1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
39 #include "extent_map.h"
40 #include "heartbeat.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock);
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
66 static int ocfs2_commit_thread(void *arg);
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
73 struct ocfs2_journal *journal = NULL;
77 journal = osb->journal;
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
92 up_write(&journal->j_trans_barrier);
97 old_id = ocfs2_inc_trans_id(journal);
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
113 /* pass it NULL and it will allocate a new handle object for you. If
114 * you pass it a handle however, it may still return error, in which
115 * case it has free'd the passed handle for you. */
116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
118 journal_t *journal = osb->journal->j_journal;
121 BUG_ON(!osb || !osb->journal->j_journal);
123 if (ocfs2_is_hard_readonly(osb))
124 return ERR_PTR(-EROFS);
126 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
127 BUG_ON(max_buffs <= 0);
129 /* JBD might support this, but our journalling code doesn't yet. */
130 if (journal_current_handle()) {
131 mlog(ML_ERROR, "Recursive transaction attempted!\n");
135 down_read(&osb->journal->j_trans_barrier);
137 handle = journal_start(journal, max_buffs);
138 if (IS_ERR(handle)) {
139 up_read(&osb->journal->j_trans_barrier);
141 mlog_errno(PTR_ERR(handle));
143 if (is_journal_aborted(journal)) {
144 ocfs2_abort(osb->sb, "Detected aborted journal");
145 handle = ERR_PTR(-EROFS);
148 atomic_inc(&(osb->journal->j_num_trans));
153 int ocfs2_commit_trans(struct ocfs2_super *osb,
157 struct ocfs2_journal *journal = osb->journal;
161 ret = journal_stop(handle);
165 up_read(&journal->j_trans_barrier);
171 * 'nblocks' is what you want to add to the current
172 * transaction. extend_trans will either extend the current handle by
173 * nblocks, or commit it and start a new one with nblocks credits.
175 * WARNING: This will not release any semaphores or disk locks taken
176 * during the transaction, so make sure they were taken *before*
177 * start_trans or we'll have ordering deadlocks.
179 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
180 * good because transaction ids haven't yet been recorded on the
181 * cluster locks associated with this handle.
183 int ocfs2_extend_trans(handle_t *handle, int nblocks)
192 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
194 status = journal_extend(handle, nblocks);
201 mlog(0, "journal_extend failed, trying journal_restart\n");
202 status = journal_restart(handle, nblocks);
216 int ocfs2_journal_access(handle_t *handle,
218 struct buffer_head *bh,
227 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
228 (unsigned long long)bh->b_blocknr, type,
229 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
230 "OCFS2_JOURNAL_ACCESS_CREATE" :
231 "OCFS2_JOURNAL_ACCESS_WRITE",
234 /* we can safely remove this assertion after testing. */
235 if (!buffer_uptodate(bh)) {
236 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
237 mlog(ML_ERROR, "b_blocknr=%llu\n",
238 (unsigned long long)bh->b_blocknr);
242 /* Set the current transaction information on the inode so
243 * that the locking code knows whether it can drop it's locks
244 * on this inode or not. We're protected from the commit
245 * thread updating the current transaction id until
246 * ocfs2_commit_trans() because ocfs2_start_trans() took
247 * j_trans_barrier for us. */
248 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
250 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
252 case OCFS2_JOURNAL_ACCESS_CREATE:
253 case OCFS2_JOURNAL_ACCESS_WRITE:
254 status = journal_get_write_access(handle, bh);
257 case OCFS2_JOURNAL_ACCESS_UNDO:
258 status = journal_get_undo_access(handle, bh);
263 mlog(ML_ERROR, "Uknown access type!\n");
265 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
268 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
275 int ocfs2_journal_dirty(handle_t *handle,
276 struct buffer_head *bh)
280 mlog_entry("(bh->b_blocknr=%llu)\n",
281 (unsigned long long)bh->b_blocknr);
