode))
1381 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1385 error = do_proc_readlink(&path, buffer, buflen);
1391 static const struct inode_operations proc_pid_link_inode_operations = {
1392 .readlink = proc_pid_readlink,
1393 .follow_link = proc_pid_follow_link,
1394 .setattr = proc_setattr,
1398 /* building an inode */
1400 static int task_dumpable(struct task_struct *task)
1403 struct mm_struct *mm;
1408 dumpable = get_dumpable(mm);
1416 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1418 struct inode * inode;
1419 struct proc_inode *ei;
1420 const struct cred *cred;
1422 /* We need a new inode */
1424 inode = new_inode(sb);
1430 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1431 inode->i_op = &proc_def_inode_operations;
1434 * grab the reference to task.
1436 ei->pid = get_task_pid(task, PIDTYPE_PID);
1440 if (task_dumpable(task)) {
1442 cred = __task_cred(task);
1443 inode->i_uid = cred->euid;
1444 inode->i_gid = cred->egid;
1447 security_task_to_inode(task, inode);
1457 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1459 struct inode *inode = dentry->d_inode;
1460 struct task_struct *task;
1461 const struct cred *cred;
1463 generic_fillattr(inode, stat);
1468 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1470 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1471 task_dumpable(task)) {
1472 cred = __task_cred(task);
1473 stat->uid = cred->euid;
1474 stat->gid = cred->egid;
1484 * Exceptional case: normally we are not allowed to unhash a busy
1485 * directory. In this case, however, we can do it - no aliasing problems
1486 * due to the way we treat inodes.
1488 * Rewrite the inode's ownerships here because the owning task may have
1489 * performed a setuid(), etc.
1491 * Before the /proc/pid/status file was created the only way to read
1492 * the effective uid of a /process was to stat /proc/pid. Reading
1493 * /proc/pid/status is slow enough that procps and other packages
1494 * kept stating /proc/pid. To keep the rules in /proc simple I have
1495 * made this apply to all per process world readable and executable
1498 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1500 struct inode *inode = dentry->d_inode;
1501 struct task_struct *task = get_proc_task(inode);
1502 const struct cred *cred;
1505 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1506 task_dumpable(task)) {
1508 cred = __task_cred(task);
1509 inode->i_uid = cred->euid;
1510 inode->i_gid = cred->egid;
1516 inode->i_mode &= ~(S_ISUID | S_ISGID);
1517 security_task_to_inode(task, inode);
1518 put_task_struct(task);
1525 static int pid_delete_dentry(struct dentry * dentry)
1527 /* Is the task we represent dead?
1528 * If so, then don't put the dentry on the lru list,
1529 * kill it immediately.
1531 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1534 static const struct dentry_operations pid_dentry_operations =
1536 .d_revalidate = pid_revalidate,
1537 .d_delete = pid_delete_dentry,
1542 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1543 struct task_struct *, const void *);
1546 * Fill a directory entry.
1548 * If possible create the dcache entry and derive our inode number and
1549 * file type from dcache entry.
1551 * Since all of the proc inode numbers are dynamically generated, the inode
1552 * numbers do not exist until the inode is cache. This means creating the
1553 * the dcache entry in readdir is necessary to keep the inode numbers
1554 * reported by readdir in sync with the inode numbers reported
1557 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1558 char *name, int len,
1559 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1561 struct dentry *child, *dir = filp->f_path.dentry;
1562 struct inode *inode;
1565 unsigned type = DT_UNKNOWN;
1569 qname.hash = full_name_hash(name, len);
1571 child = d_lookup(dir, &qname);
1574 new = d_alloc(dir, &qname);
1576 child = instantiate(dir->d_inode, new, task, ptr);
1583 if (!child || IS_ERR(child) || !child->d_inode)
1584 goto end_instantiate;
1585 inode = child->d_inode;
1588 type = inode->i_mode >> 12;
1593 ino = find_inode_number(dir, &qname);
1596 return filldir(dirent, name, len, filp->f_pos, ino, type);
1599 static unsigned name_to_int(struct dentry *dentry)
1601 const char *name = dentry->d_name.name;
1602 int len = dentry->d_name.len;
1605 if (len > 1 && *name == '0')
1608 unsigned c = *name++ - '0';
1611 if (n >= (~0U-9)/10)
1621 #define PROC_FDINFO_MAX 64
1623 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1625 struct task_struct *task = get_proc_task(inode);
1626 struct files_struct *files = NULL;
1628 int fd = proc_fd(inode);
