Merge branch 'master' of git://git.kernel.org/pub/scm/fs/xfs/xfs
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 #include <asm/init.h>
52
53 /*
54  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
55  * The direct mapping extends to max_pfn_mapped, so that we can directly access
56  * apertures, ACPI and other tables without having to play with fixmaps.
57  */
58 unsigned long max_low_pfn_mapped;
59 unsigned long max_pfn_mapped;
60
61 static unsigned long dma_reserve __initdata;
62
63 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
64
65 static int __init parse_direct_gbpages_off(char *arg)
66 {
67         direct_gbpages = 0;
68         return 0;
69 }
70 early_param("nogbpages", parse_direct_gbpages_off);
71
72 static int __init parse_direct_gbpages_on(char *arg)
73 {
74         direct_gbpages = 1;
75         return 0;
76 }
77 early_param("gbpages", parse_direct_gbpages_on);
78
79 /*
80  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
81  * physical space so we can cache the place of the first one and move
82  * around without checking the pgd every time.
83  */
84
85 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
86 EXPORT_SYMBOL_GPL(__supported_pte_mask);
87
88 static int disable_nx __cpuinitdata;
89
90 /*
91  * noexec=on|off
92  * Control non-executable mappings for 64-bit processes.
93  *
94  * on   Enable (default)
95  * off  Disable
96  */
97 static int __init nonx_setup(char *str)
98 {
99         if (!str)
100                 return -EINVAL;
101         if (!strncmp(str, "on", 2)) {
102                 __supported_pte_mask |= _PAGE_NX;
103                 disable_nx = 0;
104         } else if (!strncmp(str, "off", 3)) {
105                 disable_nx = 1;
106                 __supported_pte_mask &= ~_PAGE_NX;
107         }
108         return 0;
109 }
110 early_param("noexec", nonx_setup);
111
112 void __cpuinit check_efer(void)
113 {
114         unsigned long efer;
115
116         rdmsrl(MSR_EFER, efer);
117         if (!(efer & EFER_NX) || disable_nx)
118                 __supported_pte_mask &= ~_PAGE_NX;
119 }
120
121 int force_personality32;
122
123 /*
124  * noexec32=on|off
125  * Control non executable heap for 32bit processes.
126  * To control the stack too use noexec=off
127  *
128  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
129  * off  PROT_READ implies PROT_EXEC
130  */
131 static int __init nonx32_setup(char *str)
132 {
133         if (!strcmp(str, "on"))
134                 force_personality32 &= ~READ_IMPLIES_EXEC;
135         else if (!strcmp(str, "off"))
136                 force_personality32 |= READ_IMPLIES_EXEC;
137         return 1;
138 }
139 __setup("noexec32=", nonx32_setup);
140
141 /*
142  * NOTE: This function is marked __ref because it calls __init function
143  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
144  */
145 static __ref void *spp_getpage(void)
146 {
147         void *ptr;
148
149         if (after_bootmem)
150                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
151         else
152                 ptr = alloc_bootmem_pages(PAGE_SIZE);
153
154         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
155                 panic("set_pte_phys: cannot allocate page data %s\n",
156                         after_bootmem ? "after bootmem" : "");
157         }
158
159         pr_debug("spp_getpage %p\n", ptr);
160
161         return ptr;
162 }
163
164 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
165 {
166         if (pgd_none(*pgd)) {
167                 pud_t *pud = (pud_t *)spp_getpage();
168                 pgd_populate(&init_mm, pgd, pud);
169                 if (pud != pud_offset(pgd, 0))
170                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
171                                pud, pud_offset(pgd, 0));
172         }
173         return pud_offset(pgd, vaddr);
174 }
175
176 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
177 {
178         if (pud_none(*pud)) {
179                 pmd_t *pmd = (pmd_t *) spp_getpage();
180                 pud_populate(&init_mm, pud, pmd);
181                 if (pmd != pmd_offset(pud, 0))
182                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
183                                pmd, pmd_offset(pud, 0));
184         }
185         return pmd_offset(pud, vaddr);
186 }
187
188 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
189 {
190         if (pmd_none(*pmd)) {
191                 pte_t *pte = (pte_t *) spp_getpage();
192                 pmd_populate_kernel(&init_mm, pmd, pte);
193                 if (pte != pte_offset_kernel(pmd, 0))
194                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
195         }
196         return pte_offset_kernel(pmd, vaddr);
197 }
198
199 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
200 {
201         pud_t *pud;
202         pmd_t *pmd;
203         pte_t *pte;
204
205         pud = pud_page + pud_index(vaddr);
206         pmd = fill_pmd(pud, vaddr);
207         pte = fill_pte(pmd, vaddr);
208
209         set_pte(pte, new_pte);
210
211         /*
212          * It's enough to flush this one mapping.
