2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
68 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 int atapi_enabled = 1;
76 module_param(atapi_enabled, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80 module_param(atapi_dmadir, int, 0444);
81 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
103 * Inherited from caller.
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
125 fis[13] = tf->hob_nsect;
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
143 * Inherited from caller.
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
161 tf->hob_nsect = fis[13];
164 static const u8 ata_rw_cmds[] = {
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
191 ATA_CMD_WRITE_FUA_EXT
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
210 int index, fua, lba48, write;
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
224 tf->protocol = ATA_PROT_DMA;
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
283 static const struct ata_xfer_ent {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
304 * Matching XFER_* value, 0 if no match found.
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
321 * Return matching xfer_mask for @xfer_mode.
327 * Matching xfer_mask, 0 if no match found.
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
331 const struct ata_xfer_ent *ent;
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
343 * Return matching xfer_shift for @xfer_mode.
349 * Matching xfer_shift, -1 if no match found.
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
353 const struct ata_xfer_ent *ent;
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
375 static const char *ata_mode_string(unsigned int xfer_mask)
377 static const char * const xfer_mode_str[] = {
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
403 static const char *sata_spd_string(unsigned int spd)
405 static const char * const spd_str[] = {
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
412 return spd_str[spd - 1];
415 void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
445 struct ata_ioports *ioaddr = &ap->ioaddr;
448 ap->ops->dev_select(ap, device);
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
465 return 0; /* nothing found */
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
489 struct ata_ioports *ioaddr = &ap->ioaddr;
492 ap->ops->dev_select(ap, device);
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
509 return 0; /* nothing found */
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
525 static unsigned int ata_devchk(struct ata_port *ap,
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
597 struct ata_taskfile tf;
601 ap->ops->dev_select(ap, device);
603 memset(&tf, 0, sizeof(tf));
605 ap->ops->tf_read(ap, &tf);
610 /* see if device passed diags */
613 else if ((device == 0) && (err == 0x81))
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
621 if (class == ATA_DEV_UNKNOWN)
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
683 ata_id_string(id, s, ofs, len - 1);
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
691 static u64 ata_id_n_sectors(const u16 *id)
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
697 return ata_id_u32(id, 60);
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
702 return id[1] * id[3] * id[6];
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
711 * This function performs no actual function.
713 * May be used as the dev_select() entry in ata_port_operations.
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
732 * May be used as the dev_select() entry in ata_port_operations.
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
743 tmp = ATA_DEVICE_OBS;
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
750 outb(tmp, ap->ioaddr.device_addr);
752 ata_pause(ap); /* needed; also flushes, for mmio */
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
783 ap->ops->dev_select(ap, device);
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 static inline void ata_dump_id(const u16 *id)
805 DPRINTK("49==0x%04x "
815 DPRINTK("80==0x%04x "
825 DPRINTK("88==0x%04x "
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
838 * FIXME: pre IDE drive timing (do we care ?).
846 static unsigned int ata_id_xfermask(const u16 *id)
848 unsigned int pio_mask, mwdma_mask, udma_mask;
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
893 * Inherited from caller.
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
903 PREPARE_WORK(&ap->port_task, fn, data);
906 rc = queue_work(ata_wq, &ap->port_task);
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
910 /* rc == 0 means that another user is using port task */
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
922 * Kernel thread context (may sleep)
924 void ata_port_flush_task(struct ata_port *ap)
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
956 struct completion *waiting = qc->private_data;
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @cdb: CDB for packet command
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
979 * None. Should be called with kernel context, might sleep.
982 unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
990 unsigned int err_mask;
992 spin_lock_irqsave(&ap->host_set->lock, flags);
994 qc = ata_qc_new_init(ap, dev);
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1006 qc->private_data = &wait;
1007 qc->complete_fn = ata_qc_complete_internal;
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1014 ata_port_flush_task(ap);
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1025 qc->err_mask = AC_ERR_TIMEOUT;
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1035 err_mask = qc->err_mask;
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1048 * Kill the following code as soon as those drivers are fixed.
1050 if (ap->flags & ATA_FLAG_DISABLED) {
1051 err_mask |= AC_ERR_SYSTEM;
1059 * ata_pio_need_iordy - check if iordy needed
1062 * Check if the current speed of the device requires IORDY. Used
1063 * by various controllers for chip configuration.
1066 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069 int speed = adev->pio_mode - XFER_PIO_0;
1076 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1078 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1079 pio = adev->id[ATA_ID_EIDE_PIO];
1080 /* Is the speed faster than the drive allows non IORDY ? */
1082 /* This is cycle times not frequency - watch the logic! */
1083 if (pio > 240) /* PIO2 is 240nS per cycle */
1092 * ata_dev_read_id - Read ID data from the specified device
1093 * @ap: port on which target device resides
1094 * @dev: target device
1095 * @p_class: pointer to class of the target device (may be changed)
1096 * @post_reset: is this read ID post-reset?
1097 * @p_id: read IDENTIFY page (newly allocated)
1099 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1100 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1101 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1102 * for pre-ATA4 drives.
1105 * Kernel thread context (may sleep)
1108 * 0 on success, -errno otherwise.
1110 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1111 unsigned int *p_class, int post_reset, u16 **p_id)
1113 unsigned int class = *p_class;
1114 struct ata_taskfile tf;
1115 unsigned int err_mask = 0;
1120 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1122 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1124 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1127 reason = "out of memory";
1132 ata_tf_init(ap, &tf, dev->devno);
1136 tf.command = ATA_CMD_ID_ATA;
1139 tf.command = ATA_CMD_ID_ATAPI;
1143 reason = "unsupported class";
1147 tf.protocol = ATA_PROT_PIO;
1149 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1150 id, sizeof(id[0]) * ATA_ID_WORDS);
1153 reason = "I/O error";
1157 swap_buf_le16(id, ATA_ID_WORDS);
1160 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1162 reason = "device reports illegal type";
1166 if (post_reset && class == ATA_DEV_ATA) {
1168 * The exact sequence expected by certain pre-ATA4 drives is:
1171 * INITIALIZE DEVICE PARAMETERS
1173 * Some drives were very specific about that exact sequence.
1175 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1176 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1179 reason = "INIT_DEV_PARAMS failed";
1183 /* current CHS translation info (id[53-58]) might be
1184 * changed. reread the identify device info.
1196 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1197 ap->id, dev->devno, reason);
1202 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1203 struct ata_device *dev)
1205 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1209 * ata_dev_configure - Configure the specified ATA/ATAPI device
1210 * @ap: Port on which target device resides
1211 * @dev: Target device to configure
1212 * @print_info: Enable device info printout
1214 * Configure @dev according to @dev->id. Generic and low-level
1215 * driver specific fixups are also applied.
1218 * Kernel thread context (may sleep)
1221 * 0 on success, -errno otherwise
1223 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1226 const u16 *id = dev->id;
1227 unsigned int xfer_mask;
1230 if (!ata_dev_enabled(dev)) {
1231 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1232 ap->id, dev->devno);
1236 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1238 /* print device capabilities */
1240 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1241 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1242 ap->id, dev->devno, id[49], id[82], id[83],
1243 id[84], id[85], id[86], id[87], id[88]);
1245 /* initialize to-be-configured parameters */
1246 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1247 dev->max_sectors = 0;
1255 * common ATA, ATAPI feature tests
1258 /* find max transfer mode; for printk only */
1259 xfer_mask = ata_id_xfermask(id);
1263 /* ATA-specific feature tests */
1264 if (dev->class == ATA_DEV_ATA) {
1265 dev->n_sectors = ata_id_n_sectors(id);
1267 if (ata_id_has_lba(id)) {
1268 const char *lba_desc;
1271 dev->flags |= ATA_DFLAG_LBA;
1272 if (ata_id_has_lba48(id)) {
1273 dev->flags |= ATA_DFLAG_LBA48;
1277 /* print device info to dmesg */
1279 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1280 "max %s, %Lu sectors: %s\n",
1282 ata_id_major_version(id),
1283 ata_mode_string(xfer_mask),
1284 (unsigned long long)dev->n_sectors,
1289 /* Default translation */
1290 dev->cylinders = id[1];
1292 dev->sectors = id[6];
1294 if (ata_id_current_chs_valid(id)) {
1295 /* Current CHS translation is valid. */
1296 dev->cylinders = id[54];
1297 dev->heads = id[55];
1298 dev->sectors = id[56];
1301 /* print device info to dmesg */
1303 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1304 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1306 ata_id_major_version(id),
1307 ata_mode_string(xfer_mask),
1308 (unsigned long long)dev->n_sectors,
1309 dev->cylinders, dev->heads, dev->sectors);
1315 /* ATAPI-specific feature tests */
1316 else if (dev->class == ATA_DEV_ATAPI) {
1317 rc = atapi_cdb_len(id);
1318 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1319 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1323 dev->cdb_len = (unsigned int) rc;
1325 /* print device info to dmesg */
1327 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1328 ap->id, dev->devno, ata_mode_string(xfer_mask));
1331 ap->host->max_cmd_len = 0;
1332 for (i = 0; i < ATA_MAX_DEVICES; i++)
1333 ap->host->max_cmd_len = max_t(unsigned int,
1334 ap->host->max_cmd_len,
1335 ap->device[i].cdb_len);
1337 /* limit bridge transfers to udma5, 200 sectors */
1338 if (ata_dev_knobble(ap, dev)) {
1340 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1341 ap->id, dev->devno);
1342 dev->udma_mask &= ATA_UDMA5;
1343 dev->max_sectors = ATA_MAX_SECTORS;
1346 if (ap->ops->dev_config)
1347 ap->ops->dev_config(ap, dev);
1349 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1353 DPRINTK("EXIT, err\n");
1358 * ata_bus_probe - Reset and probe ATA bus
1361 * Master ATA bus probing function. Initiates a hardware-dependent
1362 * bus reset, then attempts to identify any devices found on
1366 * PCI/etc. bus probe sem.
1369 * Zero on success, negative errno otherwise.
1372 static int ata_bus_probe(struct ata_port *ap)
1374 unsigned int classes[ATA_MAX_DEVICES];
1375 int tries[ATA_MAX_DEVICES];
1376 int i, rc, down_xfermask;
1377 struct ata_device *dev;
1381 for (i = 0; i < ATA_MAX_DEVICES; i++)
1382 tries[i] = ATA_PROBE_MAX_TRIES;
1387 /* reset and determine device classes */
1388 for (i = 0; i < ATA_MAX_DEVICES; i++)
1389 classes[i] = ATA_DEV_UNKNOWN;
1391 if (ap->ops->probe_reset) {
1392 rc = ap->ops->probe_reset(ap, classes);
1394 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1398 ap->ops->phy_reset(ap);
1400 if (!(ap->flags & ATA_FLAG_DISABLED))
1401 for (i = 0; i < ATA_MAX_DEVICES; i++)
1402 classes[i] = ap->device[i].class;
1407 for (i = 0; i < ATA_MAX_DEVICES; i++)
1408 if (classes[i] == ATA_DEV_UNKNOWN)
1409 classes[i] = ATA_DEV_NONE;
1411 /* read IDENTIFY page and configure devices */
1412 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1413 dev = &ap->device[i];
1414 dev->class = classes[i];
1417 ata_down_xfermask_limit(ap, dev, 1);
1418 ata_dev_disable(ap, dev);
1421 if (!ata_dev_enabled(dev))
1426 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1430 rc = ata_dev_configure(ap, dev, 1);
1435 /* configure transfer mode */
1436 if (ap->ops->set_mode) {
1437 /* FIXME: make ->set_mode handle no device case and
1438 * return error code and failing device on failure as
1439 * ata_set_mode() does.