1631 files = get_files_struct(task);
1632 put_task_struct(task);
1636 * We are not taking a ref to the file structure, so we must
1639 spin_lock(&files->file_lock);
1640 file = fcheck_files(files, fd);
1643 *path = file->f_path;
1644 path_get(&file->f_path);
1647 snprintf(info, PROC_FDINFO_MAX,
1650 (long long) file->f_pos,
1652 spin_unlock(&files->file_lock);
1653 put_files_struct(files);
1656 spin_unlock(&files->file_lock);
1657 put_files_struct(files);
1662 static int proc_fd_link(struct inode *inode, struct path *path)
1664 return proc_fd_info(inode, path, NULL);
1667 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1669 struct inode *inode = dentry->d_inode;
1670 struct task_struct *task = get_proc_task(inode);
1671 int fd = proc_fd(inode);
1672 struct files_struct *files;
1673 const struct cred *cred;
1676 files = get_files_struct(task);
1679 if (fcheck_files(files, fd)) {
1681 put_files_struct(files);
1682 if (task_dumpable(task)) {
1684 cred = __task_cred(task);
1685 inode->i_uid = cred->euid;
1686 inode->i_gid = cred->egid;
1692 inode->i_mode &= ~(S_ISUID | S_ISGID);
1693 security_task_to_inode(task, inode);
1694 put_task_struct(task);
1698 put_files_struct(files);
1700 put_task_struct(task);
1706 static const struct dentry_operations tid_fd_dentry_operations =
1708 .d_revalidate = tid_fd_revalidate,
1709 .d_delete = pid_delete_dentry,
1712 static struct dentry *proc_fd_instantiate(struct inode *dir,
1713 struct dentry *dentry, struct task_struct *task, const void *ptr)
1715 unsigned fd = *(const unsigned *)ptr;
1717 struct files_struct *files;
1718 struct inode *inode;
1719 struct proc_inode *ei;
1720 struct dentry *error = ERR_PTR(-ENOENT);
1722 inode = proc_pid_make_inode(dir->i_sb, task);
1727 files = get_files_struct(task);
1730 inode->i_mode = S_IFLNK;
1733 * We are not taking a ref to the file structure, so we must
1736 spin_lock(&files->file_lock);
1737 file = fcheck_files(files, fd);
1740 if (file->f_mode & FMODE_READ)
1741 inode->i_mode |= S_IRUSR | S_IXUSR;
1742 if (file->f_mode & FMODE_WRITE)
1743 inode->i_mode |= S_IWUSR | S_IXUSR;
1744 spin_unlock(&files->file_lock);
1745 put_files_struct(files);
1747 inode->i_op = &proc_pid_link_inode_operations;
1749 ei->op.proc_get_link = proc_fd_link;
1750 dentry->d_op = &tid_fd_dentry_operations;
1751 d_add(dentry, inode);
1752 /* Close the race of the process dying before we return the dentry */
1753 if (tid_fd_revalidate(dentry, NULL))
1759 spin_unlock(&files->file_lock);
1760 put_files_struct(files);
1766 static struct dentry *proc_lookupfd_common(struct inode *dir,
1767 struct dentry *dentry,
1768 instantiate_t instantiate)
1770 struct task_struct *task = get_proc_task(dir);
1771 unsigned fd = name_to_int(dentry);
1772 struct dentry *result = ERR_PTR(-ENOENT);
1779 result = instantiate(dir, dentry, task, &fd);
1781 put_task_struct(task);
1786 static int proc_readfd_common(struct file * filp, void * dirent,
1787 filldir_t filldir, instantiate_t instantiate)
1789 struct dentry *dentry = filp->f_path.dentry;
1790 struct inode *inode = dentry->d_inode;
1791 struct task_struct *p = get_proc_task(inode);
1792 unsigned int fd, ino;
1794 struct files_struct * files;
1804 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1808 ino = parent_ino(dentry);
1809 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1813 files = get_files_struct(p);
1817 for (fd = filp->f_pos-2;
1818 fd < files_fdtable(files)->max_fds;
1819 fd++, filp->f_pos++) {
1820 char name[PROC_NUMBUF];
1823 if (!fcheck_files(files, fd))
1827 len = snprintf(name, sizeof(name), "%d", fd);
1828 if (proc_fill_cache(filp, dirent, filldir,
1829 name, len, instantiate,
1837 put_files_struct(files);
1845 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1846 struct nameidata *nd)
1848 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1851 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1853 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1856 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1857 size_t len, loff_t *ppos)
1859 char tmp[PROC_FDINFO_MAX];
1860 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1862 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1866 static const struct file_operations proc_fdinfo_file_operations = {
1867 .open = nonseekable_open,
1868 .read = proc_fdinfo_read,
1871 static const struct file_operations proc_fd_operations = {
1872 .read = generic_read_dir,
1873 .readdir = proc_readfd,
1877 * /proc/pid/fd needs a special permission handler so that a process can still
1878 * access /proc/self/fd after it has executed a setuid().
