2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
40 #include <asm/fixmap.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
50 #include <asm/cacheflush.h>
54 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
55 * The direct mapping extends to max_pfn_mapped, so that we can directly access
56 * apertures, ACPI and other tables without having to play with fixmaps.
58 unsigned long max_low_pfn_mapped;
59 unsigned long max_pfn_mapped;
61 static unsigned long dma_reserve __initdata;
63 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
65 static int __init parse_direct_gbpages_off(char *arg)
70 early_param("nogbpages", parse_direct_gbpages_off);
72 static int __init parse_direct_gbpages_on(char *arg)
77 early_param("gbpages", parse_direct_gbpages_on);
80 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
81 * physical space so we can cache the place of the first one and move
82 * around without checking the pgd every time.
85 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
86 EXPORT_SYMBOL_GPL(__supported_pte_mask);
88 static int disable_nx __cpuinitdata;
92 * Control non-executable mappings for 64-bit processes.
97 static int __init nonx_setup(char *str)
101 if (!strncmp(str, "on", 2)) {
102 __supported_pte_mask |= _PAGE_NX;
104 } else if (!strncmp(str, "off", 3)) {
106 __supported_pte_mask &= ~_PAGE_NX;
110 early_param("noexec", nonx_setup);
112 void __cpuinit check_efer(void)
116 rdmsrl(MSR_EFER, efer);
117 if (!(efer & EFER_NX) || disable_nx)
118 __supported_pte_mask &= ~_PAGE_NX;
121 int force_personality32;
125 * Control non executable heap for 32bit processes.
126 * To control the stack too use noexec=off
128 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
129 * off PROT_READ implies PROT_EXEC
131 static int __init nonx32_setup(char *str)
133 if (!strcmp(str, "on"))
134 force_personality32 &= ~READ_IMPLIES_EXEC;
135 else if (!strcmp(str, "off"))
136 force_personality32 |= READ_IMPLIES_EXEC;
139 __setup("noexec32=", nonx32_setup);
142 * NOTE: This function is marked __ref because it calls __init function
143 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
145 static __ref void *spp_getpage(void)
150 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
152 ptr = alloc_bootmem_pages(PAGE_SIZE);
154 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
155 panic("set_pte_phys: cannot allocate page data %s\n",
156 after_bootmem ? "after bootmem" : "");
159 pr_debug("spp_getpage %p\n", ptr);
164 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
166 if (pgd_none(*pgd)) {
167 pud_t *pud = (pud_t *)spp_getpage();
168 pgd_populate(&init_mm, pgd, pud);
169 if (pud != pud_offset(pgd, 0))
170 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
171 pud, pud_offset(pgd, 0));
173 return pud_offset(pgd, vaddr);
176 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
178 if (pud_none(*pud)) {
179 pmd_t *pmd = (pmd_t *) spp_getpage();
180 pud_populate(&init_mm, pud, pmd);
181 if (pmd != pmd_offset(pud, 0))
182 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
183 pmd, pmd_offset(pud, 0));
185 return pmd_offset(pud, vaddr);
188 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
190 if (pmd_none(*pmd)) {
191 pte_t *pte = (pte_t *) spp_getpage();
192 pmd_populate_kernel(&init_mm, pmd, pte);
193 if (pte != pte_offset_kernel(pmd, 0))
194 printk(KERN_ERR "PAGETABLE BUG #02!\n");
196 return pte_offset_kernel(pmd, vaddr);
199 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
205 pud = pud_page + pud_index(vaddr);
206 pmd = fill_pmd(pud, vaddr);
207 pte = fill_pte(pmd, vaddr);
209 set_pte(pte, new_pte);
212 * It's enough to flush this one mapping.
213 * (PGE mappings get flushed as well)
215 __flush_tlb_one(vaddr);
218 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
223 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
225 pgd = pgd_offset_k(vaddr);
226 if (pgd_none(*pgd)) {
228 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
231 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
232 set_pte_vaddr_pud(pud_page, vaddr, pteval);
235 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
240 pgd = pgd_offset_k(vaddr);
241 pud = fill_pud(pgd, vaddr);
242 return fill_pmd(pud, vaddr);
245 pte_t * __init populate_extra_pte(unsigned long vaddr)
249 pmd = populate_extra_pmd(vaddr);
250 return fill_pte(pmd, vaddr);
254 * Create large page table mappings for a range of physical addresses.
256 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
263 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
264 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
265 pgd = pgd_offset_k((unsigned long)__va(phys));
266 if (pgd_none(*pgd)) {
267 pud = (pud_t *) spp_getpage();
268 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
271 pud = pud_offset(pgd, (unsigned long)__va(phys));
272 if (pud_none(*pud)) {
273 pmd = (pmd_t *) spp_getpage();
274 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
277 pmd = pmd_offset(pud, phys);
278 BUG_ON(!pmd_none(*pmd));
279 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
283 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
285 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
288 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
290 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
294 * The head.S code sets up the kernel high mapping:
296 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
298 * phys_addr holds the negative offset to the kernel, which is added
299 * to the compile time generated pmds. This results in invalid pmds up
300 * to the point where we hit the physaddr 0 mapping.
