2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
52 * sys_sched_yield() compat mode
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
57 unsigned int __read_mostly sysctl_sched_compat_yield;
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
79 extern struct sched_class fair_sched_class;
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 #else /* CONFIG_FAIR_GROUP_SCHED */
98 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
100 return container_of(cfs_rq, struct rq, cfs);
103 #define entity_is_task(se) 1
105 #endif /* CONFIG_FAIR_GROUP_SCHED */
107 static inline struct task_struct *task_of(struct sched_entity *se)
109 return container_of(se, struct task_struct, se);
113 /**************************************************************
114 * Scheduling class tree data structure manipulation methods:
118 max_vruntime(u64 min_vruntime, u64 vruntime)
120 s64 delta = (s64)(vruntime - min_vruntime);
122 min_vruntime = vruntime;
128 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
130 struct sched_entity *se;
132 cfs_rq->rb_leftmost = leftmost;
134 se = rb_entry(leftmost, struct sched_entity, run_node);
138 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
140 return se->vruntime - cfs_rq->min_vruntime;
144 * Enqueue an entity into the rb-tree:
147 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
150 struct rb_node *parent = NULL;
151 struct sched_entity *entry;
152 s64 key = entity_key(cfs_rq, se);
156 * Find the right place in the rbtree:
160 entry = rb_entry(parent, struct sched_entity, run_node);
162 * We dont care about collisions. Nodes with
163 * the same key stay together.
165 if (key < entity_key(cfs_rq, entry)) {
166 link = &parent->rb_left;
168 link = &parent->rb_right;
174 * Maintain a cache of leftmost tree entries (it is frequently
178 set_leftmost(cfs_rq, &se->run_node);
180 rb_link_node(&se->run_node, parent, link);
181 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
185 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 set_leftmost(cfs_rq, rb_next(&se->run_node));
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
195 return cfs_rq->rb_leftmost;
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
218 /**************************************************************
219 * Scheduling class statistics methods:
222 static u64 __sched_period(unsigned long nr_running)
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency =
226 sysctl_sched_latency / sysctl_sched_min_granularity;
228 if (unlikely(nr_running > nr_latency)) {
229 period *= nr_running;
230 do_div(period, nr_latency);
236 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
238 u64 period = __sched_period(cfs_rq->nr_running);
240 period *= se->load.weight;
241 do_div(period, cfs_rq->load.weight);
246 static u64 __sched_vslice(unsigned long nr_running)
248 u64 period = __sched_period(nr_running);
250 do_div(period, nr_running);
256 * Update the current task's runtime statistics. Skip current tasks that
257 * are not in our scheduling class.
260 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
261 unsigned long delta_exec)
263 unsigned long delta_exec_weighted;
264 u64 next_vruntime, min_vruntime;
266 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
268 curr->sum_exec_runtime += delta_exec;
269 schedstat_add(cfs_rq, exec_clock, delta_exec);
270 delta_exec_weighted = delta_exec;
271 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
272 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
275 curr->vruntime += delta_exec_weighted;
278 * maintain cfs_rq->min_vruntime to be a monotonic increasing
279 * value tracking the leftmost vruntime in the tree.
281 if (first_fair(cfs_rq)) {
282 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
284 /* min_vruntime() := !max_vruntime() */
285 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
286 if (min_vruntime == next_vruntime)
287 min_vruntime = curr->vruntime;
289 min_vruntime = next_vruntime;
291 min_vruntime = curr->vruntime;
293 cfs_rq->min_vruntime =
294 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
297 static void update_curr(struct cfs_rq *cfs_rq)
299 struct sched_entity *curr = cfs_rq->curr;
300 u64 now = rq_of(cfs_rq)->clock;
301 unsigned long delta_exec;
307 * Get the amount of time the current task was running
308 * since the last time we changed load (this cannot
309 * overflow on 32 bits):
311 delta_exec = (unsigned long)(now - curr->exec_start);
313 __update_curr(cfs_rq, curr, delta_exec);
314 curr->exec_start = now;
318 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
320 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
323 static inline unsigned long
324 calc_weighted(unsigned long delta, struct sched_entity *se)
326 unsigned long weight = se->load.weight;
328 if (unlikely(weight != NICE_0_LOAD))
329 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
335 * Task is being enqueued - update stats:
337 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
340 * Are we enqueueing a waiting task? (for current tasks
341 * a dequeue/enqueue event is a NOP)
343 if (se != cfs_rq->curr)
344 update_stats_wait_start(cfs_rq, se);
348 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 schedstat_set(se->wait_max, max(se->wait_max,
351 rq_of(cfs_rq)->clock - se->wait_start));
352 schedstat_set(se->wait_start, 0);
356 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
360 * Mark the end of the wait period if dequeueing a
363 if (se != cfs_rq->curr)
364 update_stats_wait_end(cfs_rq, se);
368 * We are picking a new current task - update its stats:
371 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 * We are starting a new run period:
376 se->exec_start = rq_of(cfs_rq)->clock;
380 * We are descheduling a task - update its stats:
383 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
388 /**************************************************
389 * Scheduling class queueing methods:
393 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 update_load_add(&cfs_rq->load, se->load.weight);
396 cfs_rq->nr_running++;
401 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
403 update_load_sub(&cfs_rq->load, se->load.weight);
404 cfs_rq->nr_running--;
408 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
410 #ifdef CONFIG_SCHEDSTATS
411 if (se->sleep_start) {
412 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
417 if (unlikely(delta > se->sleep_max))
418 se->sleep_max = delta;
421 se->sum_sleep_runtime += delta;
423 if (se->block_start) {
424 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
429 if (unlikely(delta > se->block_max))
430 se->block_max = delta;
433 se->sum_sleep_runtime += delta;
436 * Blocking time is in units of nanosecs, so shift by 20 to
437 * get a milliseconds-range estimation of the amount of
438 * time that the task spent sleeping:
440 if (unlikely(prof_on == SLEEP_PROFILING)) {
441 struct task_struct *tsk = task_of(se);
443 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
450 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
452 #ifdef CONFIG_SCHED_DEBUG
453 s64 d = se->vruntime - cfs_rq->min_vruntime;
458 if (d > 3*sysctl_sched_latency)
459 schedstat_inc(cfs_rq, nr_spread_over);
464 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
468 vruntime = cfs_rq->min_vruntime;
470 if (sched_feat(USE_TREE_AVG)) {
471 struct sched_entity *last = __pick_last_entity(cfs_rq);
473 vruntime += last->vruntime;
476 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
477 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
479 if (initial && sched_feat(START_DEBIT))
480 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
483 if (sched_feat(NEW_FAIR_SLEEPERS))
484 vruntime -= sysctl_sched_latency;
486 vruntime = max_t(s64, vruntime, se->vruntime);
489 se->vruntime = vruntime;
494 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
497 * Update the fair clock.
