2 * linux/arch/x86-64/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
12 * 'Traps.c' handles hardware traps and faults after we have saved some
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/kallsyms.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/nmi.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/unwind.h>
33 #include <linux/uaccess.h>
34 #include <linux/bug.h>
36 #include <asm/system.h>
38 #include <asm/atomic.h>
39 #include <asm/debugreg.h>
42 #include <asm/kdebug.h>
43 #include <asm/processor.h>
44 #include <asm/unwind.h>
46 #include <asm/pgalloc.h>
48 #include <asm/proto.h>
50 #include <asm/stacktrace.h>
52 asmlinkage void divide_error(void);
53 asmlinkage void debug(void);
54 asmlinkage void nmi(void);
55 asmlinkage void int3(void);
56 asmlinkage void overflow(void);
57 asmlinkage void bounds(void);
58 asmlinkage void invalid_op(void);
59 asmlinkage void device_not_available(void);
60 asmlinkage void double_fault(void);
61 asmlinkage void coprocessor_segment_overrun(void);
62 asmlinkage void invalid_TSS(void);
63 asmlinkage void segment_not_present(void);
64 asmlinkage void stack_segment(void);
65 asmlinkage void general_protection(void);
66 asmlinkage void page_fault(void);
67 asmlinkage void coprocessor_error(void);
68 asmlinkage void simd_coprocessor_error(void);
69 asmlinkage void reserved(void);
70 asmlinkage void alignment_check(void);
71 asmlinkage void machine_check(void);
72 asmlinkage void spurious_interrupt_bug(void);
74 ATOMIC_NOTIFIER_HEAD(die_chain);
75 EXPORT_SYMBOL(die_chain);
77 int register_die_notifier(struct notifier_block *nb)
80 return atomic_notifier_chain_register(&die_chain, nb);
82 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
84 int unregister_die_notifier(struct notifier_block *nb)
86 return atomic_notifier_chain_unregister(&die_chain, nb);
88 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
90 static inline void conditional_sti(struct pt_regs *regs)
92 if (regs->eflags & X86_EFLAGS_IF)
96 static inline void preempt_conditional_sti(struct pt_regs *regs)
99 if (regs->eflags & X86_EFLAGS_IF)
103 static inline void preempt_conditional_cli(struct pt_regs *regs)
105 if (regs->eflags & X86_EFLAGS_IF)
107 /* Make sure to not schedule here because we could be running
108 on an exception stack. */
109 preempt_enable_no_resched();
112 int kstack_depth_to_print = 12;
114 #ifdef CONFIG_KALLSYMS
115 void printk_address(unsigned long address)
117 unsigned long offset = 0, symsize;
123 symname = kallsyms_lookup(address, &symsize, &offset,
126 printk(" [<%016lx>]\n", address);
130 modname = delim = "";
131 printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
132 address, delim, modname, delim, symname, offset, symsize);
135 void printk_address(unsigned long address)
137 printk(" [<%016lx>]\n", address);
141 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
142 unsigned *usedp, char **idp)
144 static char ids[][8] = {
145 [DEBUG_STACK - 1] = "#DB",
146 [NMI_STACK - 1] = "NMI",
147 [DOUBLEFAULT_STACK - 1] = "#DF",
148 [STACKFAULT_STACK - 1] = "#SS",
149 [MCE_STACK - 1] = "#MC",
150 #if DEBUG_STKSZ > EXCEPTION_STKSZ
151 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
157 * Iterate over all exception stacks, and figure out whether
158 * 'stack' is in one of them:
160 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
161 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
163 * Is 'stack' above this exception frame's end?
164 * If yes then skip to the next frame.
169 * Is 'stack' above this exception frame's start address?
170 * If yes then we found the right frame.