213          * (PGE mappings get flushed as well)
214          */
215         __flush_tlb_one(vaddr);
216 }
217
218 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
219 {
220         pgd_t *pgd;
221         pud_t *pud_page;
222
223         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
224
225         pgd = pgd_offset_k(vaddr);
226         if (pgd_none(*pgd)) {
227                 printk(KERN_ERR
228                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
229                 return;
230         }
231         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
232         set_pte_vaddr_pud(pud_page, vaddr, pteval);
233 }
234
235 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
236 {
237         pgd_t *pgd;
238         pud_t *pud;
239
240         pgd = pgd_offset_k(vaddr);
241         pud = fill_pud(pgd, vaddr);
242         return fill_pmd(pud, vaddr);
243 }
244
245 pte_t * __init populate_extra_pte(unsigned long vaddr)
246 {
247         pmd_t *pmd;
248
249         pmd = populate_extra_pmd(vaddr);
250         return fill_pte(pmd, vaddr);
251 }
252
253 /*
254  * Create large page table mappings for a range of physical addresses.
255  */
256 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
257                                                 pgprot_t prot)
258 {
259         pgd_t *pgd;
260         pud_t *pud;
261         pmd_t *pmd;
262
263         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
264         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
265                 pgd = pgd_offset_k((unsigned long)__va(phys));
266                 if (pgd_none(*pgd)) {
267                         pud = (pud_t *) spp_getpage();
268                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
269                                                 _PAGE_USER));
270                 }
271                 pud = pud_offset(pgd, (unsigned long)__va(phys));
272                 if (pud_none(*pud)) {
273                         pmd = (pmd_t *) spp_getpage();
274                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
275                                                 _PAGE_USER));
276                 }
277                 pmd = pmd_offset(pud, phys);
278                 BUG_ON(!pmd_none(*pmd));
279                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
280         }
281 }
282
283 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
284 {
285         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
286 }
287
288 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
289 {
290         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
291 }
292
293 /*
294  * The head.S code sets up the kernel high mapping:
295  *
296  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
297  *
298  * phys_addr holds the negative offset to the kernel, which is added
299  * to the compile time generated pmds. This results in invalid pmds up
300  * to the point where we hit the physaddr 0 mapping.
301  *
302  * We limit the mappings to the region from _text to _end.  _end is
303  * rounded up to the 2MB boundary. This catches the invalid pmds as
304  * well, as they are located before _text:
305  */
306 void __init cleanup_highmap(void)
307 {
308         unsigned long vaddr = __START_KERNEL_map;
309         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
310         pmd_t *pmd = level2_kernel_pgt;
311         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
312
313         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
314                 if (pmd_none(*pmd))
315                         continue;
316                 if (vaddr < (unsigned long) _text || vaddr > end)
317                         set_pmd(pmd, __pmd(0));
318         }
319 }
320
321 static __ref void *alloc_low_page(unsigned long *phys)
322 {
323         unsigned long pfn = e820_table_end++;
324         void *adr;
325
326         if (after_bootmem) {
327                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
328                 *phys = __pa(adr);
329
330                 return adr;
331         }
332
333         if (pfn >= e820_table_top)
334                 panic("alloc_low_page: ran out of memory");
335
336         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
337         memset(adr, 0, PAGE_SIZE);
338         *phys  = pfn * PAGE_SIZE;
339         return adr;
340 }
341
342 static __ref void unmap_low_page(void *adr)
343 {
344         if (after_bootmem)
345                 return;
346
347         early_iounmap(adr, PAGE_SIZE);
348 }
349
350 static unsigned long __meminit
351 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
352               pgprot_t prot)
353 {
354         unsigned pages = 0;
355         unsigned long last_map_addr = end;
356         int i;
357
358         pte_t *pte = pte_page + pte_index(addr);
359
360         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
361
362                 if (addr >= end) {
363                         if (!after_bootmem) {
364                                 for(; i < PTRS_PER_PTE; i++, pte++)
365                                         set_pte(pte, __pte(0));
366                         }
367                         break;
368                 }
369
370                 /*
371                  * We will re-use the existing mapping.
