2 * Performance counter x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10 * For licencing details see kernel-base/COPYING
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
25 #include <asm/stacktrace.h>
28 static u64 perf_counter_mask __read_mostly;
30 struct cpu_hw_counters {
31 struct perf_counter *counters[X86_PMC_IDX_MAX];
32 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
34 unsigned long interrupts;
39 * struct x86_pmu - generic x86 pmu
44 int (*handle_irq)(struct pt_regs *);
45 void (*disable_all)(void);
46 void (*enable_all)(void);
47 void (*enable)(struct hw_perf_counter *, int);
48 void (*disable)(struct hw_perf_counter *, int);
51 u64 (*event_map)(int);
52 u64 (*raw_event)(u64);
55 int num_counters_fixed;
62 static struct x86_pmu x86_pmu __read_mostly;
64 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
69 * Intel PerfMon v3. Used on Core2 and later.
71 static const u64 intel_perfmon_event_map[] =
73 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
74 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
75 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
76 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
77 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
78 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
79 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
82 static u64 intel_pmu_event_map(int event)
84 return intel_perfmon_event_map[event];
88 * Generalized hw caching related event table, filled
89 * in on a per model basis. A value of 0 means
90 * 'not supported', -1 means 'event makes no sense on
91 * this CPU', any other value means the raw event
95 #define C(x) PERF_COUNT_HW_CACHE_##x
97 static u64 __read_mostly hw_cache_event_ids
98 [PERF_COUNT_HW_CACHE_MAX]
99 [PERF_COUNT_HW_CACHE_OP_MAX]
100 [PERF_COUNT_HW_CACHE_RESULT_MAX];
102 static const u64 nehalem_hw_cache_event_ids
103 [PERF_COUNT_HW_CACHE_MAX]
104 [PERF_COUNT_HW_CACHE_OP_MAX]
105 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
109 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
110 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
113 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
114 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
116 [ C(OP_PREFETCH) ] = {
117 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
118 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
123 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
124 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
127 [ C(RESULT_ACCESS) ] = -1,
128 [ C(RESULT_MISS) ] = -1,
130 [ C(OP_PREFETCH) ] = {
131 [ C(RESULT_ACCESS) ] = 0x0,
132 [ C(RESULT_MISS) ] = 0x0,
137 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
138 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
141 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
142 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
144 [ C(OP_PREFETCH) ] = {
145 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
146 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
151 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
152 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
155 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
156 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
158 [ C(OP_PREFETCH) ] = {
159 [ C(RESULT_ACCESS) ] = 0x0,
160 [ C(RESULT_MISS) ] = 0x0,
165 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
166 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
169 [ C(RESULT_ACCESS) ] = -1,
170 [ C(RESULT_MISS) ] = -1,
172 [ C(OP_PREFETCH) ] = {
173 [ C(RESULT_ACCESS) ] = -1,
174 [ C(RESULT_MISS) ] = -1,
179 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
180 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
183 [ C(RESULT_ACCESS) ] = -1,
184 [ C(RESULT_MISS) ] = -1,
186 [ C(OP_PREFETCH) ] = {
187 [ C(RESULT_ACCESS) ] = -1,
188 [ C(RESULT_MISS) ] = -1,
193 static const u64 core2_hw_cache_event_ids
194 [PERF_COUNT_HW_CACHE_MAX]
195 [PERF_COUNT_HW_CACHE_OP_MAX]
196 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
200 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
201 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
204 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
205 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
207 [ C(OP_PREFETCH) ] = {
208 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
209 [ C(RESULT_MISS) ] = 0,
214 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
215 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
221 [ C(OP_PREFETCH) ] = {
222 [ C(RESULT_ACCESS) ] = 0,
223 [ C(RESULT_MISS) ] = 0,
228 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
229 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
232 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
233 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
235 [ C(OP_PREFETCH) ] = {
236 [ C(RESULT_ACCESS) ] = 0,
237 [ C(RESULT_MISS) ] = 0,
242 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