1441 for (i = 0; i < ATA_MAX_DEVICES; i++)
1442 if (ata_dev_enabled(&ap->device[i])) {
1443 ap->ops->set_mode(ap);
1448 rc = ata_set_mode(ap, &dev);
1455 for (i = 0; i < ATA_MAX_DEVICES; i++)
1456 if (ata_dev_enabled(&ap->device[i]))
1459 /* no device present, disable port */
1460 ata_port_disable(ap);
1461 ap->ops->port_disable(ap);
1468 tries[dev->devno] = 0;
1471 ata_down_sata_spd_limit(ap);
1474 tries[dev->devno]--;
1475 if (down_xfermask &&
1476 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1477 tries[dev->devno] = 0;
1484 * ata_port_probe - Mark port as enabled
1485 * @ap: Port for which we indicate enablement
1487 * Modify @ap data structure such that the system
1488 * thinks that the entire port is enabled.
1490 * LOCKING: host_set lock, or some other form of
1494 void ata_port_probe(struct ata_port *ap)
1496 ap->flags &= ~ATA_FLAG_DISABLED;
1500 * sata_print_link_status - Print SATA link status
1501 * @ap: SATA port to printk link status about
1503 * This function prints link speed and status of a SATA link.
1508 static void sata_print_link_status(struct ata_port *ap)
1510 u32 sstatus, scontrol, tmp;
1512 if (!ap->ops->scr_read)
1515 sstatus = scr_read(ap, SCR_STATUS);
1516 scontrol = scr_read(ap, SCR_CONTROL);
1518 if (sata_dev_present(ap)) {
1519 tmp = (sstatus >> 4) & 0xf;
1521 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1522 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1525 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1526 ap->id, sstatus, scontrol);
1531 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1532 * @ap: SATA port associated with target SATA PHY.
1534 * This function issues commands to standard SATA Sxxx
1535 * PHY registers, to wake up the phy (and device), and
1536 * clear any reset condition.
1539 * PCI/etc. bus probe sem.
1542 void __sata_phy_reset(struct ata_port *ap)
1545 unsigned long timeout = jiffies + (HZ * 5);
1547 if (ap->flags & ATA_FLAG_SATA_RESET) {
1548 /* issue phy wake/reset */
1549 scr_write_flush(ap, SCR_CONTROL, 0x301);
1550 /* Couldn't find anything in SATA I/II specs, but
1551 * AHCI-1.1 10.4.2 says at least 1 ms. */
1554 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1556 /* wait for phy to become ready, if necessary */
1559 sstatus = scr_read(ap, SCR_STATUS);
1560 if ((sstatus & 0xf) != 1)
1562 } while (time_before(jiffies, timeout));
1564 /* print link status */
1565 sata_print_link_status(ap);
1567 /* TODO: phy layer with polling, timeouts, etc. */
1568 if (sata_dev_present(ap))
1571 ata_port_disable(ap);
1573 if (ap->flags & ATA_FLAG_DISABLED)
1576 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1577 ata_port_disable(ap);
1581 ap->cbl = ATA_CBL_SATA;
1585 * sata_phy_reset - Reset SATA bus.
1586 * @ap: SATA port associated with target SATA PHY.
1588 * This function resets the SATA bus, and then probes
1589 * the bus for devices.
1592 * PCI/etc. bus probe sem.
1595 void sata_phy_reset(struct ata_port *ap)
1597 __sata_phy_reset(ap);
1598 if (ap->flags & ATA_FLAG_DISABLED)
1604 * ata_dev_pair - return other device on cable
1608 * Obtain the other device on the same cable, or if none is
1609 * present NULL is returned
1612 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1614 struct ata_device *pair = &ap->device[1 - adev->devno];
1615 if (!ata_dev_enabled(pair))
1621 * ata_port_disable - Disable port.
1622 * @ap: Port to be disabled.
1624 * Modify @ap data structure such that the system
1625 * thinks that the entire port is disabled, and should
1626 * never attempt to probe or communicate with devices
1629 * LOCKING: host_set lock, or some other form of
1633 void ata_port_disable(struct ata_port *ap)
1635 ap->device[0].class = ATA_DEV_NONE;
1636 ap->device[1].class = ATA_DEV_NONE;
1637 ap->flags |= ATA_FLAG_DISABLED;
1641 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1642 * @ap: Port to adjust SATA spd limit for
1644 * Adjust SATA spd limit of @ap downward. Note that this
1645 * function only adjusts the limit. The change must be applied
1646 * using ata_set_sata_spd().
1649 * Inherited from caller.
1652 * 0 on success, negative errno on failure
1654 int ata_down_sata_spd_limit(struct ata_port *ap)
1659 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1662 mask = ap->sata_spd_limit;
1665 highbit = fls(mask) - 1;
1666 mask &= ~(1 << highbit);
1668 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1672 mask &= (1 << spd) - 1;
1676 ap->sata_spd_limit = mask;
1678 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1679 ap->id, sata_spd_string(fls(mask)));
1684 static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1688 if (ap->sata_spd_limit == UINT_MAX)
1691 limit = fls(ap->sata_spd_limit);
1693 spd = (*scontrol >> 4) & 0xf;
1694 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1696 return spd != limit;
1700 * ata_set_sata_spd_needed - is SATA spd configuration needed
1701 * @ap: Port in question
1703 * Test whether the spd limit in SControl matches
1704 * @ap->sata_spd_limit. This function is used to determine
1705 * whether hardreset is necessary to apply SATA spd
1709 * Inherited from caller.
1712 * 1 if SATA spd configuration is needed, 0 otherwise.
1714 int ata_set_sata_spd_needed(struct ata_port *ap)
1718 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1721 scontrol = scr_read(ap, SCR_CONTROL);
1723 return __ata_set_sata_spd_needed(ap, &scontrol);
1727 * ata_set_sata_spd - set SATA spd according to spd limit
1728 * @ap: Port to set SATA spd for
1730 * Set SATA spd of @ap according to sata_spd_limit.
1733 * Inherited from caller.
1736 * 0 if spd doesn't need to be changed, 1 if spd has been
1737 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1739 static int ata_set_sata_spd(struct ata_port *ap)
1743 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1746 scontrol = scr_read(ap, SCR_CONTROL);
1747 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1750 scr_write(ap, SCR_CONTROL, scontrol);
1755 * This mode timing computation functionality is ported over from
1756 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1759 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1760 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1761 * for PIO 5, which is a nonstandard extension and UDMA6, which
1762 * is currently supported only by Maxtor drives.
1765 static const struct ata_timing ata_timing[] = {
1767 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1768 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1769 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1770 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1772 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1773 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1774 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1776 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1778 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1779 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1780 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1782 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1783 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1784 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1786 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1787 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1788 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1790 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1791 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1792 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1794 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1799 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1800 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1802 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1804 q->setup = EZ(t->setup * 1000, T);
1805 q->act8b = EZ(t->act8b * 1000, T);
1806 q->rec8b = EZ(t->rec8b * 1000, T);
1807 q->cyc8b = EZ(t->cyc8b * 1000, T);
1808 q->active = EZ(t->active * 1000, T);
1809 q->recover = EZ(t->recover * 1000, T);
1810 q->cycle = EZ(t->cycle * 1000, T);
1811 q->udma = EZ(t->udma * 1000, UT);
1814 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1815 struct ata_timing *m, unsigned int what)
1817 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1818 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1819 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1820 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1821 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1822 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1823 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1824 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1827 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1829 const struct ata_timing *t;
1831 for (t = ata_timing; t->mode != speed; t++)
1832 if (t->mode == 0xFF)
1837 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1838 struct ata_timing *t, int T, int UT)
1840 const struct ata_timing *s;
1841 struct ata_timing p;
1847 if (!(s = ata_timing_find_mode(speed)))
1850 memcpy(t, s, sizeof(*s));
1853 * If the drive is an EIDE drive, it can tell us it needs extended
1854 * PIO/MW_DMA cycle timing.
1857 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1858 memset(&p, 0, sizeof(p));
1859 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1860 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1861 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1862 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1863 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1865 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1869 * Convert the timing to bus clock counts.
1872 ata_timing_quantize(t, t, T, UT);
1875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1876 * S.M.A.R.T * and some other commands. We have to ensure that the
1877 * DMA cycle timing is slower/equal than the fastest PIO timing.
1880 if (speed > XFER_PIO_4) {
1881 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1882 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1886 * Lengthen active & recovery time so that cycle time is correct.
1889 if (t->act8b + t->rec8b < t->cyc8b) {
1890 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1891 t->rec8b = t->cyc8b - t->act8b;
1894 if (t->active + t->recover < t->cycle) {
1895 t->active += (t->cycle - (t->active + t->recover)) / 2;
1896 t->recover = t->cycle - t->active;
1903 * ata_down_xfermask_limit - adjust dev xfer masks downward
1904 * @ap: Port associated with device @dev
1905 * @dev: Device to adjust xfer masks
1906 * @force_pio0: Force PIO0
1908 * Adjust xfer masks of @dev downward. Note that this function
1909 * does not apply the change. Invoking ata_set_mode() afterwards
1910 * will apply the limit.
1913 * Inherited from caller.
1916 * 0 on success, negative errno on failure
1918 int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1921 unsigned long xfer_mask;
1924 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1929 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1930 if (xfer_mask & ATA_MASK_UDMA)
1931 xfer_mask &= ~ATA_MASK_MWDMA;
1933 highbit = fls(xfer_mask) - 1;
1934 xfer_mask &= ~(1 << highbit);
1936 xfer_mask &= 1 << ATA_SHIFT_PIO;
1940 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1943 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1944 ap->id, dev->devno, ata_mode_string(xfer_mask));
1952 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1954 unsigned int err_mask;
1957 dev->flags &= ~ATA_DFLAG_PIO;
1958 if (dev->xfer_shift == ATA_SHIFT_PIO)
1959 dev->flags |= ATA_DFLAG_PIO;
1961 err_mask = ata_dev_set_xfermode(ap, dev);
1964 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1969 rc = ata_dev_revalidate(ap, dev, 0);
1973 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1974 dev->xfer_shift, (int)dev->xfer_mode);
1976 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1978 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1983 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1984 * @ap: port on which timings will be programmed
1985 * @r_failed_dev: out paramter for failed device
1987 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1988 * ata_set_mode() fails, pointer to the failing device is
1989 * returned in @r_failed_dev.
1992 * PCI/etc. bus probe sem.
1995 * 0 on success, negative errno otherwise
1997 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1999 struct ata_device *dev;
2000 int i, rc = 0, used_dma = 0, found = 0;
2002 /* step 1: calculate xfer_mask */
2003 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2004 unsigned int pio_mask, dma_mask;
2006 dev = &ap->device[i];
2008 if (!ata_dev_enabled(dev))
2011 ata_dev_xfermask(ap, dev);
2013 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2014 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2015 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2016 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2025 /* step 2: always set host PIO timings */
2026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2027 dev = &ap->device[i];
2028 if (!ata_dev_enabled(dev))
2031 if (!dev->pio_mode) {
2032 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2033 ap->id, dev->devno);
2038 dev->xfer_mode = dev->pio_mode;
2039 dev->xfer_shift = ATA_SHIFT_PIO;
2040 if (ap->ops->set_piomode)
2041 ap->ops->set_piomode(ap, dev);
2044 /* step 3: set host DMA timings */
2045 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2046 dev = &ap->device[i];
2048 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2051 dev->xfer_mode = dev->dma_mode;
2052 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2053 if (ap->ops->set_dmamode)
2054 ap->ops->set_dmamode(ap, dev);
2057 /* step 4: update devices' xfer mode */
2058 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2059 dev = &ap->device[i];
2061 if (!ata_dev_enabled(dev))
2064 rc = ata_dev_set_mode(ap, dev);
2069 /* Record simplex status. If we selected DMA then the other
2070 * host channels are not permitted to do so.