372                  * Xen for example has some special requirements, like mapping
373                  * pagetable pages as RO. So assume someone who pre-setup
374                  * these mappings are more intelligent.
375                  */
376                 if (pte_val(*pte)) {
377                         pages++;
378                         continue;
379                 }
380
381                 if (0)
382                         printk("   pte=%p addr=%lx pte=%016lx\n",
383                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
384                 pages++;
385                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
386                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
387         }
388
389         update_page_count(PG_LEVEL_4K, pages);
390
391         return last_map_addr;
392 }
393
394 static unsigned long __meminit
395 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
396                 pgprot_t prot)
397 {
398         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
399
400         return phys_pte_init(pte, address, end, prot);
401 }
402
403 static unsigned long __meminit
404 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
405               unsigned long page_size_mask, pgprot_t prot)
406 {
407         unsigned long pages = 0;
408         unsigned long last_map_addr = end;
409
410         int i = pmd_index(address);
411
412         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
413                 unsigned long pte_phys;
414                 pmd_t *pmd = pmd_page + pmd_index(address);
415                 pte_t *pte;
416                 pgprot_t new_prot = prot;
417
418                 if (address >= end) {
419                         if (!after_bootmem) {
420                                 for (; i < PTRS_PER_PMD; i++, pmd++)
421                                         set_pmd(pmd, __pmd(0));
422                         }
423                         break;
424                 }
425
426                 if (pmd_val(*pmd)) {
427                         if (!pmd_large(*pmd)) {
428                                 spin_lock(&init_mm.page_table_lock);
429                                 last_map_addr = phys_pte_update(pmd, address,
430                                                                 end, prot);
431                                 spin_unlock(&init_mm.page_table_lock);
432                                 continue;
433                         }
434                         /*
435                          * If we are ok with PG_LEVEL_2M mapping, then we will
436                          * use the existing mapping,
437                          *
438                          * Otherwise, we will split the large page mapping but
439                          * use the same existing protection bits except for
440                          * large page, so that we don't violate Intel's TLB
441                          * Application note (317080) which says, while changing
442                          * the page sizes, new and old translations should
443                          * not differ with respect to page frame and
444                          * attributes.
445                          */
446                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
447                                 pages++;
448                                 continue;
449                         }
450                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
451                 }
452
453                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
454                         pages++;
455                         spin_lock(&init_mm.page_table_lock);
456                         set_pte((pte_t *)pmd,
457                                 pfn_pte(address >> PAGE_SHIFT,
458                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
459                         spin_unlock(&init_mm.page_table_lock);
460                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
461                         continue;
462                 }
463
464                 pte = alloc_low_page(&pte_phys);
465                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
466                 unmap_low_page(pte);
467
468                 spin_lock(&init_mm.page_table_lock);
469                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
470                 spin_unlock(&init_mm.page_table_lock);
471         }
472         update_page_count(PG_LEVEL_2M, pages);
473         return last_map_addr;
474 }
475
476 static unsigned long __meminit
477 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
478                 unsigned long page_size_mask, pgprot_t prot)
479 {
480         pmd_t *pmd = pmd_offset(pud, 0);
481         unsigned long last_map_addr;
482
483         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
484         __flush_tlb_all();
485         return last_map_addr;
486 }
487
488 static unsigned long __meminit
489 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
490                          unsigned long page_size_mask)
491 {
492         unsigned long pages = 0;
493         unsigned long last_map_addr = end;
494         int i = pud_index(addr);
495
496         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
497                 unsigned long pmd_phys;
498                 pud_t *pud = pud_page + pud_index(addr);
499                 pmd_t *pmd;
500                 pgprot_t prot = PAGE_KERNEL;
501
502                 if (addr >= end)
503                         break;
504
505                 if (!after_bootmem &&
506                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
507                         set_pud(pud, __pud(0));
508                         continue;
509                 }
510
511                 if (pud_val(*pud)) {
512                         if (!pud_large(*pud)) {
513                                 last_map_addr = phys_pmd_update(pud, addr, end,
514                                                          page_size_mask, prot);
515                                 continue;
516                         }
517                         /*
518                          * If we are ok with PG_LEVEL_1G mapping, then we will
519                          * use the existing mapping.
520                          *
521                          * Otherwise, we will split the gbpage mapping but use
522                          * the same existing protection  bits except for large
523                          * page, so that we don't violate Intel's TLB
524                          * Application note (317080) which says, while changing
525                          * the page sizes, new and old translations should
526                          * not differ with respect to page frame and
527                          * attributes.