243 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
246 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
247 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
249 [ C(OP_PREFETCH) ] = {
250 [ C(RESULT_ACCESS) ] = 0,
251 [ C(RESULT_MISS) ] = 0,
256 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
257 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
260 [ C(RESULT_ACCESS) ] = -1,
261 [ C(RESULT_MISS) ] = -1,
263 [ C(OP_PREFETCH) ] = {
264 [ C(RESULT_ACCESS) ] = -1,
265 [ C(RESULT_MISS) ] = -1,
270 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
271 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
274 [ C(RESULT_ACCESS) ] = -1,
275 [ C(RESULT_MISS) ] = -1,
277 [ C(OP_PREFETCH) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
284 static const u64 atom_hw_cache_event_ids
285 [PERF_COUNT_HW_CACHE_MAX]
286 [PERF_COUNT_HW_CACHE_OP_MAX]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
291 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
292 [ C(RESULT_MISS) ] = 0,
295 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
296 [ C(RESULT_MISS) ] = 0,
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = 0x0,
300 [ C(RESULT_MISS) ] = 0,
305 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
306 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
309 [ C(RESULT_ACCESS) ] = -1,
310 [ C(RESULT_MISS) ] = -1,
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = 0,
314 [ C(RESULT_MISS) ] = 0,
319 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
320 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
323 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
324 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
326 [ C(OP_PREFETCH) ] = {
327 [ C(RESULT_ACCESS) ] = 0,
328 [ C(RESULT_MISS) ] = 0,
333 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
337 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
340 [ C(OP_PREFETCH) ] = {
341 [ C(RESULT_ACCESS) ] = 0,
342 [ C(RESULT_MISS) ] = 0,
347 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
348 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
351 [ C(RESULT_ACCESS) ] = -1,
352 [ C(RESULT_MISS) ] = -1,
354 [ C(OP_PREFETCH) ] = {
355 [ C(RESULT_ACCESS) ] = -1,
356 [ C(RESULT_MISS) ] = -1,
361 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
362 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
365 [ C(RESULT_ACCESS) ] = -1,
366 [ C(RESULT_MISS) ] = -1,
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = -1,
370 [ C(RESULT_MISS) ] = -1,
375 static u64 intel_pmu_raw_event(u64 event)
377 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
378 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
379 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
380 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
381 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
383 #define CORE_EVNTSEL_MASK \
384 (CORE_EVNTSEL_EVENT_MASK | \
385 CORE_EVNTSEL_UNIT_MASK | \
386 CORE_EVNTSEL_EDGE_MASK | \
387 CORE_EVNTSEL_INV_MASK | \
388 CORE_EVNTSEL_COUNTER_MASK)
390 return event & CORE_EVNTSEL_MASK;
393 static const u64 amd_hw_cache_event_ids
394 [PERF_COUNT_HW_CACHE_MAX]
395 [PERF_COUNT_HW_CACHE_OP_MAX]
396 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
400 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
401 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
404 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
405 [ C(RESULT_MISS) ] = 0,
407 [ C(OP_PREFETCH) ] = {
408 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
409 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
414 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
415 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
418 [ C(RESULT_ACCESS) ] = -1,
419 [ C(RESULT_MISS) ] = -1,
421 [ C(OP_PREFETCH) ] = {
422 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
423 [ C(RESULT_MISS) ] = 0,
428 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
429 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
432 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
433 [ C(RESULT_MISS) ] = 0,
435 [ C(OP_PREFETCH) ] = {
436 [ C(RESULT_ACCESS) ] = 0,
437 [ C(RESULT_MISS) ] = 0,
442 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
443 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
446 [ C(RESULT_ACCESS) ] = 0,
447 [ C(RESULT_MISS) ] = 0,
449 [ C(OP_PREFETCH) ] = {
450 [ C(RESULT_ACCESS) ] = 0,
451 [ C(RESULT_MISS) ] = 0,
456 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
457 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
463 [ C(OP_PREFETCH) ] = {
464 [ C(RESULT_ACCESS) ] = -1,
465 [ C(RESULT_MISS) ] = -1,
470 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
471 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
474 [ C(RESULT_ACCESS) ] = -1,
475 [ C(RESULT_MISS) ] = -1,
477 [ C(OP_PREFETCH) ] = {
478 [ C(RESULT_ACCESS) ] = -1,
479 [ C(RESULT_MISS) ] = -1,
485 * AMD Performance Monitor K7 and later.