302 * We limit the mappings to the region from _text to _end. _end is
303 * rounded up to the 2MB boundary. This catches the invalid pmds as
304 * well, as they are located before _text:
306 void __init cleanup_highmap(void)
308 unsigned long vaddr = __START_KERNEL_map;
309 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
310 pmd_t *pmd = level2_kernel_pgt;
311 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
313 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
316 if (vaddr < (unsigned long) _text || vaddr > end)
317 set_pmd(pmd, __pmd(0));
321 static __ref void *alloc_low_page(unsigned long *phys)
323 unsigned long pfn = e820_table_end++;
327 adr = (void *)get_zeroed_page(GFP_ATOMIC);
333 if (pfn >= e820_table_top)
334 panic("alloc_low_page: ran out of memory");
336 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
337 memset(adr, 0, PAGE_SIZE);
338 *phys = pfn * PAGE_SIZE;
342 static __ref void unmap_low_page(void *adr)
347 early_iounmap(adr, PAGE_SIZE);
350 static unsigned long __meminit
351 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
355 unsigned long last_map_addr = end;
358 pte_t *pte = pte_page + pte_index(addr);
360 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
363 if (!after_bootmem) {
364 for(; i < PTRS_PER_PTE; i++, pte++)
365 set_pte(pte, __pte(0));
371 * We will re-use the existing mapping.
372 * Xen for example has some special requirements, like mapping
373 * pagetable pages as RO. So assume someone who pre-setup
374 * these mappings are more intelligent.
382 printk(" pte=%p addr=%lx pte=%016lx\n",
383 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
385 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
386 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
389 update_page_count(PG_LEVEL_4K, pages);
391 return last_map_addr;
394 static unsigned long __meminit
395 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
398 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
400 return phys_pte_init(pte, address, end, prot);
403 static unsigned long __meminit
404 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
405 unsigned long page_size_mask, pgprot_t prot)
407 unsigned long pages = 0;
408 unsigned long last_map_addr = end;
410 int i = pmd_index(address);
412 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
413 unsigned long pte_phys;
414 pmd_t *pmd = pmd_page + pmd_index(address);
416 pgprot_t new_prot = prot;
418 if (address >= end) {
419 if (!after_bootmem) {
420 for (; i < PTRS_PER_PMD; i++, pmd++)
421 set_pmd(pmd, __pmd(0));
427 if (!pmd_large(*pmd)) {
428 spin_lock(&init_mm.page_table_lock);
429 last_map_addr = phys_pte_update(pmd, address,
431 spin_unlock(&init_mm.page_table_lock);
435 * If we are ok with PG_LEVEL_2M mapping, then we will
436 * use the existing mapping,
438 * Otherwise, we will split the large page mapping but
439 * use the same existing protection bits except for
440 * large page, so that we don't violate Intel's TLB
441 * Application note (317080) which says, while changing
442 * the page sizes, new and old translations should
443 * not differ with respect to page frame and
446 if (page_size_mask & (1 << PG_LEVEL_2M)) {
450 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
453 if (page_size_mask & (1<<PG_LEVEL_2M)) {
455 spin_lock(&init_mm.page_table_lock);
456 set_pte((pte_t *)pmd,
457 pfn_pte(address >> PAGE_SHIFT,
458 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
459 spin_unlock(&init_mm.page_table_lock);
460 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
464 pte = alloc_low_page(&pte_phys);
465 last_map_addr = phys_pte_init(pte, address, end, new_prot);
468 spin_lock(&init_mm.page_table_lock);
469 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
470 spin_unlock(&init_mm.page_table_lock);
472 update_page_count(PG_LEVEL_2M, pages);
473 return last_map_addr;
476 static unsigned long __meminit
477 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
478 unsigned long page_size_mask, pgprot_t prot)
480 pmd_t *pmd = pmd_offset(pud, 0);
481 unsigned long last_map_addr;
483 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
485 return last_map_addr;
488 static unsigned long __meminit
489 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
490 unsigned long page_size_mask)
492 unsigned long pages = 0;
493 unsigned long last_map_addr = end;
494 int i = pud_index(addr);
496 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
497 unsigned long pmd_phys;
498 pud_t *pud = pud_page + pud_index(addr);
500 pgprot_t prot = PAGE_KERNEL;
505 if (!after_bootmem &&
506 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
507 set_pud(pud, __pud(0));
512 if (!pud_large(*pud)) {
513 last_map_addr = phys_pmd_update(pud, addr, end,
514 page_size_mask, prot);
518 * If we are ok with PG_LEVEL_1G mapping, then we will
519 * use the existing mapping.