172 if (stack >= end - EXCEPTION_STKSZ) {
174 * Make sure we only iterate through an exception
175 * stack once. If it comes up for the second time
176 * then there's something wrong going on - just
177 * break out and return NULL:
179 if (*usedp & (1U << k))
183 return (unsigned long *)end;
186 * If this is a debug stack, and if it has a larger size than
187 * the usual exception stacks, then 'stack' might still
188 * be within the lower portion of the debug stack:
190 #if DEBUG_STKSZ > EXCEPTION_STKSZ
191 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
192 unsigned j = N_EXCEPTION_STACKS - 1;
195 * Black magic. A large debug stack is composed of
196 * multiple exception stack entries, which we
197 * iterate through now. Dont look:
201 end -= EXCEPTION_STKSZ;
202 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
203 } while (stack < end - EXCEPTION_STKSZ);
204 if (*usedp & (1U << j))
208 return (unsigned long *)end;
215 #define MSG(txt) ops->warning(data, txt)
218 * x86-64 can have upto three kernel stacks:
221 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
224 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
226 void *t = (void *)tinfo;
227 return p > t && p < t + THREAD_SIZE - 3;
230 void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
231 unsigned long *stack,
232 struct stacktrace_ops *ops, void *data)
234 const unsigned cpu = get_cpu();
235 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
237 struct thread_info *tinfo;
245 if (tsk && tsk != current)
246 stack = (unsigned long *)tsk->thread.rsp;
250 * Print function call entries within a stack. 'cond' is the
251 * "end of stackframe" condition, that the 'stack++'
252 * iteration will eventually trigger.
254 #define HANDLE_STACK(cond) \
256 unsigned long addr = *stack++; \
257 /* Use unlocked access here because except for NMIs \
258 we should be already protected against module unloads */ \
259 if (__kernel_text_address(addr)) { \
261 * If the address is either in the text segment of the \
262 * kernel, or in the region which contains vmalloc'ed \
263 * memory, it *may* be the address of a calling \
264 * routine; if so, print it so that someone tracing \
265 * down the cause of the crash will be able to figure \
266 * out the call path that was taken. \
268 ops->address(data, addr); \
273 * Print function call entries in all stacks, starting at the
274 * current stack address. If the stacks consist of nested
279 unsigned long *estack_end;
280 estack_end = in_exception_stack(cpu, (unsigned long)stack,
284 if (ops->stack(data, id) < 0)
286 HANDLE_STACK (stack < estack_end);
287 ops->stack(data, "<EOE>");
289 * We link to the next stack via the
290 * second-to-last pointer (index -2 to end) in the
293 stack = (unsigned long *) estack_end[-2];
297 unsigned long *irqstack;
298 irqstack = irqstack_end -
299 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
301 if (stack >= irqstack && stack < irqstack_end) {
302 if (ops->stack(data, "IRQ") < 0)
304 HANDLE_STACK (stack < irqstack_end);
306 * We link to the next stack (which would be
307 * the process stack normally) the last
308 * pointer (index -1 to end) in the IRQ stack:
310 stack = (unsigned long *) (irqstack_end[-1]);
312 ops->stack(data, "EOI");
320 * This handles the process stack:
322 tinfo = task_thread_info(tsk);
323 HANDLE_STACK (valid_stack_ptr(tinfo, stack));
327 EXPORT_SYMBOL(dump_trace);
330 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
332 print_symbol(msg, symbol);
336 static void print_trace_warning(void *data, char *msg)
341 static int print_trace_stack(void *data, char *name)
343 printk(" <%s> ", name);
347 static void print_trace_address(void *data, unsigned long addr)
349 printk_address(addr);
352 static struct stacktrace_ops print_trace_ops = {
353 .warning = print_trace_warning,
354 .warning_symbol = print_trace_warning_symbol,
355 .stack = print_trace_stack,
356 .address = print_trace_address,
360 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
362 printk("\nCall Trace:\n");
363 dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
368 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
370 unsigned long *stack;
372 const int cpu = smp_processor_id();
373 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
374 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
376 // debugging aid: "show_stack(NULL, NULL);" prints the
377 // back trace for this cpu.