487 static const u64 amd_perfmon_event_map[] =
489 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
490 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
491 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
492 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
493 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
494 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
497 static u64 amd_pmu_event_map(int event)
499 return amd_perfmon_event_map[event];
502 static u64 amd_pmu_raw_event(u64 event)
504 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
505 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
506 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
507 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
508 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
510 #define K7_EVNTSEL_MASK \
511 (K7_EVNTSEL_EVENT_MASK | \
512 K7_EVNTSEL_UNIT_MASK | \
513 K7_EVNTSEL_EDGE_MASK | \
514 K7_EVNTSEL_INV_MASK | \
515 K7_EVNTSEL_COUNTER_MASK)
517 return event & K7_EVNTSEL_MASK;
521 * Propagate counter elapsed time into the generic counter.
522 * Can only be executed on the CPU where the counter is active.
523 * Returns the delta events processed.
526 x86_perf_counter_update(struct perf_counter *counter,
527 struct hw_perf_counter *hwc, int idx)
529 int shift = 64 - x86_pmu.counter_bits;
530 u64 prev_raw_count, new_raw_count;
534 * Careful: an NMI might modify the previous counter value.
536 * Our tactic to handle this is to first atomically read and
537 * exchange a new raw count - then add that new-prev delta
538 * count to the generic counter atomically:
541 prev_raw_count = atomic64_read(&hwc->prev_count);
542 rdmsrl(hwc->counter_base + idx, new_raw_count);
544 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
545 new_raw_count) != prev_raw_count)
549 * Now we have the new raw value and have updated the prev
550 * timestamp already. We can now calculate the elapsed delta
551 * (counter-)time and add that to the generic counter.
553 * Careful, not all hw sign-extends above the physical width
556 delta = (new_raw_count << shift) - (prev_raw_count << shift);
559 atomic64_add(delta, &counter->count);
560 atomic64_sub(delta, &hwc->period_left);
562 return new_raw_count;
565 static atomic_t active_counters;
566 static DEFINE_MUTEX(pmc_reserve_mutex);
568 static bool reserve_pmc_hardware(void)
572 if (nmi_watchdog == NMI_LOCAL_APIC)
573 disable_lapic_nmi_watchdog();
575 for (i = 0; i < x86_pmu.num_counters; i++) {
576 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
580 for (i = 0; i < x86_pmu.num_counters; i++) {
581 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
588 for (i--; i >= 0; i--)
589 release_evntsel_nmi(x86_pmu.eventsel + i);
591 i = x86_pmu.num_counters;
594 for (i--; i >= 0; i--)
595 release_perfctr_nmi(x86_pmu.perfctr + i);
597 if (nmi_watchdog == NMI_LOCAL_APIC)
598 enable_lapic_nmi_watchdog();
603 static void release_pmc_hardware(void)
607 for (i = 0; i < x86_pmu.num_counters; i++) {
608 release_perfctr_nmi(x86_pmu.perfctr + i);
609 release_evntsel_nmi(x86_pmu.eventsel + i);
612 if (nmi_watchdog == NMI_LOCAL_APIC)
613 enable_lapic_nmi_watchdog();
616 static void hw_perf_counter_destroy(struct perf_counter *counter)
618 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
619 release_pmc_hardware();
620 mutex_unlock(&pmc_reserve_mutex);
624 static inline int x86_pmu_initialized(void)
626 return x86_pmu.handle_irq != NULL;
630 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
632 unsigned int cache_type, cache_op, cache_result;
635 config = attr->config;
637 cache_type = (config >> 0) & 0xff;
638 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
641 cache_op = (config >> 8) & 0xff;
642 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
645 cache_result = (config >> 16) & 0xff;
646 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
649 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
663 * Setup the hardware configuration for a given attr_type
665 static int __hw_perf_counter_init(struct perf_counter *counter)
667 struct perf_counter_attr *attr = &counter->attr;
668 struct hw_perf_counter *hwc = &counter->hw;
671 if (!x86_pmu_initialized())
675 if (!atomic_inc_not_zero(&active_counters)) {
676 mutex_lock(&pmc_reserve_mutex);
677 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
680 atomic_inc(&active_counters);
681 mutex_unlock(&pmc_reserve_mutex);
688 * (keep 'enabled' bit clear for now)
690 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
693 * Count user and OS events unless requested not to.