521 * Otherwise, we will split the gbpage mapping but use
522 * the same existing protection bits except for large
523 * page, so that we don't violate Intel's TLB
524 * Application note (317080) which says, while changing
525 * the page sizes, new and old translations should
526 * not differ with respect to page frame and
529 if (page_size_mask & (1 << PG_LEVEL_1G)) {
533 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
536 if (page_size_mask & (1<<PG_LEVEL_1G)) {
538 spin_lock(&init_mm.page_table_lock);
539 set_pte((pte_t *)pud,
540 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
541 spin_unlock(&init_mm.page_table_lock);
542 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
546 pmd = alloc_low_page(&pmd_phys);
547 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
551 spin_lock(&init_mm.page_table_lock);
552 pud_populate(&init_mm, pud, __va(pmd_phys));
553 spin_unlock(&init_mm.page_table_lock);
557 update_page_count(PG_LEVEL_1G, pages);
559 return last_map_addr;
562 static unsigned long __meminit
563 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
564 unsigned long page_size_mask)
568 pud = (pud_t *)pgd_page_vaddr(*pgd);
570 return phys_pud_init(pud, addr, end, page_size_mask);
574 kernel_physical_mapping_init(unsigned long start,
576 unsigned long page_size_mask)
579 unsigned long next, last_map_addr = end;
581 start = (unsigned long)__va(start);
582 end = (unsigned long)__va(end);
584 for (; start < end; start = next) {
585 pgd_t *pgd = pgd_offset_k(start);
586 unsigned long pud_phys;
589 next = (start + PGDIR_SIZE) & PGDIR_MASK;
594 last_map_addr = phys_pud_update(pgd, __pa(start),
595 __pa(end), page_size_mask);
599 pud = alloc_low_page(&pud_phys);
600 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
604 spin_lock(&init_mm.page_table_lock);
605 pgd_populate(&init_mm, pgd, __va(pud_phys));
606 spin_unlock(&init_mm.page_table_lock);
610 return last_map_addr;
614 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
616 unsigned long bootmap_size, bootmap;
618 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
619 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
622 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
623 /* don't touch min_low_pfn */
624 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
626 e820_register_active_regions(0, start_pfn, end_pfn);
627 free_bootmem_with_active_regions(0, end_pfn);
628 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
629 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
632 void __init paging_init(void)
634 unsigned long max_zone_pfns[MAX_NR_ZONES];
636 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
637 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
638 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
639 max_zone_pfns[ZONE_NORMAL] = max_pfn;
641 memory_present(0, 0, max_pfn);
643 free_area_init_nodes(max_zone_pfns);
648 * Memory hotplug specific functions
650 #ifdef CONFIG_MEMORY_HOTPLUG
652 * Memory is added always to NORMAL zone. This means you will never get
653 * additional DMA/DMA32 memory.
655 int arch_add_memory(int nid, u64 start, u64 size)
657 struct pglist_data *pgdat = NODE_DATA(nid);
658 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
659 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
660 unsigned long nr_pages = size >> PAGE_SHIFT;
663 last_mapped_pfn = init_memory_mapping(start, start + size);
664 if (last_mapped_pfn > max_pfn_mapped)
665 max_pfn_mapped = last_mapped_pfn;
667 ret = __add_pages(nid, zone, start_pfn, nr_pages);
672 EXPORT_SYMBOL_GPL(arch_add_memory);
674 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
675 int memory_add_physaddr_to_nid(u64 start)
679 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
682 #endif /* CONFIG_MEMORY_HOTPLUG */
684 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
685 kcore_modules, kcore_vsyscall;
687 void __init mem_init(void)
689 long codesize, reservedpages, datasize, initsize;
690 unsigned long absent_pages;
694 /* clear_bss() already clear the empty_zero_page */
698 /* this will put all low memory onto the freelists */
700 totalram_pages = numa_free_all_bootmem();
702 totalram_pages = free_all_bootmem();
705 absent_pages = absent_pages_in_range(0, max_pfn);
706 reservedpages = max_pfn - totalram_pages - absent_pages;
709 codesize = (unsigned long) &_etext - (unsigned long) &_text;
710 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
711 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
713 /* Register memory areas for /proc/kcore */
714 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
715 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
716 VMALLOC_END-VMALLOC_START);
717 kclist_add(&kcore_kernel, &_stext, _end - _stext);
718 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
719 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
720 VSYSCALL_END - VSYSCALL_START);
722 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
723 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
724 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
725 max_pfn << (PAGE_SHIFT-10),
727 absent_pages << (PAGE_SHIFT-10),