1880 static int proc_fd_permission(struct inode *inode, int mask)
1884 rv = generic_permission(inode, mask, NULL);
1887 if (task_pid(current) == proc_pid(inode))
1893 * proc directories can do almost nothing..
1895 static const struct inode_operations proc_fd_inode_operations = {
1896 .lookup = proc_lookupfd,
1897 .permission = proc_fd_permission,
1898 .setattr = proc_setattr,
1901 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1902 struct dentry *dentry, struct task_struct *task, const void *ptr)
1904 unsigned fd = *(unsigned *)ptr;
1905 struct inode *inode;
1906 struct proc_inode *ei;
1907 struct dentry *error = ERR_PTR(-ENOENT);
1909 inode = proc_pid_make_inode(dir->i_sb, task);
1914 inode->i_mode = S_IFREG | S_IRUSR;
1915 inode->i_fop = &proc_fdinfo_file_operations;
1916 dentry->d_op = &tid_fd_dentry_operations;
1917 d_add(dentry, inode);
1918 /* Close the race of the process dying before we return the dentry */
1919 if (tid_fd_revalidate(dentry, NULL))
1926 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1927 struct dentry *dentry,
1928 struct nameidata *nd)
1930 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1933 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1935 return proc_readfd_common(filp, dirent, filldir,
1936 proc_fdinfo_instantiate);
1939 static const struct file_operations proc_fdinfo_operations = {
1940 .read = generic_read_dir,
1941 .readdir = proc_readfdinfo,
1945 * proc directories can do almost nothing..
1947 static const struct inode_operations proc_fdinfo_inode_operations = {
1948 .lookup = proc_lookupfdinfo,
1949 .setattr = proc_setattr,
1953 static struct dentry *proc_pident_instantiate(struct inode *dir,
1954 struct dentry *dentry, struct task_struct *task, const void *ptr)
1956 const struct pid_entry *p = ptr;
1957 struct inode *inode;
1958 struct proc_inode *ei;
1959 struct dentry *error = ERR_PTR(-EINVAL);
1961 inode = proc_pid_make_inode(dir->i_sb, task);
1966 inode->i_mode = p->mode;
1967 if (S_ISDIR(inode->i_mode))
1968 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1970 inode->i_op = p->iop;
1972 inode->i_fop = p->fop;
1974 dentry->d_op = &pid_dentry_operations;
1975 d_add(dentry, inode);
1976 /* Close the race of the process dying before we return the dentry */
1977 if (pid_revalidate(dentry, NULL))
1983 static struct dentry *proc_pident_lookup(struct inode *dir,
1984 struct dentry *dentry,
1985 const struct pid_entry *ents,
1988 struct dentry *error;
1989 struct task_struct *task = get_proc_task(dir);
1990 const struct pid_entry *p, *last;
1992 error = ERR_PTR(-ENOENT);
1998 * Yes, it does not scale. And it should not. Don't add
1999 * new entries into /proc/<tgid>/ without very good reasons.
2001 last = &ents[nents - 1];
2002 for (p = ents; p <= last; p++) {
2003 if (p->len != dentry->d_name.len)
2005 if (!memcmp(dentry->d_name.name, p->name, p->len))
2011 error = proc_pident_instantiate(dir, dentry, task, p);
2013 put_task_struct(task);
2018 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2019 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2021 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2022 proc_pident_instantiate, task, p);
2025 static int proc_pident_readdir(struct file *filp,
2026 void *dirent, filldir_t filldir,
2027 const struct pid_entry *ents, unsigned int nents)
2030 struct dentry *dentry = filp->f_path.dentry;
2031 struct inode *inode = dentry->d_inode;
2032 struct task_struct *task = get_proc_task(inode);
2033 const struct pid_entry *p, *last;
2046 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2052 ino = parent_ino(dentry);
2053 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2065 last = &ents[nents - 1];
2067 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2076 put_task_struct(task);
2081 #ifdef CONFIG_SECURITY
2082 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2083 size_t count, loff_t *ppos)
2085 struct inode * inode = file->f_path.dentry->d_inode;
2088 struct task_struct *task = get_proc_task(inode);
2093 length = security_getprocattr(task,
2094 (char*)file->f_path.dentry->d_name.name,
2096 put_task_struct(task);
2098 length = simple_read_from_buffer(buf, count, ppos, p, length);
2103 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2104 size_t count, loff_t *ppos)
2106 struct inode * inode = file->f_path.dentry->d_inode;
2109 struct task_struct *task = get_proc_task(inode);
2114 if (count > PAGE_SIZE)
2117 /* No partial writes. */
2123 page = (char*)__get_free_page(GFP_TEMPORARY);
2128 if (copy_from_user(page, buf, count))
2131 length = security_setprocattr(task,
2132 (char*)file->f_path.dentry->d_name.name,
2133 (void*)page, count);
2135 free_page((unsigned long) page);
2137 put_task_struct(task);