2072 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2073 ap->host_set->simplex_claimed = 1;
2075 /* step5: chip specific finalisation */
2076 if (ap->ops->post_set_mode)
2077 ap->ops->post_set_mode(ap);
2081 *r_failed_dev = dev;
2086 * ata_tf_to_host - issue ATA taskfile to host controller
2087 * @ap: port to which command is being issued
2088 * @tf: ATA taskfile register set
2090 * Issues ATA taskfile register set to ATA host controller,
2091 * with proper synchronization with interrupt handler and
2095 * spin_lock_irqsave(host_set lock)
2098 static inline void ata_tf_to_host(struct ata_port *ap,
2099 const struct ata_taskfile *tf)
2101 ap->ops->tf_load(ap, tf);
2102 ap->ops->exec_command(ap, tf);
2106 * ata_busy_sleep - sleep until BSY clears, or timeout
2107 * @ap: port containing status register to be polled
2108 * @tmout_pat: impatience timeout
2109 * @tmout: overall timeout
2111 * Sleep until ATA Status register bit BSY clears,
2112 * or a timeout occurs.
2117 unsigned int ata_busy_sleep (struct ata_port *ap,
2118 unsigned long tmout_pat, unsigned long tmout)
2120 unsigned long timer_start, timeout;
2123 status = ata_busy_wait(ap, ATA_BUSY, 300);
2124 timer_start = jiffies;
2125 timeout = timer_start + tmout_pat;
2126 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2128 status = ata_busy_wait(ap, ATA_BUSY, 3);
2131 if (status & ATA_BUSY)
2132 printk(KERN_WARNING "ata%u is slow to respond, "
2133 "please be patient\n", ap->id);
2135 timeout = timer_start + tmout;
2136 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2138 status = ata_chk_status(ap);
2141 if (status & ATA_BUSY) {
2142 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2143 ap->id, tmout / HZ);
2150 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2152 struct ata_ioports *ioaddr = &ap->ioaddr;
2153 unsigned int dev0 = devmask & (1 << 0);
2154 unsigned int dev1 = devmask & (1 << 1);
2155 unsigned long timeout;
2157 /* if device 0 was found in ata_devchk, wait for its
2161 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2163 /* if device 1 was found in ata_devchk, wait for
2164 * register access, then wait for BSY to clear
2166 timeout = jiffies + ATA_TMOUT_BOOT;
2170 ap->ops->dev_select(ap, 1);
2171 if (ap->flags & ATA_FLAG_MMIO) {
2172 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2173 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2175 nsect = inb(ioaddr->nsect_addr);
2176 lbal = inb(ioaddr->lbal_addr);
2178 if ((nsect == 1) && (lbal == 1))
2180 if (time_after(jiffies, timeout)) {
2184 msleep(50); /* give drive a breather */
2187 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2189 /* is all this really necessary? */
2190 ap->ops->dev_select(ap, 0);
2192 ap->ops->dev_select(ap, 1);
2194 ap->ops->dev_select(ap, 0);
2197 static unsigned int ata_bus_softreset(struct ata_port *ap,
2198 unsigned int devmask)
2200 struct ata_ioports *ioaddr = &ap->ioaddr;
2202 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2204 /* software reset. causes dev0 to be selected */
2205 if (ap->flags & ATA_FLAG_MMIO) {
2206 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2209 udelay(20); /* FIXME: flush */
2210 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2212 outb(ap->ctl, ioaddr->ctl_addr);
2214 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2216 outb(ap->ctl, ioaddr->ctl_addr);
2219 /* spec mandates ">= 2ms" before checking status.
2220 * We wait 150ms, because that was the magic delay used for
2221 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2222 * between when the ATA command register is written, and then
2223 * status is checked. Because waiting for "a while" before
2224 * checking status is fine, post SRST, we perform this magic
2225 * delay here as well.
2227 * Old drivers/ide uses the 2mS rule and then waits for ready
2231 /* Before we perform post reset processing we want to see if
2232 * the bus shows 0xFF because the odd clown forgets the D7
2233 * pulldown resistor.
2235 if (ata_check_status(ap) == 0xFF)
2236 return AC_ERR_OTHER;
2238 ata_bus_post_reset(ap, devmask);
2244 * ata_bus_reset - reset host port and associated ATA channel
2245 * @ap: port to reset
2247 * This is typically the first time we actually start issuing
2248 * commands to the ATA channel. We wait for BSY to clear, then
2249 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2250 * result. Determine what devices, if any, are on the channel
2251 * by looking at the device 0/1 error register. Look at the signature
2252 * stored in each device's taskfile registers, to determine if
2253 * the device is ATA or ATAPI.
2256 * PCI/etc. bus probe sem.
2257 * Obtains host_set lock.
2260 * Sets ATA_FLAG_DISABLED if bus reset fails.
2263 void ata_bus_reset(struct ata_port *ap)
2265 struct ata_ioports *ioaddr = &ap->ioaddr;
2266 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2268 unsigned int dev0, dev1 = 0, devmask = 0;
2270 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2272 /* determine if device 0/1 are present */
2273 if (ap->flags & ATA_FLAG_SATA_RESET)
2276 dev0 = ata_devchk(ap, 0);
2278 dev1 = ata_devchk(ap, 1);
2282 devmask |= (1 << 0);
2284 devmask |= (1 << 1);
2286 /* select device 0 again */
2287 ap->ops->dev_select(ap, 0);
2289 /* issue bus reset */
2290 if (ap->flags & ATA_FLAG_SRST)
2291 if (ata_bus_softreset(ap, devmask))
2295 * determine by signature whether we have ATA or ATAPI devices
2297 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2298 if ((slave_possible) && (err != 0x81))
2299 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2301 /* re-enable interrupts */
2302 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2305 /* is double-select really necessary? */
2306 if (ap->device[1].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 1);
2308 if (ap->device[0].class != ATA_DEV_NONE)
2309 ap->ops->dev_select(ap, 0);
2311 /* if no devices were detected, disable this port */
2312 if ((ap->device[0].class == ATA_DEV_NONE) &&
2313 (ap->device[1].class == ATA_DEV_NONE))
2316 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2317 /* set up device control for ATA_FLAG_SATA_RESET */
2318 if (ap->flags & ATA_FLAG_MMIO)
2319 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2321 outb(ap->ctl, ioaddr->ctl_addr);
2328 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2329 ap->ops->port_disable(ap);
2334 static int sata_phy_resume(struct ata_port *ap)
2336 unsigned long timeout = jiffies + (HZ * 5);
2337 u32 scontrol, sstatus;
2339 scontrol = scr_read(ap, SCR_CONTROL);
2340 scontrol = (scontrol & 0x0f0) | 0x300;
2341 scr_write_flush(ap, SCR_CONTROL, scontrol);
2343 /* Wait for phy to become ready, if necessary. */
2346 sstatus = scr_read(ap, SCR_STATUS);
2347 if ((sstatus & 0xf) != 1)
2349 } while (time_before(jiffies, timeout));
2355 * ata_std_probeinit - initialize probing
2356 * @ap: port to be probed
2358 * @ap is about to be probed. Initialize it. This function is
2359 * to be used as standard callback for ata_drive_probe_reset().
2361 * NOTE!!! Do not use this function as probeinit if a low level
2362 * driver implements only hardreset. Just pass NULL as probeinit
2363 * in that case. Using this function is probably okay but doing
2364 * so makes reset sequence different from the original
2365 * ->phy_reset implementation and Jeff nervous. :-P
2367 void ata_std_probeinit(struct ata_port *ap)
2369 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2372 sata_phy_resume(ap);
2374 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2376 ap->sata_spd_limit &= (1 << spd) - 1;
2378 if (sata_dev_present(ap))
2379 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2384 * ata_std_softreset - reset host port via ATA SRST
2385 * @ap: port to reset
2386 * @verbose: fail verbosely
2387 * @classes: resulting classes of attached devices
2389 * Reset host port using ATA SRST. This function is to be used
2390 * as standard callback for ata_drive_*_reset() functions.
2393 * Kernel thread context (may sleep)
2396 * 0 on success, -errno otherwise.
2398 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2400 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2401 unsigned int devmask = 0, err_mask;
2406 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2407 classes[0] = ATA_DEV_NONE;
2411 /* determine if device 0/1 are present */
2412 if (ata_devchk(ap, 0))
2413 devmask |= (1 << 0);
2414 if (slave_possible && ata_devchk(ap, 1))
2415 devmask |= (1 << 1);
2417 /* select device 0 again */
2418 ap->ops->dev_select(ap, 0);
2420 /* issue bus reset */
2421 DPRINTK("about to softreset, devmask=%x\n", devmask);
2422 err_mask = ata_bus_softreset(ap, devmask);
2425 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2428 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2433 /* determine by signature whether we have ATA or ATAPI devices */
2434 classes[0] = ata_dev_try_classify(ap, 0, &err);
2435 if (slave_possible && err != 0x81)
2436 classes[1] = ata_dev_try_classify(ap, 1, &err);
2439 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2444 * sata_std_hardreset - reset host port via SATA phy reset
2445 * @ap: port to reset
2446 * @verbose: fail verbosely
2447 * @class: resulting class of attached device
2449 * SATA phy-reset host port using DET bits of SControl register.
2450 * This function is to be used as standard callback for
2451 * ata_drive_*_reset().
2454 * Kernel thread context (may sleep)
2457 * 0 on success, -errno otherwise.
2459 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2465 if (ata_set_sata_spd_needed(ap)) {
2466 /* SATA spec says nothing about how to reconfigure
2467 * spd. To be on the safe side, turn off phy during
2468 * reconfiguration. This works for at least ICH7 AHCI
2471 scontrol = scr_read(ap, SCR_CONTROL);
2472 scontrol = (scontrol & 0x0f0) | 0x302;
2473 scr_write_flush(ap, SCR_CONTROL, scontrol);
2475 ata_set_sata_spd(ap);
2478 /* issue phy wake/reset */
2479 scontrol = scr_read(ap, SCR_CONTROL);
2480 scontrol = (scontrol & 0x0f0) | 0x301;
2481 scr_write_flush(ap, SCR_CONTROL, scontrol);
2483 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2484 * 10.4.2 says at least 1 ms.
2488 /* bring phy back */
2489 sata_phy_resume(ap);
2491 /* TODO: phy layer with polling, timeouts, etc. */
2492 if (!sata_dev_present(ap)) {
2493 *class = ATA_DEV_NONE;
2494 DPRINTK("EXIT, link offline\n");
2498 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2500 printk(KERN_ERR "ata%u: COMRESET failed "
2501 "(device not ready)\n", ap->id);
2503 DPRINTK("EXIT, device not ready\n");
2507 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2509 *class = ata_dev_try_classify(ap, 0, NULL);
2511 DPRINTK("EXIT, class=%u\n", *class);
2516 * ata_std_postreset - standard postreset callback
2517 * @ap: the target ata_port
2518 * @classes: classes of attached devices
2520 * This function is invoked after a successful reset. Note that
2521 * the device might have been reset more than once using
2522 * different reset methods before postreset is invoked.