283 status = journal_dirty_metadata(handle, bh);
285 mlog(ML_ERROR, "Could not dirty metadata buffer. "
286 "(bh->b_blocknr=%llu)\n",
287 (unsigned long long)bh->b_blocknr);
293 int ocfs2_journal_dirty_data(handle_t *handle,
294 struct buffer_head *bh)
296 int err = journal_dirty_data(handle, bh);
299 /* TODO: When we can handle it, abort the handle and go RO on
305 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
307 void ocfs2_set_journal_params(struct ocfs2_super *osb)
309 journal_t *journal = osb->journal->j_journal;
311 spin_lock(&journal->j_state_lock);
312 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
313 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
314 journal->j_flags |= JFS_BARRIER;
316 journal->j_flags &= ~JFS_BARRIER;
317 spin_unlock(&journal->j_state_lock);
320 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
323 struct inode *inode = NULL; /* the journal inode */
324 journal_t *j_journal = NULL;
325 struct ocfs2_dinode *di = NULL;
326 struct buffer_head *bh = NULL;
327 struct ocfs2_super *osb;
334 osb = journal->j_osb;
336 /* already have the inode for our journal */
337 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
344 if (is_bad_inode(inode)) {
345 mlog(ML_ERROR, "access error (bad inode)\n");
352 SET_INODE_JOURNAL(inode);
353 OCFS2_I(inode)->ip_open_count++;
355 /* Skip recovery waits here - journal inode metadata never
356 * changes in a live cluster so it can be considered an
357 * exception to the rule. */
358 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
360 if (status != -ERESTARTSYS)
361 mlog(ML_ERROR, "Could not get lock on journal!\n");
366 di = (struct ocfs2_dinode *)bh->b_data;
368 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
369 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
375 mlog(0, "inode->i_size = %lld\n", inode->i_size);
376 mlog(0, "inode->i_blocks = %llu\n",
377 (unsigned long long)inode->i_blocks);
378 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
380 /* call the kernels journal init function now */
381 j_journal = journal_init_inode(inode);
382 if (j_journal == NULL) {
383 mlog(ML_ERROR, "Linux journal layer error\n");
388 mlog(0, "Returned from journal_init_inode\n");
389 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
391 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
392 OCFS2_JOURNAL_DIRTY_FL);
394 journal->j_journal = j_journal;
395 journal->j_inode = inode;
398 ocfs2_set_journal_params(osb);
400 journal->j_state = OCFS2_JOURNAL_LOADED;
406 ocfs2_meta_unlock(inode, 1);
410 OCFS2_I(inode)->ip_open_count--;
419 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
424 struct ocfs2_journal *journal = osb->journal;
425 struct buffer_head *bh = journal->j_bh;
426 struct ocfs2_dinode *fe;
430 fe = (struct ocfs2_dinode *)bh->b_data;
431 if (!OCFS2_IS_VALID_DINODE(fe)) {
432 /* This is called from startup/shutdown which will
433 * handle the errors in a specific manner, so no need
434 * to call ocfs2_error() here. */
435 mlog(ML_ERROR, "Journal dinode %llu has invalid "
436 "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
442 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
444 flags |= OCFS2_JOURNAL_DIRTY_FL;
446 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
447 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
449 status = ocfs2_write_block(osb, bh, journal->j_inode);
459 * If the journal has been kmalloc'd it needs to be freed after this
462 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
464 struct ocfs2_journal *journal = NULL;
466 struct inode *inode = NULL;
467 int num_running_trans = 0;
473 journal = osb->journal;
477 inode = journal->j_inode;
479 if (journal->j_state != OCFS2_JOURNAL_LOADED)
482 /* need to inc inode use count as journal_destroy will iput. */
486 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
487 if (num_running_trans > 0)
488 mlog(0, "Shutting down journal: must wait on %d "
489 "running transactions!\n",
492 /* Do a commit_cache here. It will flush our journal, *and*
493 * release any locks that are still held.
494 * set the SHUTDOWN flag and release the trans lock.