381 rsp = (unsigned long *)tsk->thread.rsp;
383 rsp = (unsigned long *)&rsp;
387 for(i=0; i < kstack_depth_to_print; i++) {
388 if (stack >= irqstack && stack <= irqstack_end) {
389 if (stack == irqstack_end) {
390 stack = (unsigned long *) (irqstack_end[-1]);
394 if (((long) stack & (THREAD_SIZE-1)) == 0)
397 if (i && ((i % 4) == 0))
399 printk(" %016lx", *stack++);
400 touch_nmi_watchdog();
402 show_trace(tsk, regs, rsp);
405 void show_stack(struct task_struct *tsk, unsigned long * rsp)
407 _show_stack(tsk, NULL, rsp);
411 * The architecture-independent dump_stack generator
413 void dump_stack(void)
416 show_trace(NULL, NULL, &dummy);
419 EXPORT_SYMBOL(dump_stack);
421 void show_registers(struct pt_regs *regs)
424 int in_kernel = !user_mode(regs);
426 const int cpu = smp_processor_id();
427 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
430 printk("CPU %d ", cpu);
432 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
433 cur->comm, cur->pid, task_thread_info(cur), cur);
436 * When in-kernel, we also print out the stack and code at the
437 * time of the fault..
441 _show_stack(NULL, regs, (unsigned long*)rsp);
444 if (regs->rip < PAGE_OFFSET)
447 for (i=0; i<20; i++) {
449 if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
451 printk(" Bad RIP value.");
460 int is_valid_bugaddr(unsigned long rip)
464 if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2)))
467 return ud2 == 0x0b0f;
471 void out_of_line_bug(void)
475 EXPORT_SYMBOL(out_of_line_bug);
478 static DEFINE_SPINLOCK(die_lock);
479 static int die_owner = -1;
480 static unsigned int die_nest_count;
482 unsigned __kprobes long oops_begin(void)
484 int cpu = smp_processor_id();
489 /* racy, but better than risking deadlock. */
490 local_irq_save(flags);
491 if (!spin_trylock(&die_lock)) {
492 if (cpu == die_owner)
493 /* nested oops. should stop eventually */;
495 spin_lock(&die_lock);
504 void __kprobes oops_end(unsigned long flags)
510 /* We still own the lock */
511 local_irq_restore(flags);
513 /* Nest count reaches zero, release the lock. */
514 spin_unlock_irqrestore(&die_lock, flags);
516 panic("Fatal exception");
520 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
522 static int die_counter;
523 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
524 #ifdef CONFIG_PREEMPT
530 #ifdef CONFIG_DEBUG_PAGEALLOC
531 printk("DEBUG_PAGEALLOC");
534 notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
535 show_registers(regs);
536 /* Executive summary in case the oops scrolled away */
537 printk(KERN_ALERT "RIP ");
538 printk_address(regs->rip);
539 printk(" RSP <%016lx>\n", regs->rsp);
540 if (kexec_should_crash(current))
544 void die(const char * str, struct pt_regs * regs, long err)
546 unsigned long flags = oops_begin();
548 if (!user_mode(regs))
549 report_bug(regs->rip);
551 __die(str, regs, err);
556 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
558 unsigned long flags = oops_begin();
561 * We are in trouble anyway, lets at least try
562 * to get a message out.
564 printk(str, smp_processor_id());
565 show_registers(regs);
566 if (kexec_should_crash(current))
568 if (do_panic || panic_on_oops)
569 panic("Non maskable interrupt");
576 static void __kprobes do_trap(int trapnr, int signr, char *str,
577 struct pt_regs * regs, long error_code,
580 struct task_struct *tsk = current;
582 if (user_mode(regs)) {
584 * We want error_code and trap_no set for userspace
585 * faults and kernelspace faults which result in
586 * die(), but not kernelspace faults which are fixed
587 * up. die() gives the process no chance to handle
588 * the signal and notice the kernel fault information,
589 * so that won't result in polluting the information
590 * about previously queued, but not yet delivered,
591 * faults. See also do_general_protection below.