2524 * This function is to be used as standard callback for
2525 * ata_drive_*_reset().
2528 * Kernel thread context (may sleep)
2530 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2534 /* set cable type if it isn't already set */
2535 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2536 ap->cbl = ATA_CBL_SATA;
2538 /* print link status */
2539 if (ap->cbl == ATA_CBL_SATA)
2540 sata_print_link_status(ap);
2542 /* re-enable interrupts */
2543 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2546 /* is double-select really necessary? */
2547 if (classes[0] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 1);
2549 if (classes[1] != ATA_DEV_NONE)
2550 ap->ops->dev_select(ap, 0);
2552 /* bail out if no device is present */
2553 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2554 DPRINTK("EXIT, no device\n");
2558 /* set up device control */
2559 if (ap->ioaddr.ctl_addr) {
2560 if (ap->flags & ATA_FLAG_MMIO)
2561 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2563 outb(ap->ctl, ap->ioaddr.ctl_addr);
2570 * ata_std_probe_reset - standard probe reset method
2571 * @ap: prot to perform probe-reset
2572 * @classes: resulting classes of attached devices
2574 * The stock off-the-shelf ->probe_reset method.
2577 * Kernel thread context (may sleep)
2580 * 0 on success, -errno otherwise.
2582 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2584 ata_reset_fn_t hardreset;
2587 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2588 hardreset = sata_std_hardreset;
2590 return ata_drive_probe_reset(ap, ata_std_probeinit,
2591 ata_std_softreset, hardreset,
2592 ata_std_postreset, classes);
2595 int ata_do_reset(struct ata_port *ap,
2596 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2597 int verbose, unsigned int *classes)
2601 for (i = 0; i < ATA_MAX_DEVICES; i++)
2602 classes[i] = ATA_DEV_UNKNOWN;
2604 rc = reset(ap, verbose, classes);
2608 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2609 * is complete and convert all ATA_DEV_UNKNOWN to
2612 for (i = 0; i < ATA_MAX_DEVICES; i++)
2613 if (classes[i] != ATA_DEV_UNKNOWN)
2616 if (i < ATA_MAX_DEVICES)
2617 for (i = 0; i < ATA_MAX_DEVICES; i++)
2618 if (classes[i] == ATA_DEV_UNKNOWN)
2619 classes[i] = ATA_DEV_NONE;
2622 postreset(ap, classes);
2628 * ata_drive_probe_reset - Perform probe reset with given methods
2629 * @ap: port to reset
2630 * @probeinit: probeinit method (can be NULL)
2631 * @softreset: softreset method (can be NULL)
2632 * @hardreset: hardreset method (can be NULL)
2633 * @postreset: postreset method (can be NULL)
2634 * @classes: resulting classes of attached devices
2636 * Reset the specified port and classify attached devices using
2637 * given methods. This function prefers softreset but tries all
2638 * possible reset sequences to reset and classify devices. This
2639 * function is intended to be used for constructing ->probe_reset
2640 * callback by low level drivers.
2642 * Reset methods should follow the following rules.
2644 * - Return 0 on sucess, -errno on failure.
2645 * - If classification is supported, fill classes[] with
2646 * recognized class codes.
2647 * - If classification is not supported, leave classes[] alone.
2648 * - If verbose is non-zero, print error message on failure;
2649 * otherwise, shut up.
2652 * Kernel thread context (may sleep)
2655 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2656 * if classification fails, and any error code from reset
2659 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2660 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2661 ata_postreset_fn_t postreset, unsigned int *classes)
2668 if (softreset && !ata_set_sata_spd_needed(ap)) {
2669 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2670 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2672 printk(KERN_INFO "ata%u: softreset failed, will try "
2673 "hardreset in 5 secs\n", ap->id);
2681 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2683 if (classes[0] != ATA_DEV_UNKNOWN)
2688 if (ata_down_sata_spd_limit(ap))
2691 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2692 "in 5 secs\n", ap->id);
2697 printk(KERN_INFO "ata%u: hardreset succeeded without "
2698 "classification, will retry softreset in 5 secs\n",
2702 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2706 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2712 * ata_dev_same_device - Determine whether new ID matches configured device
2713 * @ap: port on which the device to compare against resides
2714 * @dev: device to compare against
2715 * @new_class: class of the new device
2716 * @new_id: IDENTIFY page of the new device
2718 * Compare @new_class and @new_id against @dev and determine
2719 * whether @dev is the device indicated by @new_class and
2726 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2728 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2729 unsigned int new_class, const u16 *new_id)
2731 const u16 *old_id = dev->id;
2732 unsigned char model[2][41], serial[2][21];
2735 if (dev->class != new_class) {
2737 "ata%u: dev %u class mismatch %d != %d\n",
2738 ap->id, dev->devno, dev->class, new_class);
2742 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2743 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2744 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2745 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2746 new_n_sectors = ata_id_n_sectors(new_id);
2748 if (strcmp(model[0], model[1])) {
2750 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2751 ap->id, dev->devno, model[0], model[1]);
2755 if (strcmp(serial[0], serial[1])) {
2757 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2758 ap->id, dev->devno, serial[0], serial[1]);
2762 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2764 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2765 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2766 (unsigned long long)new_n_sectors);
2774 * ata_dev_revalidate - Revalidate ATA device
2775 * @ap: port on which the device to revalidate resides
2776 * @dev: device to revalidate
2777 * @post_reset: is this revalidation after reset?
2779 * Re-read IDENTIFY page and make sure @dev is still attached to
2783 * Kernel thread context (may sleep)
2786 * 0 on success, negative errno otherwise
2788 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2791 unsigned int class = dev->class;
2795 if (!ata_dev_enabled(dev)) {
2800 /* allocate & read ID data */
2801 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2805 /* is the device still there? */
2806 if (!ata_dev_same_device(ap, dev, class, id)) {
2814 /* configure device according to the new ID */
2815 rc = ata_dev_configure(ap, dev, 0);
2820 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2821 ap->id, dev->devno, rc);
2826 static const char * const ata_dma_blacklist [] = {
2827 "WDC AC11000H", NULL,
2828 "WDC AC22100H", NULL,
2829 "WDC AC32500H", NULL,
2830 "WDC AC33100H", NULL,
2831 "WDC AC31600H", NULL,
2832 "WDC AC32100H", "24.09P07",
2833 "WDC AC23200L", "21.10N21",
2834 "Compaq CRD-8241B", NULL,
2839 "SanDisk SDP3B", NULL,
2840 "SanDisk SDP3B-64", NULL,
2841 "SANYO CD-ROM CRD", NULL,
2842 "HITACHI CDR-8", NULL,
2843 "HITACHI CDR-8335", NULL,
2844 "HITACHI CDR-8435", NULL,
2845 "Toshiba CD-ROM XM-6202B", NULL,
2846 "TOSHIBA CD-ROM XM-1702BC", NULL,
2848 "E-IDE CD-ROM CR-840", NULL,
2849 "CD-ROM Drive/F5A", NULL,
2850 "WPI CDD-820", NULL,
2851 "SAMSUNG CD-ROM SC-148C", NULL,
2852 "SAMSUNG CD-ROM SC", NULL,
2853 "SanDisk SDP3B-64", NULL,
2854 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2855 "_NEC DV5800A", NULL,
2856 "SAMSUNG CD-ROM SN-124", "N001"
2859 static int ata_strim(char *s, size_t len)
2861 len = strnlen(s, len);
2863 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2864 while ((len > 0) && (s[len - 1] == ' ')) {
2871 static int ata_dma_blacklisted(const struct ata_device *dev)
2873 unsigned char model_num[40];
2874 unsigned char model_rev[16];
2875 unsigned int nlen, rlen;
2878 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2880 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2882 nlen = ata_strim(model_num, sizeof(model_num));
2883 rlen = ata_strim(model_rev, sizeof(model_rev));
2885 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2886 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2887 if (ata_dma_blacklist[i+1] == NULL)
2889 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2897 * ata_dev_xfermask - Compute supported xfermask of the given device
2898 * @ap: Port on which the device to compute xfermask for resides
2899 * @dev: Device to compute xfermask for
2901 * Compute supported xfermask of @dev and store it in
2902 * dev->*_mask. This function is responsible for applying all
2903 * known limits including host controller limits, device
2906 * FIXME: The current implementation limits all transfer modes to
2907 * the fastest of the lowested device on the port. This is not
2908 * required on most controllers.
2913 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2915 struct ata_host_set *hs = ap->host_set;
2916 unsigned long xfer_mask;
2919 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2920 ap->mwdma_mask, ap->udma_mask);
2922 /* Apply cable rule here. Don't apply it early because when
2923 * we handle hot plug the cable type can itself change.
2925 if (ap->cbl == ATA_CBL_PATA40)
2926 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2928 /* FIXME: Use port-wide xfermask for now */
2929 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2930 struct ata_device *d = &ap->device[i];
2932 if (ata_dev_absent(d))
2935 if (ata_dev_disabled(d)) {
2936 /* to avoid violating device selection timing */
2937 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2938 UINT_MAX, UINT_MAX);
2942 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2943 d->mwdma_mask, d->udma_mask);
2944 xfer_mask &= ata_id_xfermask(d->id);
2945 if (ata_dma_blacklisted(d))
2946 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2949 if (ata_dma_blacklisted(dev))
2950 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2951 "disabling DMA\n", ap->id, dev->devno);
2953 if (hs->flags & ATA_HOST_SIMPLEX) {
2954 if (hs->simplex_claimed)
2955 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2958 if (ap->ops->mode_filter)
2959 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2961 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2962 &dev->mwdma_mask, &dev->udma_mask);
2966 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2967 * @ap: Port associated with device @dev
2968 * @dev: Device to which command will be sent
2970 * Issue SET FEATURES - XFER MODE command to device @dev
2974 * PCI/etc. bus probe sem.
2977 * 0 on success, AC_ERR_* mask otherwise.
2980 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2981 struct ata_device *dev)
2983 struct ata_taskfile tf;
2984 unsigned int err_mask;
2986 /* set up set-features taskfile */
2987 DPRINTK("set features - xfer mode\n");
2989 ata_tf_init(ap, &tf, dev->devno);
2990 tf.command = ATA_CMD_SET_FEATURES;
2991 tf.feature = SETFEATURES_XFER;
2992 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2993 tf.protocol = ATA_PROT_NODATA;
2994 tf.nsect = dev->xfer_mode;
2996 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
2998 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3003 * ata_dev_init_params - Issue INIT DEV PARAMS command
3004 * @ap: Port associated with device @dev
3005 * @dev: Device to which command will be sent
3008 * Kernel thread context (may sleep)
3011 * 0 on success, AC_ERR_* mask otherwise.
3014 static unsigned int ata_dev_init_params(struct ata_port *ap,
3015 struct ata_device *dev,
3019 struct ata_taskfile tf;
3020 unsigned int err_mask;
3022 /* Number of sectors per track 1-255. Number of heads 1-16 */
3023 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3024 return AC_ERR_INVALID;
3026 /* set up init dev params taskfile */
3027 DPRINTK("init dev params \n");
3029 ata_tf_init(ap, &tf, dev->devno);
3030 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3031 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3032 tf.protocol = ATA_PROT_NODATA;
3034 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3036 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3038 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3043 * ata_sg_clean - Unmap DMA memory associated with command
3044 * @qc: Command containing DMA memory to be released
3046 * Unmap all mapped DMA memory associated with this command.