728 reservedpages << (PAGE_SHIFT-10),
733 #ifdef CONFIG_DEBUG_RODATA
734 const int rodata_test_data = 0xC3;
735 EXPORT_SYMBOL_GPL(rodata_test_data);
737 static int kernel_set_to_readonly;
739 void set_kernel_text_rw(void)
741 unsigned long start = PFN_ALIGN(_stext);
742 unsigned long end = PFN_ALIGN(__start_rodata);
744 if (!kernel_set_to_readonly)
747 pr_debug("Set kernel text: %lx - %lx for read write\n",
750 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
753 void set_kernel_text_ro(void)
755 unsigned long start = PFN_ALIGN(_stext);
756 unsigned long end = PFN_ALIGN(__start_rodata);
758 if (!kernel_set_to_readonly)
761 pr_debug("Set kernel text: %lx - %lx for read only\n",
764 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
767 void mark_rodata_ro(void)
769 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
770 unsigned long rodata_start =
771 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
773 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
774 (end - start) >> 10);
775 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
777 kernel_set_to_readonly = 1;
780 * The rodata section (but not the kernel text!) should also be
783 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
787 #ifdef CONFIG_CPA_DEBUG
788 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
789 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
791 printk(KERN_INFO "Testing CPA: again\n");
792 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
798 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
805 unsigned long pfn = phys >> PAGE_SHIFT;
807 if (pfn >= max_pfn) {
809 * This can happen with kdump kernels when accessing
812 if (pfn < max_pfn_mapped)
815 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
820 /* Should check here against the e820 map to avoid double free */
822 nid = phys_to_nid(phys);
823 next_nid = phys_to_nid(phys + len - 1);
825 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
827 ret = reserve_bootmem(phys, len, flags);
833 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
836 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
837 dma_reserve += len / PAGE_SIZE;
838 set_dma_reserve(dma_reserve);
844 int kern_addr_valid(unsigned long addr)
846 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
852 if (above != 0 && above != -1UL)
855 pgd = pgd_offset_k(addr);
859 pud = pud_offset(pgd, addr);
863 pmd = pmd_offset(pud, addr);
868 return pfn_valid(pmd_pfn(*pmd));
870 pte = pte_offset_kernel(pmd, addr);
874 return pfn_valid(pte_pfn(*pte));
878 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
879 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
880 * not need special handling anymore:
882 static struct vm_area_struct gate_vma = {
883 .vm_start = VSYSCALL_START,
884 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
885 .vm_page_prot = PAGE_READONLY_EXEC,
886 .vm_flags = VM_READ | VM_EXEC
889 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
891 #ifdef CONFIG_IA32_EMULATION
892 if (test_tsk_thread_flag(tsk, TIF_IA32))
898 int in_gate_area(struct task_struct *task, unsigned long addr)
900 struct vm_area_struct *vma = get_gate_vma(task);
905 return (addr >= vma->vm_start) && (addr < vma->vm_end);
909 * Use this when you have no reliable task/vma, typically from interrupt
910 * context. It is less reliable than using the task's vma and may give
913 int in_gate_area_no_task(unsigned long addr)
915 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
918 const char *arch_vma_name(struct vm_area_struct *vma)
920 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
922 if (vma == &gate_vma)
927 #ifdef CONFIG_SPARSEMEM_VMEMMAP
929 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
931 static long __meminitdata addr_start, addr_end;
932 static void __meminitdata *p_start, *p_end;
933 static int __meminitdata node_start;
936 vmemmap_populate(struct page *start_page, unsigned long size, int node)
938 unsigned long addr = (unsigned long)start_page;
939 unsigned long end = (unsigned long)(start_page + size);
945 for (; addr < end; addr = next) {
948 pgd = vmemmap_pgd_populate(addr, node);
952 pud = vmemmap_pud_populate(pgd, addr, node);
957 next = (addr + PAGE_SIZE) & PAGE_MASK;
958 pmd = vmemmap_pmd_populate(pud, addr, node);
963 p = vmemmap_pte_populate(pmd, addr, node);
968 addr_end = addr + PAGE_SIZE;
969 p_end = p + PAGE_SIZE;
971 next = pmd_addr_end(addr, end);
973 pmd = pmd_offset(pud, addr);
974 if (pmd_none(*pmd)) {
977 p = vmemmap_alloc_block(PMD_SIZE, node);
981 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
983 set_pmd(pmd, __pmd(pte_val(entry)));
985 /* check to see if we have contiguous blocks */
986 if (p_end != p || node_start != node) {
988 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
989 addr_start, addr_end-1, p_start, p_end-1, node_start);
995 addr_end = addr + PMD_SIZE;
996 p_end = p + PMD_SIZE;
998 vmemmap_verify((pte_t *)pmd, node, addr, next);
1005 void __meminit vmemmap_populate_print_last(void)
1008 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1009 addr_start, addr_end-1, p_start, p_end-1, node_start);