2142 static const struct file_operations proc_pid_attr_operations = {
2143 .read = proc_pid_attr_read,
2144 .write = proc_pid_attr_write,
2147 static const struct pid_entry attr_dir_stuff[] = {
2148 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2149 REG("prev", S_IRUGO, proc_pid_attr_operations),
2150 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2151 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2152 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2153 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2156 static int proc_attr_dir_readdir(struct file * filp,
2157 void * dirent, filldir_t filldir)
2159 return proc_pident_readdir(filp,dirent,filldir,
2160 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2163 static const struct file_operations proc_attr_dir_operations = {
2164 .read = generic_read_dir,
2165 .readdir = proc_attr_dir_readdir,
2168 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2169 struct dentry *dentry, struct nameidata *nd)
2171 return proc_pident_lookup(dir, dentry,
2172 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2175 static const struct inode_operations proc_attr_dir_inode_operations = {
2176 .lookup = proc_attr_dir_lookup,
2177 .getattr = pid_getattr,
2178 .setattr = proc_setattr,
2183 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2184 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2185 size_t count, loff_t *ppos)
2187 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2188 struct mm_struct *mm;
2189 char buffer[PROC_NUMBUF];
2197 mm = get_task_mm(task);
2199 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2200 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2201 MMF_DUMP_FILTER_SHIFT));
2203 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2206 put_task_struct(task);
2211 static ssize_t proc_coredump_filter_write(struct file *file,
2212 const char __user *buf,
2216 struct task_struct *task;
2217 struct mm_struct *mm;
2218 char buffer[PROC_NUMBUF], *end;
2225 memset(buffer, 0, sizeof(buffer));
2226 if (count > sizeof(buffer) - 1)
2227 count = sizeof(buffer) - 1;
2228 if (copy_from_user(buffer, buf, count))
2232 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2235 if (end - buffer == 0)
2239 task = get_proc_task(file->f_dentry->d_inode);
2244 mm = get_task_mm(task);
2248 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2250 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2252 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2257 put_task_struct(task);
2262 static const struct file_operations proc_coredump_filter_operations = {
2263 .read = proc_coredump_filter_read,
2264 .write = proc_coredump_filter_write,
2271 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2274 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2275 pid_t tgid = task_tgid_nr_ns(current, ns);
2276 char tmp[PROC_NUMBUF];
2279 sprintf(tmp, "%d", tgid);
2280 return vfs_readlink(dentry,buffer,buflen,tmp);
2283 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2285 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2286 pid_t tgid = task_tgid_nr_ns(current, ns);
2287 char tmp[PROC_NUMBUF];
2289 return ERR_PTR(-ENOENT);
2290 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2291 return ERR_PTR(vfs_follow_link(nd,tmp));
2294 static const struct inode_operations proc_self_inode_operations = {
2295 .readlink = proc_self_readlink,
2296 .follow_link = proc_self_follow_link,
2302 * These are the directory entries in the root directory of /proc
2303 * that properly belong to the /proc filesystem, as they describe
2304 * describe something that is process related.
2306 static const struct pid_entry proc_base_stuff[] = {
2307 NOD("self", S_IFLNK|S_IRWXUGO,
2308 &proc_self_inode_operations, NULL, {}),
2312 * Exceptional case: normally we are not allowed to unhash a busy
2313 * directory. In this case, however, we can do it - no aliasing problems
2314 * due to the way we treat inodes.
2316 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2318 struct inode *inode = dentry->d_inode;
2319 struct task_struct *task = get_proc_task(inode);
2321 put_task_struct(task);
2328 static const struct dentry_operations proc_base_dentry_operations =
2330 .d_revalidate = proc_base_revalidate,
2331 .d_delete = pid_delete_dentry,
2334 static struct dentry *proc_base_instantiate(struct inode *dir,
2335 struct dentry *dentry, struct task_struct *task, const void *ptr)
2337 const struct pid_entry *p = ptr;
2338 struct inode *inode;
2339 struct proc_inode *ei;
2340 struct dentry *error = ERR_PTR(-EINVAL);
2342 /* Allocate the inode */
2343 error = ERR_PTR(-ENOMEM);
2344 inode = new_inode(dir->i_sb);
2348 /* Initialize the inode */
2350 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2353 * grab the reference to the task.