3049 * spin_lock_irqsave(host_set lock)
3052 static void ata_sg_clean(struct ata_queued_cmd *qc)
3054 struct ata_port *ap = qc->ap;
3055 struct scatterlist *sg = qc->__sg;
3056 int dir = qc->dma_dir;
3057 void *pad_buf = NULL;
3059 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3060 WARN_ON(sg == NULL);
3062 if (qc->flags & ATA_QCFLAG_SINGLE)
3063 WARN_ON(qc->n_elem > 1);
3065 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3067 /* if we padded the buffer out to 32-bit bound, and data
3068 * xfer direction is from-device, we must copy from the
3069 * pad buffer back into the supplied buffer
3071 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3072 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3074 if (qc->flags & ATA_QCFLAG_SG) {
3076 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3077 /* restore last sg */
3078 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3080 struct scatterlist *psg = &qc->pad_sgent;
3081 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3082 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3083 kunmap_atomic(addr, KM_IRQ0);
3087 dma_unmap_single(ap->dev,
3088 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3091 sg->length += qc->pad_len;
3093 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3094 pad_buf, qc->pad_len);
3097 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3102 * ata_fill_sg - Fill PCI IDE PRD table
3103 * @qc: Metadata associated with taskfile to be transferred
3105 * Fill PCI IDE PRD (scatter-gather) table with segments
3106 * associated with the current disk command.
3109 * spin_lock_irqsave(host_set lock)
3112 static void ata_fill_sg(struct ata_queued_cmd *qc)
3114 struct ata_port *ap = qc->ap;
3115 struct scatterlist *sg;
3118 WARN_ON(qc->__sg == NULL);
3119 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3122 ata_for_each_sg(sg, qc) {
3126 /* determine if physical DMA addr spans 64K boundary.
3127 * Note h/w doesn't support 64-bit, so we unconditionally
3128 * truncate dma_addr_t to u32.
3130 addr = (u32) sg_dma_address(sg);
3131 sg_len = sg_dma_len(sg);
3134 offset = addr & 0xffff;
3136 if ((offset + sg_len) > 0x10000)
3137 len = 0x10000 - offset;
3139 ap->prd[idx].addr = cpu_to_le32(addr);
3140 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3141 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3150 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3153 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3154 * @qc: Metadata associated with taskfile to check
3156 * Allow low-level driver to filter ATA PACKET commands, returning
3157 * a status indicating whether or not it is OK to use DMA for the
3158 * supplied PACKET command.
3161 * spin_lock_irqsave(host_set lock)
3163 * RETURNS: 0 when ATAPI DMA can be used
3166 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3168 struct ata_port *ap = qc->ap;
3169 int rc = 0; /* Assume ATAPI DMA is OK by default */
3171 if (ap->ops->check_atapi_dma)
3172 rc = ap->ops->check_atapi_dma(qc);
3177 * ata_qc_prep - Prepare taskfile for submission
3178 * @qc: Metadata associated with taskfile to be prepared
3180 * Prepare ATA taskfile for submission.
3183 * spin_lock_irqsave(host_set lock)
3185 void ata_qc_prep(struct ata_queued_cmd *qc)
3187 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3193 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3196 * ata_sg_init_one - Associate command with memory buffer
3197 * @qc: Command to be associated
3198 * @buf: Memory buffer
3199 * @buflen: Length of memory buffer, in bytes.
3201 * Initialize the data-related elements of queued_cmd @qc
3202 * to point to a single memory buffer, @buf of byte length @buflen.
3205 * spin_lock_irqsave(host_set lock)
3208 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3210 struct scatterlist *sg;
3212 qc->flags |= ATA_QCFLAG_SINGLE;
3214 memset(&qc->sgent, 0, sizeof(qc->sgent));
3215 qc->__sg = &qc->sgent;
3217 qc->orig_n_elem = 1;
3221 sg_init_one(sg, buf, buflen);
3225 * ata_sg_init - Associate command with scatter-gather table.
3226 * @qc: Command to be associated
3227 * @sg: Scatter-gather table.
3228 * @n_elem: Number of elements in s/g table.
3230 * Initialize the data-related elements of queued_cmd @qc
3231 * to point to a scatter-gather table @sg, containing @n_elem
3235 * spin_lock_irqsave(host_set lock)
3238 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3239 unsigned int n_elem)
3241 qc->flags |= ATA_QCFLAG_SG;
3243 qc->n_elem = n_elem;
3244 qc->orig_n_elem = n_elem;
3248 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3249 * @qc: Command with memory buffer to be mapped.
3251 * DMA-map the memory buffer associated with queued_cmd @qc.
3254 * spin_lock_irqsave(host_set lock)
3257 * Zero on success, negative on error.
3260 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3262 struct ata_port *ap = qc->ap;
3263 int dir = qc->dma_dir;
3264 struct scatterlist *sg = qc->__sg;
3265 dma_addr_t dma_address;
3268 /* we must lengthen transfers to end on a 32-bit boundary */
3269 qc->pad_len = sg->length & 3;
3271 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3272 struct scatterlist *psg = &qc->pad_sgent;
3274 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3276 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3278 if (qc->tf.flags & ATA_TFLAG_WRITE)
3279 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3282 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3283 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3285 sg->length -= qc->pad_len;
3286 if (sg->length == 0)
3289 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3290 sg->length, qc->pad_len);
3298 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3300 if (dma_mapping_error(dma_address)) {
3302 sg->length += qc->pad_len;
3306 sg_dma_address(sg) = dma_address;
3307 sg_dma_len(sg) = sg->length;
3310 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3311 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3317 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3318 * @qc: Command with scatter-gather table to be mapped.
3320 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3323 * spin_lock_irqsave(host_set lock)
3326 * Zero on success, negative on error.
3330 static int ata_sg_setup(struct ata_queued_cmd *qc)
3332 struct ata_port *ap = qc->ap;
3333 struct scatterlist *sg = qc->__sg;
3334 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3335 int n_elem, pre_n_elem, dir, trim_sg = 0;
3337 VPRINTK("ENTER, ata%u\n", ap->id);
3338 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3340 /* we must lengthen transfers to end on a 32-bit boundary */
3341 qc->pad_len = lsg->length & 3;
3343 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3344 struct scatterlist *psg = &qc->pad_sgent;
3345 unsigned int offset;
3347 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3349 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3352 * psg->page/offset are used to copy to-be-written
3353 * data in this function or read data in ata_sg_clean.
3355 offset = lsg->offset + lsg->length - qc->pad_len;
3356 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3357 psg->offset = offset_in_page(offset);
3359 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3360 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3361 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3362 kunmap_atomic(addr, KM_IRQ0);
3365 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3366 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3368 lsg->length -= qc->pad_len;
3369 if (lsg->length == 0)
3372 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3373 qc->n_elem - 1, lsg->length, qc->pad_len);
3376 pre_n_elem = qc->n_elem;
3377 if (trim_sg && pre_n_elem)
3386 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3388 /* restore last sg */
3389 lsg->length += qc->pad_len;
3393 DPRINTK("%d sg elements mapped\n", n_elem);
3396 qc->n_elem = n_elem;
3402 * ata_poll_qc_complete - turn irq back on and finish qc
3403 * @qc: Command to complete
3404 * @err_mask: ATA status register content
3407 * None. (grabs host lock)
3410 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3412 struct ata_port *ap = qc->ap;
3413 unsigned long flags;
3415 spin_lock_irqsave(&ap->host_set->lock, flags);
3416 ap->flags &= ~ATA_FLAG_NOINTR;
3418 ata_qc_complete(qc);
3419 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3423 * ata_pio_poll - poll using PIO, depending on current state
3424 * @qc: qc in progress
3427 * None. (executing in kernel thread context)
3430 * timeout value to use
3432 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3434 struct ata_port *ap = qc->ap;
3436 unsigned int poll_state = HSM_ST_UNKNOWN;
3437 unsigned int reg_state = HSM_ST_UNKNOWN;
3439 switch (ap->hsm_task_state) {
3442 poll_state = HSM_ST_POLL;
3446 case HSM_ST_LAST_POLL:
3447 poll_state = HSM_ST_LAST_POLL;
3448 reg_state = HSM_ST_LAST;
3455 status = ata_chk_status(ap);
3456 if (status & ATA_BUSY) {
3457 if (time_after(jiffies, ap->pio_task_timeout)) {
3458 qc->err_mask |= AC_ERR_TIMEOUT;
3459 ap->hsm_task_state = HSM_ST_TMOUT;
3462 ap->hsm_task_state = poll_state;
3463 return ATA_SHORT_PAUSE;
3466 ap->hsm_task_state = reg_state;
3471 * ata_pio_complete - check if drive is busy or idle
3472 * @qc: qc to complete
3475 * None. (executing in kernel thread context)
3478 * Non-zero if qc completed, zero otherwise.
3480 static int ata_pio_complete(struct ata_queued_cmd *qc)
3482 struct ata_port *ap = qc->ap;
3486 * This is purely heuristic. This is a fast path. Sometimes when
3487 * we enter, BSY will be cleared in a chk-status or two. If not,
3488 * the drive is probably seeking or something. Snooze for a couple
3489 * msecs, then chk-status again. If still busy, fall back to
3490 * HSM_ST_POLL state.
3492 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3493 if (drv_stat & ATA_BUSY) {
3495 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3496 if (drv_stat & ATA_BUSY) {
3497 ap->hsm_task_state = HSM_ST_LAST_POLL;
3498 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3503 drv_stat = ata_wait_idle(ap);
3504 if (!ata_ok(drv_stat)) {
3505 qc->err_mask |= __ac_err_mask(drv_stat);
3506 ap->hsm_task_state = HSM_ST_ERR;
3510 ap->hsm_task_state = HSM_ST_IDLE;
3512 WARN_ON(qc->err_mask);
3513 ata_poll_qc_complete(qc);
3515 /* another command may start at this point */
3522 * swap_buf_le16 - swap halves of 16-bit words in place
3523 * @buf: Buffer to swap
3524 * @buf_words: Number of 16-bit words in buffer.
3526 * Swap halves of 16-bit words if needed to convert from
3527 * little-endian byte order to native cpu byte order, or
3531 * Inherited from caller.
3533 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3538 for (i = 0; i < buf_words; i++)
3539 buf[i] = le16_to_cpu(buf[i]);
3540 #endif /* __BIG_ENDIAN */
3544 * ata_mmio_data_xfer - Transfer data by MMIO
3545 * @ap: port to read/write
3547 * @buflen: buffer length
3548 * @write_data: read/write
3550 * Transfer data from/to the device data register by MMIO.
3553 * Inherited from caller.
3556 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3557 unsigned int buflen, int write_data)
3560 unsigned int words = buflen >> 1;
3561 u16 *buf16 = (u16 *) buf;
3562 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3564 /* Transfer multiple of 2 bytes */
3566 for (i = 0; i < words; i++)
3567 writew(le16_to_cpu(buf16[i]), mmio);
3569 for (i = 0; i < words; i++)
3570 buf16[i] = cpu_to_le16(readw(mmio));
3573 /* Transfer trailing 1 byte, if any. */
3574 if (unlikely(buflen & 0x01)) {
3575 u16 align_buf[1] = { 0 };
3576 unsigned char *trailing_buf = buf + buflen - 1;
3579 memcpy(align_buf, trailing_buf, 1);
3580 writew(le16_to_cpu(align_buf[0]), mmio);
3582 align_buf[0] = cpu_to_le16(readw(mmio));
3583 memcpy(trailing_buf, align_buf, 1);
3589 * ata_pio_data_xfer - Transfer data by PIO
3590 * @ap: port to read/write
3592 * @buflen: buffer length
3593 * @write_data: read/write
3595 * Transfer data from/to the device data register by PIO.