495 * the commit thread will take the trans lock for us below. */
496 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
498 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
499 * drop the trans_lock (which we want to hold until we
500 * completely destroy the journal. */
501 if (osb->commit_task) {
502 /* Wait for the commit thread */
503 mlog(0, "Waiting for ocfs2commit to exit....\n");
504 kthread_stop(osb->commit_task);
505 osb->commit_task = NULL;
508 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
510 status = ocfs2_journal_toggle_dirty(osb, 0);
514 /* Shutdown the kernel journal system */
515 journal_destroy(journal->j_journal);
517 OCFS2_I(inode)->ip_open_count--;
519 /* unlock our journal */
520 ocfs2_meta_unlock(inode, 1);
522 brelse(journal->j_bh);
523 journal->j_bh = NULL;
525 journal->j_state = OCFS2_JOURNAL_FREE;
527 // up_write(&journal->j_trans_barrier);
534 static void ocfs2_clear_journal_error(struct super_block *sb,
540 olderr = journal_errno(journal);
542 mlog(ML_ERROR, "File system error %d recorded in "
543 "journal %u.\n", olderr, slot);
544 mlog(ML_ERROR, "File system on device %s needs checking.\n",
547 journal_ack_err(journal);
548 journal_clear_err(journal);
552 int ocfs2_journal_load(struct ocfs2_journal *journal)
555 struct ocfs2_super *osb;
562 osb = journal->j_osb;
564 status = journal_load(journal->j_journal);
566 mlog(ML_ERROR, "Failed to load journal!\n");
570 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
572 status = ocfs2_journal_toggle_dirty(osb, 1);
578 /* Launch the commit thread */
579 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
580 if (IS_ERR(osb->commit_task)) {
581 status = PTR_ERR(osb->commit_task);
582 osb->commit_task = NULL;
583 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
594 /* 'full' flag tells us whether we clear out all blocks or if we just
595 * mark the journal clean */
596 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
604 status = journal_wipe(journal->j_journal, full);
610 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
620 * JBD Might read a cached version of another nodes journal file. We
621 * don't want this as this file changes often and we get no
622 * notification on those changes. The only way to be sure that we've
623 * got the most up to date version of those blocks then is to force
624 * read them off disk. Just searching through the buffer cache won't
625 * work as there may be pages backing this file which are still marked
626 * up to date. We know things can't change on this file underneath us
627 * as we have the lock by now :)
629 static int ocfs2_force_read_journal(struct inode *inode)
633 u64 v_blkno, p_blkno;
634 #define CONCURRENT_JOURNAL_FILL 32
635 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
639 BUG_ON(inode->i_blocks !=
640 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
642 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
644 mlog(0, "Force reading %llu blocks\n",
645 (unsigned long long)(inode->i_blocks >>
646 (inode->i_sb->s_blocksize_bits - 9)));
650 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
652 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
660 if (p_blocks > CONCURRENT_JOURNAL_FILL)
661 p_blocks = CONCURRENT_JOURNAL_FILL;
663 /* We are reading journal data which should not
664 * be put in the uptodate cache */
665 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
666 p_blkno, p_blocks, bhs, 0,
673 for(i = 0; i < p_blocks; i++) {
682 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
689 struct ocfs2_la_recovery_item {
690 struct list_head lri_list;
692 struct ocfs2_dinode *lri_la_dinode;
693 struct ocfs2_dinode *lri_tl_dinode;
696 /* Does the second half of the recovery process. By this point, the
697 * node is marked clean and can actually be considered recovered,
698 * hence it's no longer in the recovery map, but there's still some
699 * cleanup we can do which shouldn't happen within the recovery thread
700 * as locking in that context becomes very difficult if we are to take
701 * recovering nodes into account.
703 * NOTE: This function can and will sleep on recovery of other nodes
704 * during cluster locking, just like any other ocfs2 process.