2355 ei->pid = get_task_pid(task, PIDTYPE_PID);
2359 inode->i_mode = p->mode;
2360 if (S_ISDIR(inode->i_mode))
2362 if (S_ISLNK(inode->i_mode))
2365 inode->i_op = p->iop;
2367 inode->i_fop = p->fop;
2369 dentry->d_op = &proc_base_dentry_operations;
2370 d_add(dentry, inode);
2379 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2381 struct dentry *error;
2382 struct task_struct *task = get_proc_task(dir);
2383 const struct pid_entry *p, *last;
2385 error = ERR_PTR(-ENOENT);
2390 /* Lookup the directory entry */
2391 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2392 for (p = proc_base_stuff; p <= last; p++) {
2393 if (p->len != dentry->d_name.len)
2395 if (!memcmp(dentry->d_name.name, p->name, p->len))
2401 error = proc_base_instantiate(dir, dentry, task, p);
2404 put_task_struct(task);
2409 static int proc_base_fill_cache(struct file *filp, void *dirent,
2410 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2412 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2413 proc_base_instantiate, task, p);
2416 #ifdef CONFIG_TASK_IO_ACCOUNTING
2417 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2419 struct task_io_accounting acct = task->ioac;
2420 unsigned long flags;
2422 if (whole && lock_task_sighand(task, &flags)) {
2423 struct task_struct *t = task;
2425 task_io_accounting_add(&acct, &task->signal->ioac);
2426 while_each_thread(task, t)
2427 task_io_accounting_add(&acct, &t->ioac);
2429 unlock_task_sighand(task, &flags);
2431 return sprintf(buffer,
2436 "read_bytes: %llu\n"
2437 "write_bytes: %llu\n"
2438 "cancelled_write_bytes: %llu\n",
2439 (unsigned long long)acct.rchar,
2440 (unsigned long long)acct.wchar,
2441 (unsigned long long)acct.syscr,
2442 (unsigned long long)acct.syscw,
2443 (unsigned long long)acct.read_bytes,
2444 (unsigned long long)acct.write_bytes,
2445 (unsigned long long)acct.cancelled_write_bytes);
2448 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2450 return do_io_accounting(task, buffer, 0);
2453 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2455 return do_io_accounting(task, buffer, 1);
2457 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2459 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2460 struct pid *pid, struct task_struct *task)
2462 seq_printf(m, "%08x\n", task->personality);
2469 static const struct file_operations proc_task_operations;
2470 static const struct inode_operations proc_task_inode_operations;
2472 static const struct pid_entry tgid_base_stuff[] = {
2473 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2474 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2475 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2477 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2479 REG("environ", S_IRUSR, proc_environ_operations),
2480 INF("auxv", S_IRUSR, proc_pid_auxv),
2481 ONE("status", S_IRUGO, proc_pid_status),
2482 ONE("personality", S_IRUSR, proc_pid_personality),
2483 INF("limits", S_IRUSR, proc_pid_limits),
2484 #ifdef CONFIG_SCHED_DEBUG
2485 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2487 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2488 INF("syscall", S_IRUSR, proc_pid_syscall),
2490 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2491 ONE("stat", S_IRUGO, proc_tgid_stat),
2492 ONE("statm", S_IRUGO, proc_pid_statm),
2493 REG("maps", S_IRUGO, proc_maps_operations),
2495 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2497 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2498 LNK("cwd", proc_cwd_link),
2499 LNK("root", proc_root_link),
2500 LNK("exe", proc_exe_link),
2501 REG("mounts", S_IRUGO, proc_mounts_operations),
2502 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2503 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2504 #ifdef CONFIG_PROC_PAGE_MONITOR
2505 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2506 REG("smaps", S_IRUGO, proc_smaps_operations),
2507 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2509 #ifdef CONFIG_SECURITY
2510 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2512 #ifdef CONFIG_KALLSYMS
2513 INF("wchan", S_IRUGO, proc_pid_wchan),
2515 #ifdef CONFIG_STACKTRACE
2516 ONE("stack", S_IRUSR, proc_pid_stack),
2518 #ifdef CONFIG_SCHEDSTATS
2519 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2521 #ifdef CONFIG_LATENCYTOP
2522 REG("latency", S_IRUGO, proc_lstats_operations),
2524 #ifdef CONFIG_PROC_PID_CPUSET
2525 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2527 #ifdef CONFIG_CGROUPS
2528 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2530 INF("oom_score", S_IRUGO, proc_oom_score),
2531 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2532 #ifdef CONFIG_AUDITSYSCALL
2533 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2534 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2536 #ifdef CONFIG_FAULT_INJECTION