3598 * Inherited from caller.
3601 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3602 unsigned int buflen, int write_data)
3604 unsigned int words = buflen >> 1;
3606 /* Transfer multiple of 2 bytes */
3608 outsw(ap->ioaddr.data_addr, buf, words);
3610 insw(ap->ioaddr.data_addr, buf, words);
3612 /* Transfer trailing 1 byte, if any. */
3613 if (unlikely(buflen & 0x01)) {
3614 u16 align_buf[1] = { 0 };
3615 unsigned char *trailing_buf = buf + buflen - 1;
3618 memcpy(align_buf, trailing_buf, 1);
3619 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3621 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3622 memcpy(trailing_buf, align_buf, 1);
3628 * ata_data_xfer - Transfer data from/to the data register.
3629 * @ap: port to read/write
3631 * @buflen: buffer length
3632 * @do_write: read/write
3634 * Transfer data from/to the device data register.
3637 * Inherited from caller.
3640 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3641 unsigned int buflen, int do_write)
3643 /* Make the crap hardware pay the costs not the good stuff */
3644 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3645 unsigned long flags;
3646 local_irq_save(flags);
3647 if (ap->flags & ATA_FLAG_MMIO)
3648 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3650 ata_pio_data_xfer(ap, buf, buflen, do_write);
3651 local_irq_restore(flags);
3653 if (ap->flags & ATA_FLAG_MMIO)
3654 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3656 ata_pio_data_xfer(ap, buf, buflen, do_write);
3661 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3662 * @qc: Command on going
3664 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3667 * Inherited from caller.
3670 static void ata_pio_sector(struct ata_queued_cmd *qc)
3672 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3673 struct scatterlist *sg = qc->__sg;
3674 struct ata_port *ap = qc->ap;
3676 unsigned int offset;
3679 if (qc->cursect == (qc->nsect - 1))
3680 ap->hsm_task_state = HSM_ST_LAST;
3682 page = sg[qc->cursg].page;
3683 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3685 /* get the current page and offset */
3686 page = nth_page(page, (offset >> PAGE_SHIFT));
3687 offset %= PAGE_SIZE;
3689 buf = kmap(page) + offset;
3694 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3699 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3701 /* do the actual data transfer */
3702 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3703 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3709 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3710 * @qc: Command on going
3711 * @bytes: number of bytes
3713 * Transfer Transfer data from/to the ATAPI device.
3716 * Inherited from caller.
3720 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3722 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3723 struct scatterlist *sg = qc->__sg;
3724 struct ata_port *ap = qc->ap;
3727 unsigned int offset, count;
3729 if (qc->curbytes + bytes >= qc->nbytes)
3730 ap->hsm_task_state = HSM_ST_LAST;
3733 if (unlikely(qc->cursg >= qc->n_elem)) {
3735 * The end of qc->sg is reached and the device expects
3736 * more data to transfer. In order not to overrun qc->sg
3737 * and fulfill length specified in the byte count register,
3738 * - for read case, discard trailing data from the device
3739 * - for write case, padding zero data to the device
3741 u16 pad_buf[1] = { 0 };
3742 unsigned int words = bytes >> 1;
3745 if (words) /* warning if bytes > 1 */
3746 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3749 for (i = 0; i < words; i++)
3750 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3752 ap->hsm_task_state = HSM_ST_LAST;
3756 sg = &qc->__sg[qc->cursg];
3759 offset = sg->offset + qc->cursg_ofs;
3761 /* get the current page and offset */
3762 page = nth_page(page, (offset >> PAGE_SHIFT));
3763 offset %= PAGE_SIZE;
3765 /* don't overrun current sg */
3766 count = min(sg->length - qc->cursg_ofs, bytes);
3768 /* don't cross page boundaries */
3769 count = min(count, (unsigned int)PAGE_SIZE - offset);
3771 buf = kmap(page) + offset;
3774 qc->curbytes += count;
3775 qc->cursg_ofs += count;
3777 if (qc->cursg_ofs == sg->length) {
3782 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3784 /* do the actual data transfer */
3785 ata_data_xfer(ap, buf, count, do_write);
3794 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3795 * @qc: Command on going
3797 * Transfer Transfer data from/to the ATAPI device.
3800 * Inherited from caller.
3803 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3805 struct ata_port *ap = qc->ap;
3806 struct ata_device *dev = qc->dev;
3807 unsigned int ireason, bc_lo, bc_hi, bytes;
3808 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3810 ap->ops->tf_read(ap, &qc->tf);
3811 ireason = qc->tf.nsect;
3812 bc_lo = qc->tf.lbam;
3813 bc_hi = qc->tf.lbah;
3814 bytes = (bc_hi << 8) | bc_lo;
3816 /* shall be cleared to zero, indicating xfer of data */
3817 if (ireason & (1 << 0))
3820 /* make sure transfer direction matches expected */
3821 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3822 if (do_write != i_write)
3825 __atapi_pio_bytes(qc, bytes);
3830 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3831 ap->id, dev->devno);
3832 qc->err_mask |= AC_ERR_HSM;
3833 ap->hsm_task_state = HSM_ST_ERR;
3837 * ata_pio_block - start PIO on a block
3838 * @qc: qc to transfer block for
3841 * None. (executing in kernel thread context)
3843 static void ata_pio_block(struct ata_queued_cmd *qc)
3845 struct ata_port *ap = qc->ap;
3849 * This is purely heuristic. This is a fast path.
3850 * Sometimes when we enter, BSY will be cleared in
3851 * a chk-status or two. If not, the drive is probably seeking
3852 * or something. Snooze for a couple msecs, then
3853 * chk-status again. If still busy, fall back to
3854 * HSM_ST_POLL state.
3856 status = ata_busy_wait(ap, ATA_BUSY, 5);
3857 if (status & ATA_BUSY) {
3859 status = ata_busy_wait(ap, ATA_BUSY, 10);
3860 if (status & ATA_BUSY) {
3861 ap->hsm_task_state = HSM_ST_POLL;
3862 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3868 if (status & (ATA_ERR | ATA_DF)) {
3869 qc->err_mask |= AC_ERR_DEV;
3870 ap->hsm_task_state = HSM_ST_ERR;
3874 /* transfer data if any */
3875 if (is_atapi_taskfile(&qc->tf)) {
3876 /* DRQ=0 means no more data to transfer */
3877 if ((status & ATA_DRQ) == 0) {
3878 ap->hsm_task_state = HSM_ST_LAST;
3882 atapi_pio_bytes(qc);
3884 /* handle BSY=0, DRQ=0 as error */
3885 if ((status & ATA_DRQ) == 0) {
3886 qc->err_mask |= AC_ERR_HSM;
3887 ap->hsm_task_state = HSM_ST_ERR;
3895 static void ata_pio_error(struct ata_queued_cmd *qc)
3897 struct ata_port *ap = qc->ap;
3899 if (qc->tf.command != ATA_CMD_PACKET)
3900 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3901 ap->id, qc->dev->devno);
3903 /* make sure qc->err_mask is available to
3904 * know what's wrong and recover
3906 WARN_ON(qc->err_mask == 0);
3908 ap->hsm_task_state = HSM_ST_IDLE;
3910 ata_poll_qc_complete(qc);
3913 static void ata_pio_task(void *_data)
3915 struct ata_queued_cmd *qc = _data;
3916 struct ata_port *ap = qc->ap;
3917 unsigned long timeout;
3924 switch (ap->hsm_task_state) {
3933 qc_completed = ata_pio_complete(qc);
3937 case HSM_ST_LAST_POLL:
3938 timeout = ata_pio_poll(qc);
3948 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3949 else if (!qc_completed)
3954 * atapi_packet_task - Write CDB bytes to hardware
3955 * @_data: qc in progress
3957 * When device has indicated its readiness to accept
3958 * a CDB, this function is called. Send the CDB.
3959 * If DMA is to be performed, exit immediately.
3960 * Otherwise, we are in polling mode, so poll
3961 * status under operation succeeds or fails.
3964 * Kernel thread context (may sleep)
3966 static void atapi_packet_task(void *_data)
3968 struct ata_queued_cmd *qc = _data;
3969 struct ata_port *ap = qc->ap;
3972 /* sleep-wait for BSY to clear */
3973 DPRINTK("busy wait\n");
3974 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3975 qc->err_mask |= AC_ERR_TIMEOUT;
3979 /* make sure DRQ is set */
3980 status = ata_chk_status(ap);
3981 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3982 qc->err_mask |= AC_ERR_HSM;
3987 DPRINTK("send cdb\n");
3988 WARN_ON(qc->dev->cdb_len < 12);
3990 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3991 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3992 unsigned long flags;
3994 /* Once we're done issuing command and kicking bmdma,
3995 * irq handler takes over. To not lose irq, we need
3996 * to clear NOINTR flag before sending cdb, but
3997 * interrupt handler shouldn't be invoked before we're
3998 * finished. Hence, the following locking.
4000 spin_lock_irqsave(&ap->host_set->lock, flags);
4001 ap->flags &= ~ATA_FLAG_NOINTR;
4002 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4003 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4004 ap->ops->bmdma_start(qc); /* initiate bmdma */
4005 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4007 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4009 /* PIO commands are handled by polling */
4010 ap->hsm_task_state = HSM_ST;
4011 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4017 ata_poll_qc_complete(qc);
4021 * ata_qc_new - Request an available ATA command, for queueing
4022 * @ap: Port associated with device @dev
4023 * @dev: Device from whom we request an available command structure
4029 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4031 struct ata_queued_cmd *qc = NULL;
4034 for (i = 0; i < ATA_MAX_QUEUE; i++)
4035 if (!test_and_set_bit(i, &ap->qactive)) {
4036 qc = ata_qc_from_tag(ap, i);
4047 * ata_qc_new_init - Request an available ATA command, and initialize it
4048 * @ap: Port associated with device @dev
4049 * @dev: Device from whom we request an available command structure
4055 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4056 struct ata_device *dev)
4058 struct ata_queued_cmd *qc;
4060 qc = ata_qc_new(ap);
4073 * ata_qc_free - free unused ata_queued_cmd
4074 * @qc: Command to complete
4076 * Designed to free unused ata_queued_cmd object
4077 * in case something prevents using it.
4080 * spin_lock_irqsave(host_set lock)
4082 void ata_qc_free(struct ata_queued_cmd *qc)
4084 struct ata_port *ap = qc->ap;
4087 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4091 if (likely(ata_tag_valid(tag))) {
4092 if (tag == ap->active_tag)
4093 ap->active_tag = ATA_TAG_POISON;
4094 qc->tag = ATA_TAG_POISON;
4095 clear_bit(tag, &ap->qactive);
4099 void __ata_qc_complete(struct ata_queued_cmd *qc)
4101 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4102 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4104 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4107 /* atapi: mark qc as inactive to prevent the interrupt handler
4108 * from completing the command twice later, before the error handler
4109 * is called. (when rc != 0 and atapi request sense is needed)
4111 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4113 /* call completion callback */
4114 qc->complete_fn(qc);
4117 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4119 struct ata_port *ap = qc->ap;
4121 switch (qc->tf.protocol) {
4123 case ATA_PROT_ATAPI_DMA:
4126 case ATA_PROT_ATAPI:
4128 if (ap->flags & ATA_FLAG_PIO_DMA)
4141 * ata_qc_issue - issue taskfile to device
4142 * @qc: command to issue to device
4144 * Prepare an ATA command to submission to device.