706 void ocfs2_complete_recovery(struct work_struct *work)
709 struct ocfs2_journal *journal =
710 container_of(work, struct ocfs2_journal, j_recovery_work);
711 struct ocfs2_super *osb = journal->j_osb;
712 struct ocfs2_dinode *la_dinode, *tl_dinode;
713 struct ocfs2_la_recovery_item *item;
714 struct list_head *p, *n;
715 LIST_HEAD(tmp_la_list);
719 mlog(0, "completing recovery from keventd\n");
721 spin_lock(&journal->j_lock);
722 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
723 spin_unlock(&journal->j_lock);
725 list_for_each_safe(p, n, &tmp_la_list) {
726 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
727 list_del_init(&item->lri_list);
729 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
731 la_dinode = item->lri_la_dinode;
733 mlog(0, "Clean up local alloc %llu\n",
734 (unsigned long long)la_dinode->i_blkno);
736 ret = ocfs2_complete_local_alloc_recovery(osb,
744 tl_dinode = item->lri_tl_dinode;
746 mlog(0, "Clean up truncate log %llu\n",
747 (unsigned long long)tl_dinode->i_blkno);
749 ret = ocfs2_complete_truncate_log_recovery(osb,
757 ret = ocfs2_recover_orphans(osb, item->lri_slot);
764 mlog(0, "Recovery completion\n");
768 /* NOTE: This function always eats your references to la_dinode and
769 * tl_dinode, either manually on error, or by passing them to
770 * ocfs2_complete_recovery */
771 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
773 struct ocfs2_dinode *la_dinode,
774 struct ocfs2_dinode *tl_dinode)
776 struct ocfs2_la_recovery_item *item;
778 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
780 /* Though we wish to avoid it, we are in fact safe in
781 * skipping local alloc cleanup as fsck.ocfs2 is more
782 * than capable of reclaiming unused space. */
793 INIT_LIST_HEAD(&item->lri_list);
794 item->lri_la_dinode = la_dinode;
795 item->lri_slot = slot_num;
796 item->lri_tl_dinode = tl_dinode;
798 spin_lock(&journal->j_lock);
799 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
800 queue_work(ocfs2_wq, &journal->j_recovery_work);
801 spin_unlock(&journal->j_lock);
804 /* Called by the mount code to queue recovery the last part of
805 * recovery for it's own slot. */
806 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
808 struct ocfs2_journal *journal = osb->journal;
811 /* No need to queue up our truncate_log as regular
812 * cleanup will catch that. */
813 ocfs2_queue_recovery_completion(journal,
815 osb->local_alloc_copy,
817 ocfs2_schedule_truncate_log_flush(osb, 0);
819 osb->local_alloc_copy = NULL;
824 static int __ocfs2_recovery_thread(void *arg)
826 int status, node_num;
827 struct ocfs2_super *osb = arg;
831 status = ocfs2_wait_on_mount(osb);
837 status = ocfs2_super_lock(osb, 1);
843 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
844 node_num = ocfs2_node_map_first_set_bit(osb,
846 if (node_num == O2NM_INVALID_NODE_NUM) {
847 mlog(0, "Out of nodes to recover.\n");
851 status = ocfs2_recover_node(osb, node_num);
854 "Error %d recovering node %d on device (%u,%u)!\n",
856 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
857 mlog(ML_ERROR, "Volume requires unmount.\n");
861 ocfs2_recovery_map_clear(osb, node_num);
863 ocfs2_super_unlock(osb, 1);
865 /* We always run recovery on our own orphan dir - the dead
866 * node(s) may have voted "no" on an inode delete earlier. A
867 * revote is therefore required. */
868 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
872 mutex_lock(&osb->recovery_lock);
874 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
875 mutex_unlock(&osb->recovery_lock);
879 osb->recovery_thread_task = NULL;
880 mb(); /* sync with ocfs2_recovery_thread_running */
881 wake_up(&osb->recovery_event);
883 mutex_unlock(&osb->recovery_lock);
886 /* no one is callint kthread_stop() for us so the kthread() api
887 * requires that we call do_exit(). And it isn't exported, but
888 * complete_and_exit() seems to be a minimal wrapper around it. */
889 complete_and_exit(NULL, status);
893 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
895 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
896 node_num, osb->node_num);
898 mutex_lock(&osb->recovery_lock);
899 if (osb->disable_recovery)
902 /* People waiting on recovery will wait on
903 * the recovery map to empty. */
904 if (!ocfs2_recovery_map_set(osb, node_num))
905 mlog(0, "node %d already be in recovery.\n", node_num);
907 mlog(0, "starting recovery thread...\n");
909 if (osb->recovery_thread_task)