695 if (!attr->exclude_user)
696 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
697 if (!attr->exclude_kernel)
698 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
700 if (!hwc->sample_period) {
701 hwc->sample_period = x86_pmu.max_period;
702 hwc->last_period = hwc->sample_period;
703 atomic64_set(&hwc->period_left, hwc->sample_period);
706 counter->destroy = hw_perf_counter_destroy;
709 * Raw event type provide the config in the event structure
711 if (attr->type == PERF_TYPE_RAW) {
712 hwc->config |= x86_pmu.raw_event(attr->config);
716 if (attr->type == PERF_TYPE_HW_CACHE)
717 return set_ext_hw_attr(hwc, attr);
719 if (attr->config >= x86_pmu.max_events)
724 hwc->config |= x86_pmu.event_map(attr->config);
729 static void intel_pmu_disable_all(void)
731 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
734 static void amd_pmu_disable_all(void)
736 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
744 * ensure we write the disable before we start disabling the
745 * counters proper, so that amd_pmu_enable_counter() does the
750 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
753 if (!test_bit(idx, cpuc->active_mask))
755 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
756 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
758 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
759 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
763 void hw_perf_disable(void)
765 if (!x86_pmu_initialized())
767 return x86_pmu.disable_all();
770 static void intel_pmu_enable_all(void)
772 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
775 static void amd_pmu_enable_all(void)
777 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
786 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
789 if (!test_bit(idx, cpuc->active_mask))
791 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
792 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
794 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
795 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
799 void hw_perf_enable(void)
801 if (!x86_pmu_initialized())
803 x86_pmu.enable_all();
806 static inline u64 intel_pmu_get_status(void)
810 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
815 static inline void intel_pmu_ack_status(u64 ack)
817 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
820 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
823 err = checking_wrmsrl(hwc->config_base + idx,
824 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
827 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
830 err = checking_wrmsrl(hwc->config_base + idx,
835 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
837 int idx = __idx - X86_PMC_IDX_FIXED;
841 mask = 0xfULL << (idx * 4);
843 rdmsrl(hwc->config_base, ctrl_val);
845 err = checking_wrmsrl(hwc->config_base, ctrl_val);
849 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
851 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
852 intel_pmu_disable_fixed(hwc, idx);
856 x86_pmu_disable_counter(hwc, idx);
860 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
862 x86_pmu_disable_counter(hwc, idx);
865 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
868 * Set the next IRQ period, based on the hwc->period_left value.