4145 * This includes mapping the data into a DMA-able
4146 * area, filling in the S/G table, and finally
4147 * writing the taskfile to hardware, starting the command.
4150 * spin_lock_irqsave(host_set lock)
4152 void ata_qc_issue(struct ata_queued_cmd *qc)
4154 struct ata_port *ap = qc->ap;
4156 qc->ap->active_tag = qc->tag;
4157 qc->flags |= ATA_QCFLAG_ACTIVE;
4159 if (ata_should_dma_map(qc)) {
4160 if (qc->flags & ATA_QCFLAG_SG) {
4161 if (ata_sg_setup(qc))
4163 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4164 if (ata_sg_setup_one(qc))
4168 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4171 ap->ops->qc_prep(qc);
4173 qc->err_mask |= ap->ops->qc_issue(qc);
4174 if (unlikely(qc->err_mask))
4179 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4180 qc->err_mask |= AC_ERR_SYSTEM;
4182 ata_qc_complete(qc);
4186 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4187 * @qc: command to issue to device
4189 * Using various libata functions and hooks, this function
4190 * starts an ATA command. ATA commands are grouped into
4191 * classes called "protocols", and issuing each type of protocol
4192 * is slightly different.
4194 * May be used as the qc_issue() entry in ata_port_operations.
4197 * spin_lock_irqsave(host_set lock)
4200 * Zero on success, AC_ERR_* mask on failure
4203 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4205 struct ata_port *ap = qc->ap;
4207 ata_dev_select(ap, qc->dev->devno, 1, 0);
4209 switch (qc->tf.protocol) {
4210 case ATA_PROT_NODATA:
4211 ata_tf_to_host(ap, &qc->tf);
4215 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4216 ap->ops->bmdma_setup(qc); /* set up bmdma */
4217 ap->ops->bmdma_start(qc); /* initiate bmdma */
4220 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4221 ata_qc_set_polling(qc);
4222 ata_tf_to_host(ap, &qc->tf);
4223 ap->hsm_task_state = HSM_ST;
4224 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4227 case ATA_PROT_ATAPI:
4228 ata_qc_set_polling(qc);
4229 ata_tf_to_host(ap, &qc->tf);
4230 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4233 case ATA_PROT_ATAPI_NODATA:
4234 ap->flags |= ATA_FLAG_NOINTR;
4235 ata_tf_to_host(ap, &qc->tf);
4236 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4239 case ATA_PROT_ATAPI_DMA:
4240 ap->flags |= ATA_FLAG_NOINTR;
4241 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4242 ap->ops->bmdma_setup(qc); /* set up bmdma */
4243 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4248 return AC_ERR_SYSTEM;
4255 * ata_host_intr - Handle host interrupt for given (port, task)
4256 * @ap: Port on which interrupt arrived (possibly...)
4257 * @qc: Taskfile currently active in engine
4259 * Handle host interrupt for given queued command. Currently,
4260 * only DMA interrupts are handled. All other commands are
4261 * handled via polling with interrupts disabled (nIEN bit).
4264 * spin_lock_irqsave(host_set lock)
4267 * One if interrupt was handled, zero if not (shared irq).
4270 inline unsigned int ata_host_intr (struct ata_port *ap,
4271 struct ata_queued_cmd *qc)
4273 u8 status, host_stat;
4275 switch (qc->tf.protocol) {
4278 case ATA_PROT_ATAPI_DMA:
4279 case ATA_PROT_ATAPI:
4280 /* check status of DMA engine */
4281 host_stat = ap->ops->bmdma_status(ap);
4282 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4284 /* if it's not our irq... */
4285 if (!(host_stat & ATA_DMA_INTR))
4288 /* before we do anything else, clear DMA-Start bit */
4289 ap->ops->bmdma_stop(qc);
4293 case ATA_PROT_ATAPI_NODATA:
4294 case ATA_PROT_NODATA:
4295 /* check altstatus */
4296 status = ata_altstatus(ap);
4297 if (status & ATA_BUSY)
4300 /* check main status, clearing INTRQ */
4301 status = ata_chk_status(ap);
4302 if (unlikely(status & ATA_BUSY))
4304 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4305 ap->id, qc->tf.protocol, status);
4307 /* ack bmdma irq events */
4308 ap->ops->irq_clear(ap);
4310 /* complete taskfile transaction */
4311 qc->err_mask |= ac_err_mask(status);
4312 ata_qc_complete(qc);
4319 return 1; /* irq handled */
4322 ap->stats.idle_irq++;
4325 if ((ap->stats.idle_irq % 1000) == 0) {
4326 ata_irq_ack(ap, 0); /* debug trap */
4327 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4331 return 0; /* irq not handled */
4335 * ata_interrupt - Default ATA host interrupt handler
4336 * @irq: irq line (unused)
4337 * @dev_instance: pointer to our ata_host_set information structure
4340 * Default interrupt handler for PCI IDE devices. Calls
4341 * ata_host_intr() for each port that is not disabled.
4344 * Obtains host_set lock during operation.
4347 * IRQ_NONE or IRQ_HANDLED.
4350 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4352 struct ata_host_set *host_set = dev_instance;
4354 unsigned int handled = 0;
4355 unsigned long flags;
4357 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4358 spin_lock_irqsave(&host_set->lock, flags);
4360 for (i = 0; i < host_set->n_ports; i++) {
4361 struct ata_port *ap;
4363 ap = host_set->ports[i];
4365 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4366 struct ata_queued_cmd *qc;
4368 qc = ata_qc_from_tag(ap, ap->active_tag);
4369 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4370 (qc->flags & ATA_QCFLAG_ACTIVE))
4371 handled |= ata_host_intr(ap, qc);
4375 spin_unlock_irqrestore(&host_set->lock, flags);
4377 return IRQ_RETVAL(handled);
4382 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4383 * without filling any other registers
4385 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4388 struct ata_taskfile tf;
4391 ata_tf_init(ap, &tf, dev->devno);
4394 tf.flags |= ATA_TFLAG_DEVICE;
4395 tf.protocol = ATA_PROT_NODATA;
4397 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4399 printk(KERN_ERR "%s: ata command failed: %d\n",
4405 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4409 if (!ata_try_flush_cache(dev))
4412 if (ata_id_has_flush_ext(dev->id))
4413 cmd = ATA_CMD_FLUSH_EXT;
4415 cmd = ATA_CMD_FLUSH;
4417 return ata_do_simple_cmd(ap, dev, cmd);
4420 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4422 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4425 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4427 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4431 * ata_device_resume - wakeup a previously suspended devices
4432 * @ap: port the device is connected to
4433 * @dev: the device to resume
4435 * Kick the drive back into action, by sending it an idle immediate
4436 * command and making sure its transfer mode matches between drive
4440 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4442 if (ap->flags & ATA_FLAG_SUSPENDED) {
4443 struct ata_device *failed_dev;
4444 ap->flags &= ~ATA_FLAG_SUSPENDED;
4445 while (ata_set_mode(ap, &failed_dev))
4446 ata_dev_disable(ap, failed_dev);
4448 if (!ata_dev_enabled(dev))
4450 if (dev->class == ATA_DEV_ATA)
4451 ata_start_drive(ap, dev);
4457 * ata_device_suspend - prepare a device for suspend
4458 * @ap: port the device is connected to
4459 * @dev: the device to suspend
4461 * Flush the cache on the drive, if appropriate, then issue a
4462 * standbynow command.
4464 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4466 if (!ata_dev_enabled(dev))
4468 if (dev->class == ATA_DEV_ATA)
4469 ata_flush_cache(ap, dev);
4471 if (state.event != PM_EVENT_FREEZE)
4472 ata_standby_drive(ap, dev);
4473 ap->flags |= ATA_FLAG_SUSPENDED;
4478 * ata_port_start - Set port up for dma.
4479 * @ap: Port to initialize
4481 * Called just after data structures for each port are
4482 * initialized. Allocates space for PRD table.
4484 * May be used as the port_start() entry in ata_port_operations.
4487 * Inherited from caller.
4490 int ata_port_start (struct ata_port *ap)
4492 struct device *dev = ap->dev;
4495 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4499 rc = ata_pad_alloc(ap, dev);
4501 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4505 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4512 * ata_port_stop - Undo ata_port_start()
4513 * @ap: Port to shut down
4515 * Frees the PRD table.
4517 * May be used as the port_stop() entry in ata_port_operations.
4520 * Inherited from caller.
4523 void ata_port_stop (struct ata_port *ap)
4525 struct device *dev = ap->dev;
4527 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4528 ata_pad_free(ap, dev);
4531 void ata_host_stop (struct ata_host_set *host_set)
4533 if (host_set->mmio_base)
4534 iounmap(host_set->mmio_base);
4539 * ata_host_remove - Unregister SCSI host structure with upper layers
4540 * @ap: Port to unregister
4541 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4544 * Inherited from caller.
4547 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4549 struct Scsi_Host *sh = ap->host;
4554 scsi_remove_host(sh);
4556 ap->ops->port_stop(ap);
4560 * ata_host_init - Initialize an ata_port structure
4561 * @ap: Structure to initialize
4562 * @host: associated SCSI mid-layer structure
4563 * @host_set: Collection of hosts to which @ap belongs
4564 * @ent: Probe information provided by low-level driver
4565 * @port_no: Port number associated with this ata_port
4567 * Initialize a new ata_port structure, and its associated
4571 * Inherited from caller.
4574 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4575 struct ata_host_set *host_set,
4576 const struct ata_probe_ent *ent, unsigned int port_no)
4582 host->max_channel = 1;
4583 host->unique_id = ata_unique_id++;
4584 host->max_cmd_len = 12;
4586 ap->flags = ATA_FLAG_DISABLED;
4587 ap->id = host->unique_id;
4589 ap->ctl = ATA_DEVCTL_OBS;
4590 ap->host_set = host_set;
4592 ap->port_no = port_no;
4594 ent->legacy_mode ? ent->hard_port_no : port_no;
4595 ap->pio_mask = ent->pio_mask;
4596 ap->mwdma_mask = ent->mwdma_mask;
4597 ap->udma_mask = ent->udma_mask;
4598 ap->flags |= ent->host_flags;
4599 ap->ops = ent->port_ops;
4600 ap->cbl = ATA_CBL_NONE;
4601 ap->sata_spd_limit = UINT_MAX;
4602 ap->active_tag = ATA_TAG_POISON;
4603 ap->last_ctl = 0xFF;
4605 INIT_WORK(&ap->port_task, NULL, NULL);
4606 INIT_LIST_HEAD(&ap->eh_done_q);
4608 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4609 struct ata_device *dev = &ap->device[i];
4611 dev->pio_mask = UINT_MAX;
4612 dev->mwdma_mask = UINT_MAX;
4613 dev->udma_mask = UINT_MAX;
4617 ap->stats.unhandled_irq = 1;
4618 ap->stats.idle_irq = 1;
4621 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4625 * ata_host_add - Attach low-level ATA driver to system
4626 * @ent: Information provided by low-level driver
4627 * @host_set: Collections of ports to which we add
4628 * @port_no: Port number associated with this host
4630 * Attach low-level ATA driver to system.