528                          */
529                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
530                                 pages++;
531                                 continue;
532                         }
533                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
534                 }
535
536                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
537                         pages++;
538                         spin_lock(&init_mm.page_table_lock);
539                         set_pte((pte_t *)pud,
540                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
541                         spin_unlock(&init_mm.page_table_lock);
542                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
543                         continue;
544                 }
545
546                 pmd = alloc_low_page(&pmd_phys);
547                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
548                                               prot);
549                 unmap_low_page(pmd);
550
551                 spin_lock(&init_mm.page_table_lock);
552                 pud_populate(&init_mm, pud, __va(pmd_phys));
553                 spin_unlock(&init_mm.page_table_lock);
554         }
555         __flush_tlb_all();
556
557         update_page_count(PG_LEVEL_1G, pages);
558
559         return last_map_addr;
560 }
561
562 static unsigned long __meminit
563 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
564                  unsigned long page_size_mask)
565 {
566         pud_t *pud;
567
568         pud = (pud_t *)pgd_page_vaddr(*pgd);
569
570         return phys_pud_init(pud, addr, end, page_size_mask);
571 }
572
573 unsigned long __init
574 kernel_physical_mapping_init(unsigned long start,
575                              unsigned long end,
576                              unsigned long page_size_mask)
577 {
578
579         unsigned long next, last_map_addr = end;
580
581         start = (unsigned long)__va(start);
582         end = (unsigned long)__va(end);
583
584         for (; start < end; start = next) {
585                 pgd_t *pgd = pgd_offset_k(start);
586                 unsigned long pud_phys;
587                 pud_t *pud;
588
589                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
590                 if (next > end)
591                         next = end;
592
593                 if (pgd_val(*pgd)) {
594                         last_map_addr = phys_pud_update(pgd, __pa(start),
595                                                  __pa(end), page_size_mask);
596                         continue;
597                 }
598
599                 pud = alloc_low_page(&pud_phys);
600                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
601                                                  page_size_mask);
602                 unmap_low_page(pud);
603
604                 spin_lock(&init_mm.page_table_lock);
605                 pgd_populate(&init_mm, pgd, __va(pud_phys));
606                 spin_unlock(&init_mm.page_table_lock);
607         }
608         __flush_tlb_all();
609
610         return last_map_addr;
611 }
612
613 #ifndef CONFIG_NUMA
614 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
615 {
616         unsigned long bootmap_size, bootmap;
617
618         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
619         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
620                                  PAGE_SIZE);
621         if (bootmap == -1L)
622                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
623         /* don't touch min_low_pfn */
624         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
625                                          0, end_pfn);
626         e820_register_active_regions(0, start_pfn, end_pfn);
627         free_bootmem_with_active_regions(0, end_pfn);
628         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
629         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
630 }
631
632 void __init paging_init(void)
633 {
634         unsigned long max_zone_pfns[MAX_NR_ZONES];
635
636         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
637         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
638         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
639         max_zone_pfns[ZONE_NORMAL] = max_pfn;
640
641         memory_present(0, 0, max_pfn);
642         sparse_init();
643         free_area_init_nodes(max_zone_pfns);
644 }
645 #endif
646
647 /*
648  * Memory hotplug specific functions
649  */
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 /*
652  * Memory is added always to NORMAL zone. This means you will never get
653  * additional DMA/DMA32 memory.