869 * To be called with the counter disabled in hw:
872 x86_perf_counter_set_period(struct perf_counter *counter,
873 struct hw_perf_counter *hwc, int idx)
875 s64 left = atomic64_read(&hwc->period_left);
876 s64 period = hwc->sample_period;
880 * If we are way outside a reasoable range then just skip forward:
882 if (unlikely(left <= -period)) {
884 atomic64_set(&hwc->period_left, left);
885 hwc->last_period = period;
889 if (unlikely(left <= 0)) {
891 atomic64_set(&hwc->period_left, left);
892 hwc->last_period = period;
896 * Quirk: certain CPUs dont like it if just 1 event is left:
898 if (unlikely(left < 2))
901 if (left > x86_pmu.max_period)
902 left = x86_pmu.max_period;
904 per_cpu(prev_left[idx], smp_processor_id()) = left;
907 * The hw counter starts counting from this counter offset,
908 * mark it to be able to extra future deltas:
910 atomic64_set(&hwc->prev_count, (u64)-left);
912 err = checking_wrmsrl(hwc->counter_base + idx,
913 (u64)(-left) & x86_pmu.counter_mask);
915 perf_counter_update_userpage(counter);
921 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
923 int idx = __idx - X86_PMC_IDX_FIXED;
924 u64 ctrl_val, bits, mask;
928 * Enable IRQ generation (0x8),
929 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
933 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
935 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
938 mask = 0xfULL << (idx * 4);
940 rdmsrl(hwc->config_base, ctrl_val);
943 err = checking_wrmsrl(hwc->config_base, ctrl_val);
946 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
948 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
949 intel_pmu_enable_fixed(hwc, idx);
953 x86_pmu_enable_counter(hwc, idx);
956 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
958 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
961 x86_pmu_enable_counter(hwc, idx);
963 x86_pmu_disable_counter(hwc, idx);
967 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
971 if (!x86_pmu.num_counters_fixed)
974 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
976 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
977 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
978 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
979 return X86_PMC_IDX_FIXED_CPU_CYCLES;
980 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
981 return X86_PMC_IDX_FIXED_BUS_CYCLES;
987 * Find a PMC slot for the freshly enabled / scheduled in counter:
989 static int x86_pmu_enable(struct perf_counter *counter)
991 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
992 struct hw_perf_counter *hwc = &counter->hw;
995 idx = fixed_mode_idx(counter, hwc);
998 * Try to get the fixed counter, if that is already taken
999 * then try to get a generic counter:
1001 if (test_and_set_bit(idx, cpuc->used_mask))
1004 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1006 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1007 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1010 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1014 /* Try to get the previous generic counter again */
1015 if (test_and_set_bit(idx, cpuc->used_mask)) {
1017 idx = find_first_zero_bit(cpuc->used_mask,
1018 x86_pmu.num_counters);
1019 if (idx == x86_pmu.num_counters)
1022 set_bit(idx, cpuc->used_mask);
1025 hwc->config_base = x86_pmu.eventsel;
1026 hwc->counter_base = x86_pmu.perfctr;
1029 perf_counters_lapic_init();
1031 x86_pmu.disable(hwc, idx);
1033 cpuc->counters[idx] = counter;
1034 set_bit(idx, cpuc->active_mask);
1036 x86_perf_counter_set_period(counter, hwc, idx);
1037 x86_pmu.enable(hwc, idx);
1039 perf_counter_update_userpage(counter);
1044 static void x86_pmu_unthrottle(struct perf_counter *counter)
1046 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1047 struct hw_perf_counter *hwc = &counter->hw;
1049 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1050 cpuc->counters[hwc->idx] != counter))
1053 x86_pmu.enable(hwc, hwc->idx);
1056 void perf_counter_print_debug(void)
1058 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1059 struct cpu_hw_counters *cpuc;
1060 unsigned long flags;
1063 if (!x86_pmu.num_counters)
1066 local_irq_save(flags);
1068 cpu = smp_processor_id();
1069 cpuc = &per_cpu(cpu_hw_counters, cpu);
1071 if (x86_pmu.version >= 2) {