2537 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2539 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2540 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2542 #ifdef CONFIG_TASK_IO_ACCOUNTING
2543 INF("io", S_IRUGO, proc_tgid_io_accounting),
2547 static int proc_tgid_base_readdir(struct file * filp,
2548 void * dirent, filldir_t filldir)
2550 return proc_pident_readdir(filp,dirent,filldir,
2551 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2554 static const struct file_operations proc_tgid_base_operations = {
2555 .read = generic_read_dir,
2556 .readdir = proc_tgid_base_readdir,
2559 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2560 return proc_pident_lookup(dir, dentry,
2561 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2564 static const struct inode_operations proc_tgid_base_inode_operations = {
2565 .lookup = proc_tgid_base_lookup,
2566 .getattr = pid_getattr,
2567 .setattr = proc_setattr,
2570 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2572 struct dentry *dentry, *leader, *dir;
2573 char buf[PROC_NUMBUF];
2577 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2578 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2580 if (!(current->flags & PF_EXITING))
2581 shrink_dcache_parent(dentry);
2590 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2591 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2596 name.len = strlen(name.name);
2597 dir = d_hash_and_lookup(leader, &name);
2599 goto out_put_leader;
2602 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2603 dentry = d_hash_and_lookup(dir, &name);
2605 shrink_dcache_parent(dentry);
2618 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2619 * @task: task that should be flushed.
2621 * When flushing dentries from proc, one needs to flush them from global
2622 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2623 * in. This call is supposed to do all of this job.
2625 * Looks in the dcache for
2627 * /proc/@tgid/task/@pid
2628 * if either directory is present flushes it and all of it'ts children
2631 * It is safe and reasonable to cache /proc entries for a task until
2632 * that task exits. After that they just clog up the dcache with
2633 * useless entries, possibly causing useful dcache entries to be
2634 * flushed instead. This routine is proved to flush those useless
2635 * dcache entries at process exit time.
2637 * NOTE: This routine is just an optimization so it does not guarantee
2638 * that no dcache entries will exist at process exit time it
2639 * just makes it very unlikely that any will persist.
2642 void proc_flush_task(struct task_struct *task)
2645 struct pid *pid, *tgid = NULL;
2648 pid = task_pid(task);
2649 if (thread_group_leader(task))
2650 tgid = task_tgid(task);
2652 for (i = 0; i <= pid->level; i++) {
2653 upid = &pid->numbers[i];
2654 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2655 tgid ? tgid->numbers[i].nr : 0);
2658 upid = &pid->numbers[pid->level];
2660 pid_ns_release_proc(upid->ns);
2663 static struct dentry *proc_pid_instantiate(struct inode *dir,
2664 struct dentry * dentry,
2665 struct task_struct *task, const void *ptr)
2667 struct dentry *error = ERR_PTR(-ENOENT);
2668 struct inode *inode;
2670 inode = proc_pid_make_inode(dir->i_sb, task);
2674 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2675 inode->i_op = &proc_tgid_base_inode_operations;
2676 inode->i_fop = &proc_tgid_base_operations;
2677 inode->i_flags|=S_IMMUTABLE;
2679 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2680 ARRAY_SIZE(tgid_base_stuff));
2682 dentry->d_op = &pid_dentry_operations;
2684 d_add(dentry, inode);
2685 /* Close the race of the process dying before we return the dentry */
2686 if (pid_revalidate(dentry, NULL))
2692 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2694 struct dentry *result = ERR_PTR(-ENOENT);
2695 struct task_struct *task;
2697 struct pid_namespace *ns;
2699 result = proc_base_lookup(dir, dentry);
2700 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2703 tgid = name_to_int(dentry);
2707 ns = dentry->d_sb->s_fs_info;
2709 task = find_task_by_pid_ns(tgid, ns);
2711 get_task_struct(task);
2716 result = proc_pid_instantiate(dir, dentry, task, NULL);
2717 put_task_struct(task);
2723 * Find the first task with tgid >= tgid
2728 struct task_struct *task;
2730 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2735 put_task_struct(iter.task);
2739 pid = find_ge_pid(iter.tgid, ns);
2741 iter.tgid = pid_nr_ns(pid, ns);
2742 iter.task = pid_task(pid, PIDTYPE_PID);
2743 /* What we to know is if the pid we have find is the
2744 * pid of a thread_group_leader. Testing for task
2745 * being a thread_group_leader is the obvious thing
2746 * todo but there is a window when it fails, due to
2747 * the pid transfer logic in de_thread.