912 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
914 if (IS_ERR(osb->recovery_thread_task)) {
915 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
916 osb->recovery_thread_task = NULL;
920 mutex_unlock(&osb->recovery_lock);
921 wake_up(&osb->recovery_event);
926 /* Does the actual journal replay and marks the journal inode as
927 * clean. Will only replay if the journal inode is marked dirty. */
928 static int ocfs2_replay_journal(struct ocfs2_super *osb,
935 struct inode *inode = NULL;
936 struct ocfs2_dinode *fe;
937 journal_t *journal = NULL;
938 struct buffer_head *bh = NULL;
940 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
947 if (is_bad_inode(inode)) {
954 SET_INODE_JOURNAL(inode);
956 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
958 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
959 if (status != -ERESTARTSYS)
960 mlog(ML_ERROR, "Could not lock journal!\n");
965 fe = (struct ocfs2_dinode *) bh->b_data;
967 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
969 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
970 mlog(0, "No recovery required for node %d\n", node_num);
974 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
976 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
978 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
980 status = ocfs2_force_read_journal(inode);
986 mlog(0, "calling journal_init_inode\n");
987 journal = journal_init_inode(inode);
988 if (journal == NULL) {
989 mlog(ML_ERROR, "Linux journal layer error\n");
994 status = journal_load(journal);
999 journal_destroy(journal);
1003 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1005 /* wipe the journal */
1006 mlog(0, "flushing the journal.\n");
1007 journal_lock_updates(journal);
1008 status = journal_flush(journal);
1009 journal_unlock_updates(journal);
1013 /* This will mark the node clean */
1014 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1016 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1018 status = ocfs2_write_block(osb, bh, inode);
1025 journal_destroy(journal);
1028 /* drop the lock on this nodes journal */
1030 ocfs2_meta_unlock(inode, 1);
1043 * Do the most important parts of node recovery:
1044 * - Replay it's journal
1045 * - Stamp a clean local allocator file
1046 * - Stamp a clean truncate log
1047 * - Mark the node clean
1049 * If this function completes without error, a node in OCFS2 can be
1050 * said to have been safely recovered. As a result, failure during the
1051 * second part of a nodes recovery process (local alloc recovery) is
1052 * far less concerning.
1054 static int ocfs2_recover_node(struct ocfs2_super *osb,
1059 struct ocfs2_slot_info *si = osb->slot_info;
1060 struct ocfs2_dinode *la_copy = NULL;
1061 struct ocfs2_dinode *tl_copy = NULL;
1063 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1064 node_num, osb->node_num);
1066 mlog(0, "checking node %d\n", node_num);
1068 /* Should not ever be called to recover ourselves -- in that
1069 * case we should've called ocfs2_journal_load instead. */
1070 BUG_ON(osb->node_num == node_num);
1072 slot_num = ocfs2_node_num_to_slot(si, node_num);
1073 if (slot_num == OCFS2_INVALID_SLOT) {
1075 mlog(0, "no slot for this node, so no recovery required.\n");
1079 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1081 status = ocfs2_replay_journal(osb, node_num, slot_num);
1087 /* Stamp a clean local alloc file AFTER recovering the journal... */
1088 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1094 /* An error from begin_truncate_log_recovery is not
1095 * serious enough to warrant halting the rest of
1097 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1101 /* Likewise, this would be a strange but ultimately not so
1102 * harmful place to get an error... */
1103 ocfs2_clear_slot(si, slot_num);
1104 status = ocfs2_update_disk_slots(osb, si);
1108 /* This will kfree the memory pointed to by la_copy and tl_copy */
1109 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1119 /* Test node liveness by trylocking his journal. If we get the lock,
1120 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1121 * still alive (we couldn't get the lock) and < 0 on error. */
1122 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1126 struct inode *inode = NULL;
1128 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1130 if (inode == NULL) {
1131 mlog(ML_ERROR, "access error\n");
1135 if (is_bad_inode(inode)) {