4633 * PCI/etc. bus probe sem.
4636 * New ata_port on success, for NULL on error.
4639 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4640 struct ata_host_set *host_set,
4641 unsigned int port_no)
4643 struct Scsi_Host *host;
4644 struct ata_port *ap;
4649 if (!ent->port_ops->probe_reset &&
4650 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4651 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4656 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4660 host->transportt = &ata_scsi_transport_template;
4662 ap = ata_shost_to_port(host);
4664 ata_host_init(ap, host, host_set, ent, port_no);
4666 rc = ap->ops->port_start(ap);
4673 scsi_host_put(host);
4678 * ata_device_add - Register hardware device with ATA and SCSI layers
4679 * @ent: Probe information describing hardware device to be registered
4681 * This function processes the information provided in the probe
4682 * information struct @ent, allocates the necessary ATA and SCSI
4683 * host information structures, initializes them, and registers
4684 * everything with requisite kernel subsystems.
4686 * This function requests irqs, probes the ATA bus, and probes
4690 * PCI/etc. bus probe sem.
4693 * Number of ports registered. Zero on error (no ports registered).
4696 int ata_device_add(const struct ata_probe_ent *ent)
4698 unsigned int count = 0, i;
4699 struct device *dev = ent->dev;
4700 struct ata_host_set *host_set;
4703 /* alloc a container for our list of ATA ports (buses) */
4704 host_set = kzalloc(sizeof(struct ata_host_set) +
4705 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4708 spin_lock_init(&host_set->lock);
4710 host_set->dev = dev;
4711 host_set->n_ports = ent->n_ports;
4712 host_set->irq = ent->irq;
4713 host_set->mmio_base = ent->mmio_base;
4714 host_set->private_data = ent->private_data;
4715 host_set->ops = ent->port_ops;
4716 host_set->flags = ent->host_set_flags;
4718 /* register each port bound to this device */
4719 for (i = 0; i < ent->n_ports; i++) {
4720 struct ata_port *ap;
4721 unsigned long xfer_mode_mask;
4723 ap = ata_host_add(ent, host_set, i);
4727 host_set->ports[i] = ap;
4728 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4729 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4730 (ap->pio_mask << ATA_SHIFT_PIO);
4732 /* print per-port info to dmesg */
4733 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4734 "bmdma 0x%lX irq %lu\n",
4736 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4737 ata_mode_string(xfer_mode_mask),
4738 ap->ioaddr.cmd_addr,
4739 ap->ioaddr.ctl_addr,
4740 ap->ioaddr.bmdma_addr,
4744 host_set->ops->irq_clear(ap);
4751 /* obtain irq, that is shared between channels */
4752 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4753 DRV_NAME, host_set))
4756 /* perform each probe synchronously */
4757 DPRINTK("probe begin\n");
4758 for (i = 0; i < count; i++) {
4759 struct ata_port *ap;
4762 ap = host_set->ports[i];
4764 DPRINTK("ata%u: bus probe begin\n", ap->id);
4765 rc = ata_bus_probe(ap);
4766 DPRINTK("ata%u: bus probe end\n", ap->id);
4769 /* FIXME: do something useful here?
4770 * Current libata behavior will
4771 * tear down everything when
4772 * the module is removed
4773 * or the h/w is unplugged.
4777 rc = scsi_add_host(ap->host, dev);
4779 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4781 /* FIXME: do something useful here */
4782 /* FIXME: handle unconditional calls to
4783 * scsi_scan_host and ata_host_remove, below,
4789 /* probes are done, now scan each port's disk(s) */
4790 DPRINTK("host probe begin\n");
4791 for (i = 0; i < count; i++) {
4792 struct ata_port *ap = host_set->ports[i];
4794 ata_scsi_scan_host(ap);
4797 dev_set_drvdata(dev, host_set);
4799 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4800 return ent->n_ports; /* success */
4803 for (i = 0; i < count; i++) {
4804 ata_host_remove(host_set->ports[i], 1);
4805 scsi_host_put(host_set->ports[i]->host);
4809 VPRINTK("EXIT, returning 0\n");
4814 * ata_host_set_remove - PCI layer callback for device removal
4815 * @host_set: ATA host set that was removed
4817 * Unregister all objects associated with this host set. Free those
4821 * Inherited from calling layer (may sleep).
4824 void ata_host_set_remove(struct ata_host_set *host_set)
4826 struct ata_port *ap;
4829 for (i = 0; i < host_set->n_ports; i++) {
4830 ap = host_set->ports[i];
4831 scsi_remove_host(ap->host);
4834 free_irq(host_set->irq, host_set);
4836 for (i = 0; i < host_set->n_ports; i++) {
4837 ap = host_set->ports[i];
4839 ata_scsi_release(ap->host);
4841 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4842 struct ata_ioports *ioaddr = &ap->ioaddr;
4844 if (ioaddr->cmd_addr == 0x1f0)
4845 release_region(0x1f0, 8);
4846 else if (ioaddr->cmd_addr == 0x170)
4847 release_region(0x170, 8);
4850 scsi_host_put(ap->host);
4853 if (host_set->ops->host_stop)
4854 host_set->ops->host_stop(host_set);
4860 * ata_scsi_release - SCSI layer callback hook for host unload
4861 * @host: libata host to be unloaded
4863 * Performs all duties necessary to shut down a libata port...
4864 * Kill port kthread, disable port, and release resources.
4867 * Inherited from SCSI layer.
4873 int ata_scsi_release(struct Scsi_Host *host)
4875 struct ata_port *ap = ata_shost_to_port(host);
4880 ap->ops->port_disable(ap);
4881 ata_host_remove(ap, 0);
4882 for (i = 0; i < ATA_MAX_DEVICES; i++)
4883 kfree(ap->device[i].id);
4890 * ata_std_ports - initialize ioaddr with standard port offsets.
4891 * @ioaddr: IO address structure to be initialized
4893 * Utility function which initializes data_addr, error_addr,
4894 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4895 * device_addr, status_addr, and command_addr to standard offsets
4896 * relative to cmd_addr.
4898 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4901 void ata_std_ports(struct ata_ioports *ioaddr)
4903 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4904 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4905 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4906 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4907 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4908 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4909 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4910 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4911 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4912 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4918 void ata_pci_host_stop (struct ata_host_set *host_set)
4920 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4922 pci_iounmap(pdev, host_set->mmio_base);
4926 * ata_pci_remove_one - PCI layer callback for device removal
4927 * @pdev: PCI device that was removed
4929 * PCI layer indicates to libata via this hook that
4930 * hot-unplug or module unload event has occurred.
4931 * Handle this by unregistering all objects associated
4932 * with this PCI device. Free those objects. Then finally
4933 * release PCI resources and disable device.
4936 * Inherited from PCI layer (may sleep).
4939 void ata_pci_remove_one (struct pci_dev *pdev)
4941 struct device *dev = pci_dev_to_dev(pdev);
4942 struct ata_host_set *host_set = dev_get_drvdata(dev);
4944 ata_host_set_remove(host_set);
4945 pci_release_regions(pdev);
4946 pci_disable_device(pdev);
4947 dev_set_drvdata(dev, NULL);
4950 /* move to PCI subsystem */
4951 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4953 unsigned long tmp = 0;
4955 switch (bits->width) {
4958 pci_read_config_byte(pdev, bits->reg, &tmp8);
4964 pci_read_config_word(pdev, bits->reg, &tmp16);
4970 pci_read_config_dword(pdev, bits->reg, &tmp32);
4981 return (tmp == bits->val) ? 1 : 0;
4984 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4986 pci_save_state(pdev);
4987 pci_disable_device(pdev);
4988 pci_set_power_state(pdev, PCI_D3hot);
4992 int ata_pci_device_resume(struct pci_dev *pdev)
4994 pci_set_power_state(pdev, PCI_D0);
4995 pci_restore_state(pdev);
4996 pci_enable_device(pdev);
4997 pci_set_master(pdev);
5000 #endif /* CONFIG_PCI */
5003 static int __init ata_init(void)
5005 ata_wq = create_workqueue("ata");
5009 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5013 static void __exit ata_exit(void)
5015 destroy_workqueue(ata_wq);
5018 module_init(ata_init);
5019 module_exit(ata_exit);
5021 static unsigned long ratelimit_time;
5022 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5024 int ata_ratelimit(void)
5027 unsigned long flags;
5029 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5031 if (time_after(jiffies, ratelimit_time)) {
5033 ratelimit_time = jiffies + (HZ/5);
5037 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5043 * libata is essentially a library of internal helper functions for
5044 * low-level ATA host controller drivers. As such, the API/ABI is
5045 * likely to change as new drivers are added and updated.
5046 * Do not depend on ABI/API stability.
5049 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5050 EXPORT_SYMBOL_GPL(ata_std_ports);
5051 EXPORT_SYMBOL_GPL(ata_device_add);
5052 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5053 EXPORT_SYMBOL_GPL(ata_sg_init);
5054 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5055 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5056 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5057 EXPORT_SYMBOL_GPL(ata_tf_load);
5058 EXPORT_SYMBOL_GPL(ata_tf_read);
5059 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5060 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5061 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5062 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5063 EXPORT_SYMBOL_GPL(ata_check_status);
5064 EXPORT_SYMBOL_GPL(ata_altstatus);
5065 EXPORT_SYMBOL_GPL(ata_exec_command);
5066 EXPORT_SYMBOL_GPL(ata_port_start);
5067 EXPORT_SYMBOL_GPL(ata_port_stop);
5068 EXPORT_SYMBOL_GPL(ata_host_stop);
5069 EXPORT_SYMBOL_GPL(ata_interrupt);
5070 EXPORT_SYMBOL_GPL(ata_qc_prep);
5071 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5072 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5073 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5074 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5075 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5076 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5077 EXPORT_SYMBOL_GPL(ata_port_probe);
5078 EXPORT_SYMBOL_GPL(sata_phy_reset);
5079 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5080 EXPORT_SYMBOL_GPL(ata_bus_reset);
5081 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5082 EXPORT_SYMBOL_GPL(ata_std_softreset);
5083 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5084 EXPORT_SYMBOL_GPL(ata_std_postreset);
5085 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5086 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5087 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5088 EXPORT_SYMBOL_GPL(ata_dev_classify);
5089 EXPORT_SYMBOL_GPL(ata_dev_pair);
5090 EXPORT_SYMBOL_GPL(ata_port_disable);
5091 EXPORT_SYMBOL_GPL(ata_ratelimit);
5092 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5093 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5094 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5095 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5096 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5097 EXPORT_SYMBOL_GPL(ata_scsi_release);
5098 EXPORT_SYMBOL_GPL(ata_host_intr);
5099 EXPORT_SYMBOL_GPL(ata_id_string);
5100 EXPORT_SYMBOL_GPL(ata_id_c_string);
5101 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5103 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5104 EXPORT_SYMBOL_GPL(ata_timing_compute);
5105 EXPORT_SYMBOL_GPL(ata_timing_merge);
5108 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5109 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5110 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5111 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5112 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5113 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5114 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5115 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5116 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5117 #endif /* CONFIG_PCI */
5119 EXPORT_SYMBOL_GPL(ata_device_suspend);
5120 EXPORT_SYMBOL_GPL(ata_device_resume);
5121 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5122 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5124 EXPORT_SYMBOL_GPL(ata_scsi_error);
5125 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5126 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5127 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);