2749 * So we perform the straight forward test of seeing
2750 * if the pid we have found is the pid of a thread
2751 * group leader, and don't worry if the task we have
2752 * found doesn't happen to be a thread group leader.
2753 * As we don't care in the case of readdir.
2755 if (!iter.task || !has_group_leader_pid(iter.task)) {
2759 get_task_struct(iter.task);
2765 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2767 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2768 struct tgid_iter iter)
2770 char name[PROC_NUMBUF];
2771 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2772 return proc_fill_cache(filp, dirent, filldir, name, len,
2773 proc_pid_instantiate, iter.task, NULL);
2776 /* for the /proc/ directory itself, after non-process stuff has been done */
2777 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2779 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2780 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2781 struct tgid_iter iter;
2782 struct pid_namespace *ns;
2787 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2788 const struct pid_entry *p = &proc_base_stuff[nr];
2789 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2793 ns = filp->f_dentry->d_sb->s_fs_info;
2795 iter.tgid = filp->f_pos - TGID_OFFSET;
2796 for (iter = next_tgid(ns, iter);
2798 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2799 filp->f_pos = iter.tgid + TGID_OFFSET;
2800 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2801 put_task_struct(iter.task);
2805 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2807 put_task_struct(reaper);
2815 static const struct pid_entry tid_base_stuff[] = {
2816 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2817 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2818 REG("environ", S_IRUSR, proc_environ_operations),
2819 INF("auxv", S_IRUSR, proc_pid_auxv),
2820 ONE("status", S_IRUGO, proc_pid_status),
2821 ONE("personality", S_IRUSR, proc_pid_personality),
2822 INF("limits", S_IRUSR, proc_pid_limits),
2823 #ifdef CONFIG_SCHED_DEBUG
2824 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2826 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2827 INF("syscall", S_IRUSR, proc_pid_syscall),
2829 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2830 ONE("stat", S_IRUGO, proc_tid_stat),
2831 ONE("statm", S_IRUGO, proc_pid_statm),
2832 REG("maps", S_IRUGO, proc_maps_operations),
2834 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2836 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2837 LNK("cwd", proc_cwd_link),
2838 LNK("root", proc_root_link),
2839 LNK("exe", proc_exe_link),
2840 REG("mounts", S_IRUGO, proc_mounts_operations),
2841 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2842 #ifdef CONFIG_PROC_PAGE_MONITOR
2843 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2844 REG("smaps", S_IRUGO, proc_smaps_operations),
2845 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2847 #ifdef CONFIG_SECURITY
2848 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2850 #ifdef CONFIG_KALLSYMS
2851 INF("wchan", S_IRUGO, proc_pid_wchan),
2853 #ifdef CONFIG_STACKTRACE
2854 ONE("stack", S_IRUSR, proc_pid_stack),
2856 #ifdef CONFIG_SCHEDSTATS
2857 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2859 #ifdef CONFIG_LATENCYTOP
2860 REG("latency", S_IRUGO, proc_lstats_operations),
2862 #ifdef CONFIG_PROC_PID_CPUSET
2863 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2865 #ifdef CONFIG_CGROUPS
2866 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2868 INF("oom_score", S_IRUGO, proc_oom_score),
2869 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2870 #ifdef CONFIG_AUDITSYSCALL
2871 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2872 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2874 #ifdef CONFIG_FAULT_INJECTION
2875 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2877 #ifdef CONFIG_TASK_IO_ACCOUNTING
2878 INF("io", S_IRUGO, proc_tid_io_accounting),
2882 static int proc_tid_base_readdir(struct file * filp,
2883 void * dirent, filldir_t filldir)
2885 return proc_pident_readdir(filp,dirent,filldir,
2886 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2889 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2890 return proc_pident_lookup(dir, dentry,
2891 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2894 static const struct file_operations proc_tid_base_operations = {
2895 .read = generic_read_dir,
2896 .readdir = proc_tid_base_readdir,
2899 static const struct inode_operations proc_tid_base_inode_operations = {
2900 .lookup = proc_tid_base_lookup,
2901 .getattr = pid_getattr,
2902 .setattr = proc_setattr,
2905 static struct dentry *proc_task_instantiate(struct inode *dir,
2906 struct dentry *dentry, struct task_struct *task, const void *ptr)
2908 struct dentry *error = ERR_PTR(-ENOENT);
2909 struct inode *inode;
2910 inode = proc_pid_make_inode(dir->i_sb, task);
2914 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2915 inode->i_op = &proc_tid_base_inode_operations;
2916 inode->i_fop = &proc_tid_base_operations;
2917 inode->i_flags|=S_IMMUTABLE;
2919 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2920 ARRAY_SIZE(tid_base_stuff));
2922 dentry->d_op = &pid_dentry_operations;
2924 d_add(dentry, inode);
2925 /* Close the race of the process dying before we return the dentry */
2926 if (pid_revalidate(dentry, NULL))
2932 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2934 struct dentry *result = ERR_PTR(-ENOENT);
2935 struct task_struct *task;
2936 struct task_struct *leader = get_proc_task(dir);
2938 struct pid_namespace *ns;
2943 tid = name_to_int(dentry);
2947 ns = dentry->d_sb->s_fs_info;
2949 task = find_task_by_pid_ns(tid, ns);
2951 get_task_struct(task);
2955 if (!same_thread_group(leader, task))
2958 result = proc_task_instantiate(dir, dentry, task, NULL);
2960 put_task_struct(task);
2962 put_task_struct(leader);
2968 * Find the first tid of a thread group to return to user space.