593 tsk->thread.error_code = error_code;
594 tsk->thread.trap_no = trapnr;
596 if (exception_trace && unhandled_signal(tsk, signr))
598 "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
599 tsk->comm, tsk->pid, str,
600 regs->rip, regs->rsp, error_code);
603 force_sig_info(signr, info, tsk);
605 force_sig(signr, tsk);
612 const struct exception_table_entry *fixup;
613 fixup = search_exception_tables(regs->rip);
615 regs->rip = fixup->fixup;
617 tsk->thread.error_code = error_code;
618 tsk->thread.trap_no = trapnr;
619 die(str, regs, error_code);
625 #define DO_ERROR(trapnr, signr, str, name) \
626 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
628 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
631 conditional_sti(regs); \
632 do_trap(trapnr, signr, str, regs, error_code, NULL); \
635 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
636 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
639 info.si_signo = signr; \
641 info.si_code = sicode; \
642 info.si_addr = (void __user *)siaddr; \
643 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
646 conditional_sti(regs); \
647 do_trap(trapnr, signr, str, regs, error_code, &info); \
650 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
651 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
652 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
653 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
654 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
655 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
656 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
657 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
658 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
659 DO_ERROR(18, SIGSEGV, "reserved", reserved)
661 /* Runs on IST stack */
662 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
664 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
665 12, SIGBUS) == NOTIFY_STOP)
667 preempt_conditional_sti(regs);
668 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
669 preempt_conditional_cli(regs);
672 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
674 static const char str[] = "double fault";
675 struct task_struct *tsk = current;
677 /* Return not checked because double check cannot be ignored */
678 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
680 tsk->thread.error_code = error_code;
681 tsk->thread.trap_no = 8;
683 /* This is always a kernel trap and never fixable (and thus must
686 die(str, regs, error_code);
689 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
692 struct task_struct *tsk = current;
694 conditional_sti(regs);
696 if (user_mode(regs)) {
697 tsk->thread.error_code = error_code;
698 tsk->thread.trap_no = 13;
700 if (exception_trace && unhandled_signal(tsk, SIGSEGV))
702 "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
704 regs->rip, regs->rsp, error_code);
706 force_sig(SIGSEGV, tsk);
712 const struct exception_table_entry *fixup;
713 fixup = search_exception_tables(regs->rip);
715 regs->rip = fixup->fixup;
719 tsk->thread.error_code = error_code;
720 tsk->thread.trap_no = 13;
721 if (notify_die(DIE_GPF, "general protection fault", regs,
722 error_code, 13, SIGSEGV) == NOTIFY_STOP)
724 die("general protection fault", regs, error_code);
728 static __kprobes void
729 mem_parity_error(unsigned char reason, struct pt_regs * regs)
731 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
733 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
735 if (panic_on_unrecovered_nmi)
736 panic("NMI: Not continuing");
738 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
740 /* Clear and disable the memory parity error line. */
741 reason = (reason & 0xf) | 4;
745 static __kprobes void
746 io_check_error(unsigned char reason, struct pt_regs * regs)
748 printk("NMI: IOCK error (debug interrupt?)\n");
749 show_registers(regs);
751 /* Re-enable the IOCK line, wait for a few seconds */
752 reason = (reason & 0xf) | 8;
759 static __kprobes void
760 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
762 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
764 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
766 if (panic_on_unrecovered_nmi)
767 panic("NMI: Not continuing");
769 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
772 /* Runs on IST stack. This code must keep interrupts off all the time.
773 Nested NMIs are prevented by the CPU. */
774 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
776 unsigned char reason = 0;
779 cpu = smp_processor_id();
781 /* Only the BSP gets external NMIs from the system. */
783 reason = get_nmi_reason();
785 if (!(reason & 0xc0)) {
786 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
790 * Ok, so this is none of the documented NMI sources,
791 * so it must be the NMI watchdog.