1072 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1073 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1074 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1075 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1078 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1079 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1080 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1081 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1083 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1085 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1086 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1087 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1089 prev_left = per_cpu(prev_left[idx], cpu);
1091 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1092 cpu, idx, pmc_ctrl);
1093 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1094 cpu, idx, pmc_count);
1095 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1096 cpu, idx, prev_left);
1098 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1099 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1101 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1102 cpu, idx, pmc_count);
1104 local_irq_restore(flags);
1107 static void x86_pmu_disable(struct perf_counter *counter)
1109 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1110 struct hw_perf_counter *hwc = &counter->hw;
1114 * Must be done before we disable, otherwise the nmi handler
1115 * could reenable again:
1117 clear_bit(idx, cpuc->active_mask);
1118 x86_pmu.disable(hwc, idx);
1121 * Make sure the cleared pointer becomes visible before we
1122 * (potentially) free the counter:
1127 * Drain the remaining delta count out of a counter
1128 * that we are disabling:
1130 x86_perf_counter_update(counter, hwc, idx);
1131 cpuc->counters[idx] = NULL;
1132 clear_bit(idx, cpuc->used_mask);
1134 perf_counter_update_userpage(counter);
1138 * Save and restart an expired counter. Called by NMI contexts,
1139 * so it has to be careful about preempting normal counter ops:
1141 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1143 struct hw_perf_counter *hwc = &counter->hw;
1147 x86_perf_counter_update(counter, hwc, idx);
1148 ret = x86_perf_counter_set_period(counter, hwc, idx);
1150 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1151 intel_pmu_enable_counter(hwc, idx);
1156 static void intel_pmu_reset(void)
1158 unsigned long flags;
1161 if (!x86_pmu.num_counters)
1164 local_irq_save(flags);
1166 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1168 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1169 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1170 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1172 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1173 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1176 local_irq_restore(flags);
1181 * This handler is triggered by the local APIC, so the APIC IRQ handling
1184 static int intel_pmu_handle_irq(struct pt_regs *regs)
1186 struct perf_sample_data data;
1187 struct cpu_hw_counters *cpuc;
1188 int bit, cpu, loops;
1194 cpu = smp_processor_id();
1195 cpuc = &per_cpu(cpu_hw_counters, cpu);
1198 status = intel_pmu_get_status();
1206 if (++loops > 100) {
1207 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1208 perf_counter_print_debug();
1214 inc_irq_stat(apic_perf_irqs);
1216 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1217 struct perf_counter *counter = cpuc->counters[bit];
1219 clear_bit(bit, (unsigned long *) &status);
1220 if (!test_bit(bit, cpuc->active_mask))
1223 if (!intel_pmu_save_and_restart(counter))
1226 data.period = counter->hw.last_period;
1228 if (perf_counter_overflow(counter, 1, &data))
1229 intel_pmu_disable_counter(&counter->hw, bit);
1232 intel_pmu_ack_status(ack);
1235 * Repeat if there is more work to be done:
1237 status = intel_pmu_get_status();
1246 static int amd_pmu_handle_irq(struct pt_regs *regs)
1248 struct perf_sample_data data;
1249 struct cpu_hw_counters *cpuc;
1250 struct perf_counter *counter;
1251 struct hw_perf_counter *hwc;
1252 int cpu, idx, handled = 0;
1258 cpu = smp_processor_id();
1259 cpuc = &per_cpu(cpu_hw_counters, cpu);
1261 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1262 if (!test_bit(idx, cpuc->active_mask))
1265 counter = cpuc->counters[idx];
1268 val = x86_perf_counter_update(counter, hwc, idx);
1269 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1276 data.period = counter->hw.last_period;
1278 if (!x86_perf_counter_set_period(counter, hwc, idx))
1281 if (perf_counter_overflow(counter, 1, &data))
1282 amd_pmu_disable_counter(hwc, idx);
1286 inc_irq_stat(apic_perf_irqs);