654  */
655 int arch_add_memory(int nid, u64 start, u64 size)
656 {
657         struct pglist_data *pgdat = NODE_DATA(nid);
658         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
659         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
660         unsigned long nr_pages = size >> PAGE_SHIFT;
661         int ret;
662
663         last_mapped_pfn = init_memory_mapping(start, start + size);
664         if (last_mapped_pfn > max_pfn_mapped)
665                 max_pfn_mapped = last_mapped_pfn;
666
667         ret = __add_pages(nid, zone, start_pfn, nr_pages);
668         WARN_ON_ONCE(ret);
669
670         return ret;
671 }
672 EXPORT_SYMBOL_GPL(arch_add_memory);
673
674 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
675 int memory_add_physaddr_to_nid(u64 start)
676 {
677         return 0;
678 }
679 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
680 #endif
681
682 #endif /* CONFIG_MEMORY_HOTPLUG */
683
684 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
685                          kcore_modules, kcore_vsyscall;
686
687 void __init mem_init(void)
688 {
689         long codesize, reservedpages, datasize, initsize;
690         unsigned long absent_pages;
691
692         pci_iommu_alloc();
693
694         /* clear_bss() already clear the empty_zero_page */
695
696         reservedpages = 0;
697
698         /* this will put all low memory onto the freelists */
699 #ifdef CONFIG_NUMA
700         totalram_pages = numa_free_all_bootmem();
701 #else
702         totalram_pages = free_all_bootmem();
703 #endif
704
705         absent_pages = absent_pages_in_range(0, max_pfn);
706         reservedpages = max_pfn - totalram_pages - absent_pages;
707         after_bootmem = 1;
708
709         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
710         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
711         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
712
713         /* Register memory areas for /proc/kcore */
714         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
715         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
716                    VMALLOC_END-VMALLOC_START);
717         kclist_add(&kcore_kernel, &_stext, _end - _stext);
718         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
719         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
720                                  VSYSCALL_END - VSYSCALL_START);
721
722         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
723                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
724                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
725                 max_pfn << (PAGE_SHIFT-10),
726                 codesize >> 10,
727                 absent_pages << (PAGE_SHIFT-10),
728                 reservedpages << (PAGE_SHIFT-10),
729                 datasize >> 10,
730                 initsize >> 10);
731 }
732
733 #ifdef CONFIG_DEBUG_RODATA
734 const int rodata_test_data = 0xC3;
735 EXPORT_SYMBOL_GPL(rodata_test_data);
736
737 static int kernel_set_to_readonly;
738
739 void set_kernel_text_rw(void)
740 {
741         unsigned long start = PFN_ALIGN(_stext);
742         unsigned long end = PFN_ALIGN(__start_rodata);
743
744         if (!kernel_set_to_readonly)
745                 return;
746
747         pr_debug("Set kernel text: %lx - %lx for read write\n",
748                  start, end);
749
750         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
751 }
752
753 void set_kernel_text_ro(void)
754 {
755         unsigned long start = PFN_ALIGN(_stext);
756         unsigned long end = PFN_ALIGN(__start_rodata);
757
758         if (!kernel_set_to_readonly)
759                 return;
760
761         pr_debug("Set kernel text: %lx - %lx for read only\n",
762                  start, end);
763
764         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
765 }
766
767 void mark_rodata_ro(void)
768 {
769         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
770         unsigned long rodata_start =
771                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
772
773         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
774                (end - start) >> 10);
775         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
776
777         kernel_set_to_readonly = 1;
778
779         /*
780          * The rodata section (but not the kernel text!) should also be
781          * not-executable.
782          */
783         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
784
785         rodata_test();
786
787 #ifdef CONFIG_CPA_DEBUG
788         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
789         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
790
791         printk(KERN_INFO "Testing CPA: again\n");
792         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
793 #endif
794 }
795
796 #endif
797
798 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
799                                    int flags)
800 {
801 #ifdef CONFIG_NUMA
802         int nid, next_nid;
803         int ret;
804 #endif
805         unsigned long pfn = phys >> PAGE_SHIFT;
806
807         if (pfn >= max_pfn) {
808                 /*
809                  * This can happen with kdump kernels when accessing
810                  * firmware tables:
811                  */
812                 if (pfn < max_pfn_mapped)
813                         return -EFAULT;
814
815                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
816                                 phys, len);
817                 return -EFAULT;
818         }
819
820         /* Should check here against the e820 map to avoid double free */
821 #ifdef CONFIG_NUMA
822         nid = phys_to_nid(phys);
823         next_nid = phys_to_nid(phys + len - 1);
824         if (nid == next_nid)
825                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
826         else
827                 ret = reserve_bootmem(phys, len, flags);
828
829         if (ret != 0)
830                 return ret;
831
832 #else
833         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