793 if (nmi_watchdog_tick(regs,reason))
795 if (!do_nmi_callback(regs,cpu))
796 unknown_nmi_error(reason, regs);
800 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
803 /* AK: following checks seem to be broken on modern chipsets. FIXME */
806 mem_parity_error(reason, regs);
808 io_check_error(reason, regs);
811 /* runs on IST stack. */
812 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
814 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
817 preempt_conditional_sti(regs);
818 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
819 preempt_conditional_cli(regs);
822 /* Help handler running on IST stack to switch back to user stack
823 for scheduling or signal handling. The actual stack switch is done in
825 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
827 struct pt_regs *regs = eregs;
828 /* Did already sync */
829 if (eregs == (struct pt_regs *)eregs->rsp)
831 /* Exception from user space */
832 else if (user_mode(eregs))
833 regs = task_pt_regs(current);
834 /* Exception from kernel and interrupts are enabled. Move to
835 kernel process stack. */
836 else if (eregs->eflags & X86_EFLAGS_IF)
837 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
843 /* runs on IST stack. */
844 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
845 unsigned long error_code)
847 unsigned long condition;
848 struct task_struct *tsk = current;
851 get_debugreg(condition, 6);
853 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
854 SIGTRAP) == NOTIFY_STOP)
857 preempt_conditional_sti(regs);
859 /* Mask out spurious debug traps due to lazy DR7 setting */
860 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
861 if (!tsk->thread.debugreg7) {
866 tsk->thread.debugreg6 = condition;
868 /* Mask out spurious TF errors due to lazy TF clearing */
869 if (condition & DR_STEP) {
871 * The TF error should be masked out only if the current
872 * process is not traced and if the TRAP flag has been set
873 * previously by a tracing process (condition detected by
874 * the PT_DTRACE flag); remember that the i386 TRAP flag
875 * can be modified by the process itself in user mode,
876 * allowing programs to debug themselves without the ptrace()
879 if (!user_mode(regs))
880 goto clear_TF_reenable;
882 * Was the TF flag set by a debugger? If so, clear it now,
883 * so that register information is correct.
885 if (tsk->ptrace & PT_DTRACE) {
886 regs->eflags &= ~TF_MASK;
887 tsk->ptrace &= ~PT_DTRACE;
891 /* Ok, finally something we can handle */
892 tsk->thread.trap_no = 1;
893 tsk->thread.error_code = error_code;
894 info.si_signo = SIGTRAP;
896 info.si_code = TRAP_BRKPT;
897 info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
898 force_sig_info(SIGTRAP, &info, tsk);
901 set_debugreg(0UL, 7);
902 preempt_conditional_cli(regs);
906 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
907 regs->eflags &= ~TF_MASK;
908 preempt_conditional_cli(regs);
911 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
913 const struct exception_table_entry *fixup;
914 fixup = search_exception_tables(regs->rip);
916 regs->rip = fixup->fixup;
919 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
920 /* Illegal floating point operation in the kernel */
921 current->thread.trap_no = trapnr;
927 * Note that we play around with the 'TS' bit in an attempt to get
928 * the correct behaviour even in the presence of the asynchronous
931 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
933 void __user *rip = (void __user *)(regs->rip);
934 struct task_struct * task;
936 unsigned short cwd, swd;
938 conditional_sti(regs);
939 if (!user_mode(regs) &&
940 kernel_math_error(regs, "kernel x87 math error", 16))
944 * Save the info for the exception handler and clear the error.