1291 void smp_perf_pending_interrupt(struct pt_regs *regs)
1295 inc_irq_stat(apic_pending_irqs);
1296 perf_counter_do_pending();
1300 void set_perf_counter_pending(void)
1302 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1305 void perf_counters_lapic_init(void)
1307 if (!x86_pmu_initialized())
1311 * Always use NMI for PMU
1313 apic_write(APIC_LVTPC, APIC_DM_NMI);
1316 static int __kprobes
1317 perf_counter_nmi_handler(struct notifier_block *self,
1318 unsigned long cmd, void *__args)
1320 struct die_args *args = __args;
1321 struct pt_regs *regs;
1323 if (!atomic_read(&active_counters))
1337 apic_write(APIC_LVTPC, APIC_DM_NMI);
1339 * Can't rely on the handled return value to say it was our NMI, two
1340 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1342 * If the first NMI handles both, the latter will be empty and daze
1345 x86_pmu.handle_irq(regs);
1350 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1351 .notifier_call = perf_counter_nmi_handler,
1356 static struct x86_pmu intel_pmu = {
1358 .handle_irq = intel_pmu_handle_irq,
1359 .disable_all = intel_pmu_disable_all,
1360 .enable_all = intel_pmu_enable_all,
1361 .enable = intel_pmu_enable_counter,
1362 .disable = intel_pmu_disable_counter,
1363 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1364 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1365 .event_map = intel_pmu_event_map,
1366 .raw_event = intel_pmu_raw_event,
1367 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1369 * Intel PMCs cannot be accessed sanely above 32 bit width,
1370 * so we install an artificial 1<<31 period regardless of
1371 * the generic counter period:
1373 .max_period = (1ULL << 31) - 1,
1376 static struct x86_pmu amd_pmu = {
1378 .handle_irq = amd_pmu_handle_irq,
1379 .disable_all = amd_pmu_disable_all,
1380 .enable_all = amd_pmu_enable_all,
1381 .enable = amd_pmu_enable_counter,
1382 .disable = amd_pmu_disable_counter,
1383 .eventsel = MSR_K7_EVNTSEL0,
1384 .perfctr = MSR_K7_PERFCTR0,
1385 .event_map = amd_pmu_event_map,
1386 .raw_event = amd_pmu_raw_event,
1387 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1390 .counter_mask = (1ULL << 48) - 1,
1391 /* use highest bit to detect overflow */
1392 .max_period = (1ULL << 47) - 1,
1395 static int intel_pmu_init(void)
1397 union cpuid10_edx edx;
1398 union cpuid10_eax eax;
1399 unsigned int unused;
1403 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1407 * Check whether the Architectural PerfMon supports
1408 * Branch Misses Retired Event or not.
1410 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1411 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1414 version = eax.split.version_id;
1418 x86_pmu = intel_pmu;
1419 x86_pmu.version = version;
1420 x86_pmu.num_counters = eax.split.num_counters;
1421 x86_pmu.counter_bits = eax.split.bit_width;
1422 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1425 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1426 * assume at least 3 counters:
1428 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1431 * Install the hw-cache-events table:
1433 switch (boot_cpu_data.x86_model) {
1434 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1435 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1436 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1437 case 29: /* six-core 45 nm xeon "Dunnington" */
1438 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1439 sizeof(hw_cache_event_ids));
1441 pr_cont("Core2 events, ");
1445 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1446 sizeof(hw_cache_event_ids));
1448 pr_cont("Nehalem/Corei7 events, ");
1451 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1452 sizeof(hw_cache_event_ids));
1454 pr_cont("Atom events, ");
1460 static int amd_pmu_init(void)
1462 /* Performance-monitoring supported from K7 and later: */
1463 if (boot_cpu_data.x86 < 6)
1468 /* Events are common for all AMDs */
1469 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
1470 sizeof(hw_cache_event_ids));
1475 void __init init_hw_perf_counters(void)
1479 pr_info("Performance Counters: ");
1481 switch (boot_cpu_data.x86_vendor) {
1482 case X86_VENDOR_INTEL:
1483 err = intel_pmu_init();
1485 case X86_VENDOR_AMD:
1486 err = amd_pmu_init();
1492 pr_cont("no PMU driver, software counters only.\n");
1496 pr_cont("%s PMU driver.\n", x86_pmu.name);