1136 mlog(ML_ERROR, "access error (bad inode)\n");
1142 SET_INODE_JOURNAL(inode);
1144 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1145 status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1147 if (status != -EAGAIN)
1152 ocfs2_meta_unlock(inode, 1);
1160 /* Call this underneath ocfs2_super_lock. It also assumes that the
1161 * slot info struct has been updated from disk. */
1162 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1164 int status, i, node_num;
1165 struct ocfs2_slot_info *si = osb->slot_info;
1167 /* This is called with the super block cluster lock, so we
1168 * know that the slot map can't change underneath us. */
1170 spin_lock(&si->si_lock);
1171 for(i = 0; i < si->si_num_slots; i++) {
1172 if (i == osb->slot_num)
1174 if (ocfs2_is_empty_slot(si, i))
1177 node_num = si->si_global_node_nums[i];
1178 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1180 spin_unlock(&si->si_lock);
1182 /* Ok, we have a slot occupied by another node which
1183 * is not in the recovery map. We trylock his journal
1184 * file here to test if he's alive. */
1185 status = ocfs2_trylock_journal(osb, i);
1187 /* Since we're called from mount, we know that
1188 * the recovery thread can't race us on
1189 * setting / checking the recovery bits. */
1190 ocfs2_recovery_thread(osb, node_num);
1191 } else if ((status < 0) && (status != -EAGAIN)) {
1196 spin_lock(&si->si_lock);
1198 spin_unlock(&si->si_lock);
1206 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1208 struct inode **head)
1211 struct inode *orphan_dir_inode = NULL;
1213 unsigned long offset, blk, local;
1214 struct buffer_head *bh = NULL;
1215 struct ocfs2_dir_entry *de;
1216 struct super_block *sb = osb->sb;
1218 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1219 ORPHAN_DIR_SYSTEM_INODE,
1221 if (!orphan_dir_inode) {
1227 mutex_lock(&orphan_dir_inode->i_mutex);
1228 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1236 while(offset < i_size_read(orphan_dir_inode)) {
1237 blk = offset >> sb->s_blocksize_bits;
1239 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1250 while(offset < i_size_read(orphan_dir_inode)
1251 && local < sb->s_blocksize) {
1252 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1254 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1262 local += le16_to_cpu(de->rec_len);
1263 offset += le16_to_cpu(de->rec_len);
1265 /* I guess we silently fail on no inode? */
1266 if (!le64_to_cpu(de->inode))
1268 if (de->file_type > OCFS2_FT_MAX) {
1270 "block %llu contains invalid de: "
1271 "inode = %llu, rec_len = %u, "
1272 "name_len = %u, file_type = %u, "
1274 (unsigned long long)bh->b_blocknr,
1275 (unsigned long long)le64_to_cpu(de->inode),
1276 le16_to_cpu(de->rec_len),
1283 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1285 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1288 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1289 OCFS2_FI_FLAG_NOLOCK);
1293 mlog(0, "queue orphan %llu\n",
1294 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1295 /* No locking is required for the next_orphan
1296 * queue as there is only ever a single
1297 * process doing orphan recovery. */
1298 OCFS2_I(iter)->ip_next_orphan = *head;
1305 ocfs2_meta_unlock(orphan_dir_inode, 0);
1307 mutex_unlock(&orphan_dir_inode->i_mutex);
1308 iput(orphan_dir_inode);
1312 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1317 spin_lock(&osb->osb_lock);
1318 ret = !osb->osb_orphan_wipes[slot];
1319 spin_unlock(&osb->osb_lock);
1323 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1326 spin_lock(&osb->osb_lock);
1327 /* Mark ourselves such that new processes in delete_inode()
1328 * know to quit early. */
1329 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1330 while (osb->osb_orphan_wipes[slot]) {
1331 /* If any processes are already in the middle of an
1332 * orphan wipe on this dir, then we need to wait for
1334 spin_unlock(&osb->osb_lock);
1335 wait_event_interruptible(osb->osb_wipe_event,
1336 ocfs2_orphan_recovery_can_continue(osb, slot));
1337 spin_lock(&osb->osb_lock);
1339 spin_unlock(&osb->osb_lock);
1342 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1345 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1349 * Orphan recovery. Each mounted node has it's own orphan dir which we
1350 * must run during recovery. Our strategy here is to build a list of
1351 * the inodes in the orphan dir and iget/iput them. The VFS does
1352 * (most) of the rest of the work.