2970 * Usually this is just the thread group leader, but if the users
2971 * buffer was too small or there was a seek into the middle of the
2972 * directory we have more work todo.
2974 * In the case of a short read we start with find_task_by_pid.
2976 * In the case of a seek we start with the leader and walk nr
2979 static struct task_struct *first_tid(struct task_struct *leader,
2980 int tid, int nr, struct pid_namespace *ns)
2982 struct task_struct *pos;
2985 /* Attempt to start with the pid of a thread */
2986 if (tid && (nr > 0)) {
2987 pos = find_task_by_pid_ns(tid, ns);
2988 if (pos && (pos->group_leader == leader))
2992 /* If nr exceeds the number of threads there is nothing todo */
2994 if (nr && nr >= get_nr_threads(leader))
2997 /* If we haven't found our starting place yet start
2998 * with the leader and walk nr threads forward.
3000 for (pos = leader; nr > 0; --nr) {
3001 pos = next_thread(pos);
3002 if (pos == leader) {
3008 get_task_struct(pos);
3015 * Find the next thread in the thread list.
3016 * Return NULL if there is an error or no next thread.
3018 * The reference to the input task_struct is released.
3020 static struct task_struct *next_tid(struct task_struct *start)
3022 struct task_struct *pos = NULL;
3024 if (pid_alive(start)) {
3025 pos = next_thread(start);
3026 if (thread_group_leader(pos))
3029 get_task_struct(pos);
3032 put_task_struct(start);
3036 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3037 struct task_struct *task, int tid)
3039 char name[PROC_NUMBUF];
3040 int len = snprintf(name, sizeof(name), "%d", tid);
3041 return proc_fill_cache(filp, dirent, filldir, name, len,
3042 proc_task_instantiate, task, NULL);
3045 /* for the /proc/TGID/task/ directories */
3046 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3048 struct dentry *dentry = filp->f_path.dentry;
3049 struct inode *inode = dentry->d_inode;
3050 struct task_struct *leader = NULL;
3051 struct task_struct *task;
3052 int retval = -ENOENT;
3055 struct pid_namespace *ns;
3057 task = get_proc_task(inode);
3061 if (pid_alive(task)) {
3062 leader = task->group_leader;
3063 get_task_struct(leader);
3066 put_task_struct(task);
3071 switch ((unsigned long)filp->f_pos) {
3074 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3079 ino = parent_ino(dentry);
3080 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3086 /* f_version caches the tgid value that the last readdir call couldn't
3087 * return. lseek aka telldir automagically resets f_version to 0.
3089 ns = filp->f_dentry->d_sb->s_fs_info;
3090 tid = (int)filp->f_version;
3091 filp->f_version = 0;
3092 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3094 task = next_tid(task), filp->f_pos++) {
3095 tid = task_pid_nr_ns(task, ns);
3096 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3097 /* returning this tgid failed, save it as the first
3098 * pid for the next readir call */
3099 filp->f_version = (u64)tid;
3100 put_task_struct(task);
3105 put_task_struct(leader);
3110 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3112 struct inode *inode = dentry->d_inode;
3113 struct task_struct *p = get_proc_task(inode);
3114 generic_fillattr(inode, stat);
3117 stat->nlink += get_nr_threads(p);
3124 static const struct inode_operations proc_task_inode_operations = {
3125 .lookup = proc_task_lookup,
3126 .getattr = proc_task_getattr,
3127 .setattr = proc_setattr,
3130 static const struct file_operations proc_task_operations = {
3131 .read = generic_read_dir,
3132 .readdir = proc_task_readdir,