948 task->thread.trap_no = 16;
949 task->thread.error_code = 0;
950 info.si_signo = SIGFPE;
952 info.si_code = __SI_FAULT;
955 * (~cwd & swd) will mask out exceptions that are not set to unmasked
956 * status. 0x3f is the exception bits in these regs, 0x200 is the
957 * C1 reg you need in case of a stack fault, 0x040 is the stack
958 * fault bit. We should only be taking one exception at a time,
959 * so if this combination doesn't produce any single exception,
960 * then we have a bad program that isn't synchronizing its FPU usage
961 * and it will suffer the consequences since we won't be able to
962 * fully reproduce the context of the exception
964 cwd = get_fpu_cwd(task);
965 swd = get_fpu_swd(task);
966 switch (swd & ~cwd & 0x3f) {
970 case 0x001: /* Invalid Op */
972 * swd & 0x240 == 0x040: Stack Underflow
973 * swd & 0x240 == 0x240: Stack Overflow
974 * User must clear the SF bit (0x40) if set
976 info.si_code = FPE_FLTINV;
978 case 0x002: /* Denormalize */
979 case 0x010: /* Underflow */
980 info.si_code = FPE_FLTUND;
982 case 0x004: /* Zero Divide */
983 info.si_code = FPE_FLTDIV;
985 case 0x008: /* Overflow */
986 info.si_code = FPE_FLTOVF;
988 case 0x020: /* Precision */
989 info.si_code = FPE_FLTRES;
992 force_sig_info(SIGFPE, &info, task);
995 asmlinkage void bad_intr(void)
997 printk("bad interrupt");
1000 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1002 void __user *rip = (void __user *)(regs->rip);
1003 struct task_struct * task;
1005 unsigned short mxcsr;
1007 conditional_sti(regs);
1008 if (!user_mode(regs) &&
1009 kernel_math_error(regs, "kernel simd math error", 19))
1013 * Save the info for the exception handler and clear the error.
1016 save_init_fpu(task);
1017 task->thread.trap_no = 19;
1018 task->thread.error_code = 0;
1019 info.si_signo = SIGFPE;
1021 info.si_code = __SI_FAULT;
1024 * The SIMD FPU exceptions are handled a little differently, as there
1025 * is only a single status/control register. Thus, to determine which
1026 * unmasked exception was caught we must mask the exception mask bits
1027 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1029 mxcsr = get_fpu_mxcsr(task);
1030 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1034 case 0x001: /* Invalid Op */
1035 info.si_code = FPE_FLTINV;
1037 case 0x002: /* Denormalize */
1038 case 0x010: /* Underflow */
1039 info.si_code = FPE_FLTUND;
1041 case 0x004: /* Zero Divide */
1042 info.si_code = FPE_FLTDIV;
1044 case 0x008: /* Overflow */
1045 info.si_code = FPE_FLTOVF;
1047 case 0x020: /* Precision */
1048 info.si_code = FPE_FLTRES;
1051 force_sig_info(SIGFPE, &info, task);
1054 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1058 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1062 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1067 * 'math_state_restore()' saves the current math information in the
1068 * old math state array, and gets the new ones from the current task
1070 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1071 * Don't touch unless you *really* know how it works.
1073 asmlinkage void math_state_restore(void)
1075 struct task_struct *me = current;
1076 clts(); /* Allow maths ops (or we recurse) */
1080 restore_fpu_checking(&me->thread.i387.fxsave);
1081 task_thread_info(me)->status |= TS_USEDFPU;
1085 void __init trap_init(void)
1087 set_intr_gate(0,÷_error);
1088 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1089 set_intr_gate_ist(2,&nmi,NMI_STACK);
1090 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1091 set_system_gate(4,&overflow); /* int4 can be called from all */
1092 set_intr_gate(5,&bounds);
1093 set_intr_gate(6,&invalid_op);
1094 set_intr_gate(7,&device_not_available);
1095 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1096 set_intr_gate(9,&coprocessor_segment_overrun);
1097 set_intr_gate(10,&invalid_TSS);
1098 set_intr_gate(11,&segment_not_present);
1099 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1100 set_intr_gate(13,&general_protection);
1101 set_intr_gate(14,&page_fault);
1102 set_intr_gate(15,&spurious_interrupt_bug);
1103 set_intr_gate(16,&coprocessor_error);
1104 set_intr_gate(17,&alignment_check);
1105 #ifdef CONFIG_X86_MCE
1106 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1108 set_intr_gate(19,&simd_coprocessor_error);
1110 #ifdef CONFIG_IA32_EMULATION
1111 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1115 * Should be a barrier for any external CPU state.
1121 static int __init oops_setup(char *s)
1125 if (!strcmp(s, "panic"))
1129 early_param("oops", oops_setup);
1131 static int __init kstack_setup(char *s)
1135 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1138 early_param("kstack", kstack_setup);