1354 * Orphan recovery can happen at any time, not just mount so we have a
1355 * couple of extra considerations.
1357 * - We grab as many inodes as we can under the orphan dir lock -
1358 * doing iget() outside the orphan dir risks getting a reference on
1360 * - We must be sure not to deadlock with other processes on the
1361 * system wanting to run delete_inode(). This can happen when they go
1362 * to lock the orphan dir and the orphan recovery process attempts to
1363 * iget() inside the orphan dir lock. This can be avoided by
1364 * advertising our state to ocfs2_delete_inode().
1366 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1370 struct inode *inode = NULL;
1372 struct ocfs2_inode_info *oi;
1374 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1376 ocfs2_mark_recovering_orphan_dir(osb, slot);
1377 ret = ocfs2_queue_orphans(osb, slot, &inode);
1378 ocfs2_clear_recovering_orphan_dir(osb, slot);
1380 /* Error here should be noted, but we want to continue with as
1381 * many queued inodes as we've got. */
1386 oi = OCFS2_I(inode);
1387 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1389 iter = oi->ip_next_orphan;
1391 spin_lock(&oi->ip_lock);
1392 /* Delete voting may have set these on the assumption
1393 * that the other node would wipe them successfully.
1394 * If they are still in the node's orphan dir, we need
1395 * to reset that state. */
1396 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1398 /* Set the proper information to get us going into
1399 * ocfs2_delete_inode. */
1400 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1401 oi->ip_orphaned_slot = slot;
1402 spin_unlock(&oi->ip_lock);
1412 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1414 /* This check is good because ocfs2 will wait on our recovery
1415 * thread before changing it to something other than MOUNTED
1417 wait_event(osb->osb_mount_event,
1418 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1419 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1421 /* If there's an error on mount, then we may never get to the
1422 * MOUNTED flag, but this is set right before
1423 * dismount_volume() so we can trust it. */
1424 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1425 mlog(0, "mount error, exiting!\n");
1432 static int ocfs2_commit_thread(void *arg)
1435 struct ocfs2_super *osb = arg;
1436 struct ocfs2_journal *journal = osb->journal;
1438 /* we can trust j_num_trans here because _should_stop() is only set in
1439 * shutdown and nobody other than ourselves should be able to start
1440 * transactions. committing on shutdown might take a few iterations
1441 * as final transactions put deleted inodes on the list */
1442 while (!(kthread_should_stop() &&
1443 atomic_read(&journal->j_num_trans) == 0)) {
1445 wait_event_interruptible(osb->checkpoint_event,
1446 atomic_read(&journal->j_num_trans)
1447 || kthread_should_stop());
1449 status = ocfs2_commit_cache(osb);
1453 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1455 "commit_thread: %u transactions pending on "
1457 atomic_read(&journal->j_num_trans));
1464 /* Look for a dirty journal without taking any cluster locks. Used for
1465 * hard readonly access to determine whether the file system journals
1466 * require recovery. */
1467 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1471 struct buffer_head *di_bh;
1472 struct ocfs2_dinode *di;
1473 struct inode *journal = NULL;
1475 for(slot = 0; slot < osb->max_slots; slot++) {
1476 journal = ocfs2_get_system_file_inode(osb,
1477 JOURNAL_SYSTEM_INODE,
1479 if (!journal || is_bad_inode(journal)) {
1486 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1493 di = (struct ocfs2_dinode *) di_bh->b_data;
1495 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1496 OCFS2_JOURNAL_DIRTY_FL)