1498 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1499 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1500 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1501 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1503 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1504 perf_max_counters = x86_pmu.num_counters;
1506 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1507 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1508 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1509 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1512 perf_counter_mask |=
1513 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1514 x86_pmu.intel_ctrl = perf_counter_mask;
1516 perf_counters_lapic_init();
1517 register_die_notifier(&perf_counter_nmi_notifier);
1519 pr_info("... version: %d\n", x86_pmu.version);
1520 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
1521 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
1522 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
1523 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1524 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
1525 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
1528 static inline void x86_pmu_read(struct perf_counter *counter)
1530 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1533 static const struct pmu pmu = {
1534 .enable = x86_pmu_enable,
1535 .disable = x86_pmu_disable,
1536 .read = x86_pmu_read,
1537 .unthrottle = x86_pmu_unthrottle,
1540 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1544 err = __hw_perf_counter_init(counter);
1546 return ERR_PTR(err);
1556 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1558 if (entry->nr < PERF_MAX_STACK_DEPTH)
1559 entry->ip[entry->nr++] = ip;
1562 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1563 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1564 static DEFINE_PER_CPU(int, in_nmi_frame);
1568 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1570 /* Ignore warnings */
1573 static void backtrace_warning(void *data, char *msg)
1575 /* Ignore warnings */
1578 static int backtrace_stack(void *data, char *name)
1580 per_cpu(in_nmi_frame, smp_processor_id()) =
1581 x86_is_stack_id(NMI_STACK, name);
1586 static void backtrace_address(void *data, unsigned long addr, int reliable)
1588 struct perf_callchain_entry *entry = data;
1590 if (per_cpu(in_nmi_frame, smp_processor_id()))
1594 callchain_store(entry, addr);
1597 static const struct stacktrace_ops backtrace_ops = {
1598 .warning = backtrace_warning,
1599 .warning_symbol = backtrace_warning_symbol,
1600 .stack = backtrace_stack,
1601 .address = backtrace_address,
1604 #include "../dumpstack.h"
1607 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1609 callchain_store(entry, PERF_CONTEXT_KERNEL);
1610 callchain_store(entry, regs->ip);
1612 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1616 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1618 static unsigned long
1619 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1621 unsigned long offset, addr = (unsigned long)from;
1622 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1623 unsigned long size, len = 0;
1629 ret = __get_user_pages_fast(addr, 1, 0, &page);
1633 offset = addr & (PAGE_SIZE - 1);
1634 size = min(PAGE_SIZE - offset, n - len);
1636 map = kmap_atomic(page, type);
1637 memcpy(to, map+offset, size);
1638 kunmap_atomic(map, type);
1650 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1652 unsigned long bytes;
1654 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1656 return bytes == sizeof(*frame);
1660 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1662 struct stack_frame frame;
1663 const void __user *fp;
1665 if (!user_mode(regs))
1666 regs = task_pt_regs(current);
1668 fp = (void __user *)regs->bp;
1670 callchain_store(entry, PERF_CONTEXT_USER);
1671 callchain_store(entry, regs->ip);
1673 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1674 frame.next_frame = NULL;
1675 frame.return_address = 0;
1677 if (!copy_stack_frame(fp, &frame))
1680 if ((unsigned long)fp < regs->sp)
1683 callchain_store(entry, frame.return_address);
1684 fp = frame.next_frame;
1689 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1696 is_user = user_mode(regs);
1698 if (!current || current->pid == 0)
1701 if (is_user && current->state != TASK_RUNNING)
1705 perf_callchain_kernel(regs, entry);
1708 perf_callchain_user(regs, entry);
1711 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1713 struct perf_callchain_entry *entry;
1716 entry = &__get_cpu_var(nmi_entry);
1718 entry = &__get_cpu_var(irq_entry);
1722 perf_do_callchain(regs, entry);