834 #endif
835
836         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
837                 dma_reserve += len / PAGE_SIZE;
838                 set_dma_reserve(dma_reserve);
839         }
840
841         return 0;
842 }
843
844 int kern_addr_valid(unsigned long addr)
845 {
846         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
847         pgd_t *pgd;
848         pud_t *pud;
849         pmd_t *pmd;
850         pte_t *pte;
851
852         if (above != 0 && above != -1UL)
853                 return 0;
854
855         pgd = pgd_offset_k(addr);
856         if (pgd_none(*pgd))
857                 return 0;
858
859         pud = pud_offset(pgd, addr);
860         if (pud_none(*pud))
861                 return 0;
862
863         pmd = pmd_offset(pud, addr);
864         if (pmd_none(*pmd))
865                 return 0;
866
867         if (pmd_large(*pmd))
868                 return pfn_valid(pmd_pfn(*pmd));
869
870         pte = pte_offset_kernel(pmd, addr);
871         if (pte_none(*pte))
872                 return 0;
873
874         return pfn_valid(pte_pfn(*pte));
875 }
876
877 /*
878  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
879  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
880  * not need special handling anymore:
881  */
882 static struct vm_area_struct gate_vma = {
883         .vm_start       = VSYSCALL_START,
884         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
885         .vm_page_prot   = PAGE_READONLY_EXEC,
886         .vm_flags       = VM_READ | VM_EXEC
887 };
888
889 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
890 {
891 #ifdef CONFIG_IA32_EMULATION
892         if (test_tsk_thread_flag(tsk, TIF_IA32))
893                 return NULL;
894 #endif
895         return &gate_vma;
896 }
897
898 int in_gate_area(struct task_struct *task, unsigned long addr)
899 {
900         struct vm_area_struct *vma = get_gate_vma(task);
901
902         if (!vma)
903                 return 0;
904
905         return (addr >= vma->vm_start) && (addr < vma->vm_end);
906 }
907
908 /*
909  * Use this when you have no reliable task/vma, typically from interrupt
910  * context. It is less reliable than using the task's vma and may give
911  * false positives:
912  */
913 int in_gate_area_no_task(unsigned long addr)
914 {
915         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
916 }
917
918 const char *arch_vma_name(struct vm_area_struct *vma)
919 {
920         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
921                 return "[vdso]";
922         if (vma == &gate_vma)
923                 return "[vsyscall]";
924         return NULL;
925 }
926
927 #ifdef CONFIG_SPARSEMEM_VMEMMAP
928 /*
929  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
930  */
931 static long __meminitdata addr_start, addr_end;
932 static void __meminitdata *p_start, *p_end;
933 static int __meminitdata node_start;
934
935 int __meminit
936 vmemmap_populate(struct page *start_page, unsigned long size, int node)
937 {
938         unsigned long addr = (unsigned long)start_page;
939         unsigned long end = (unsigned long)(start_page + size);
940         unsigned long next;
941         pgd_t *pgd;
942         pud_t *pud;
943         pmd_t *pmd;
944
945         for (; addr < end; addr = next) {
946                 void *p = NULL;
947
948                 pgd = vmemmap_pgd_populate(addr, node);
949                 if (!pgd)
950                         return -ENOMEM;
951
952                 pud = vmemmap_pud_populate(pgd, addr, node);
953                 if (!pud)
954                         return -ENOMEM;
955
956                 if (!cpu_has_pse) {
957                         next = (addr + PAGE_SIZE) & PAGE_MASK;
958                         pmd = vmemmap_pmd_populate(pud, addr, node);
959
960                         if (!pmd)
961                                 return -ENOMEM;
962
963                         p = vmemmap_pte_populate(pmd, addr, node);
964
965                         if (!p)
966                                 return -ENOMEM;
967
968                         addr_end = addr + PAGE_SIZE;
969                         p_end = p + PAGE_SIZE;
970                 } else {
971                         next = pmd_addr_end(addr, end);
972
973                         pmd = pmd_offset(pud, addr);
974                         if (pmd_none(*pmd)) {
975                                 pte_t entry;
976
977                                 p = vmemmap_alloc_block(PMD_SIZE, node);
978                                 if (!p)
979                                         return -ENOMEM;
980
981                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
982                                                 PAGE_KERNEL_LARGE);
983                                 set_pmd(pmd, __pmd(pte_val(entry)));
984
985                                 /* check to see if we have contiguous blocks */
986                                 if (p_end != p || node_start != node) {
987                                         if (p_start)
988                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
989                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
990                                         addr_start = addr;
991                                         node_start = node;
992                                         p_start = p;
993                                 }
994
995                                 addr_end = addr + PMD_SIZE;
996                                 p_end = p + PMD_SIZE;
997                         } else
998                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
999                 }
1000
1001         }
1002         return 0;
1003 }
1004
1005 void __meminit vmemmap_populate_print_last(void)
1006 {
1007         if (p_start) {
1008                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1009                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1010                 p_start = NULL;
1011                 p_end = NULL;
1012                 node_start = 0;
1013         }
1014 }
1015 #endif