502 /* se->vruntime += cfs_rq->min_vruntime; */
503 place_entity(cfs_rq, se, 0);
504 enqueue_sleeper(cfs_rq, se);
507 update_stats_enqueue(cfs_rq, se);
508 check_spread(cfs_rq, se);
509 if (se != cfs_rq->curr)
510 __enqueue_entity(cfs_rq, se);
511 account_entity_enqueue(cfs_rq, se);
515 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
517 update_stats_dequeue(cfs_rq, se);
519 #ifdef CONFIG_SCHEDSTATS
520 if (entity_is_task(se)) {
521 struct task_struct *tsk = task_of(se);
523 if (tsk->state & TASK_INTERRUPTIBLE)
524 se->sleep_start = rq_of(cfs_rq)->clock;
525 if (tsk->state & TASK_UNINTERRUPTIBLE)
526 se->block_start = rq_of(cfs_rq)->clock;
531 if (se != cfs_rq->curr)
532 __dequeue_entity(cfs_rq, se);
533 account_entity_dequeue(cfs_rq, se);
537 * Preempt the current task with a newly woken task if needed:
540 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
542 unsigned long ideal_runtime, delta_exec;
544 ideal_runtime = sched_slice(cfs_rq, curr);
545 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
546 if (delta_exec > ideal_runtime)
547 resched_task(rq_of(cfs_rq)->curr);
551 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 /* 'current' is not kept within the tree. */
556 * Any task has to be enqueued before it get to execute on
557 * a CPU. So account for the time it spent waiting on the
560 update_stats_wait_end(cfs_rq, se);
561 __dequeue_entity(cfs_rq, se);
564 update_stats_curr_start(cfs_rq, se);
566 #ifdef CONFIG_SCHEDSTATS
568 * Track our maximum slice length, if the CPU's load is at
569 * least twice that of our own weight (i.e. dont track it
570 * when there are only lesser-weight tasks around):
572 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
573 se->slice_max = max(se->slice_max,
574 se->sum_exec_runtime - se->prev_sum_exec_runtime);
577 se->prev_sum_exec_runtime = se->sum_exec_runtime;
580 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
582 struct sched_entity *se = __pick_next_entity(cfs_rq);
584 set_next_entity(cfs_rq, se);
589 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
592 * If still on the runqueue then deactivate_task()
593 * was not called and update_curr() has to be done:
598 update_stats_curr_end(cfs_rq, prev);
600 check_spread(cfs_rq, prev);
602 update_stats_wait_start(cfs_rq, prev);
603 /* Put 'current' back into the tree. */
604 __enqueue_entity(cfs_rq, prev);
609 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
612 * Update run-time statistics of the 'current'.
616 if (cfs_rq->nr_running > 1)
617 check_preempt_tick(cfs_rq, curr);
620 /**************************************************
621 * CFS operations on tasks:
624 #ifdef CONFIG_FAIR_GROUP_SCHED
626 /* Walk up scheduling entities hierarchy */
627 #define for_each_sched_entity(se) \
628 for (; se; se = se->parent)
630 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
635 /* runqueue on which this entity is (to be) queued */
636 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
641 /* runqueue "owned" by this group */
642 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
647 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
648 * another cpu ('this_cpu')
650 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
652 return cfs_rq->tg->cfs_rq[this_cpu];
655 /* Iterate thr' all leaf cfs_rq's on a runqueue */
656 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
657 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
659 /* Do the two (enqueued) tasks belong to the same group ? */
660 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
662 if (curr->se.cfs_rq == p->se.cfs_rq)
668 #else /* CONFIG_FAIR_GROUP_SCHED */
670 #define for_each_sched_entity(se) \
671 for (; se; se = NULL)
673 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
675 return &task_rq(p)->cfs;
678 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
680 struct task_struct *p = task_of(se);
681 struct rq *rq = task_rq(p);
686 /* runqueue "owned" by this group */
687 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
692 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
694 return &cpu_rq(this_cpu)->cfs;
697 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
698 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
700 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
705 #endif /* CONFIG_FAIR_GROUP_SCHED */
708 * The enqueue_task method is called before nr_running is
709 * increased. Here we update the fair scheduling stats and
710 * then put the task into the rbtree:
712 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
714 struct cfs_rq *cfs_rq;
715 struct sched_entity *se = &p->se;
717 for_each_sched_entity(se) {
720 cfs_rq = cfs_rq_of(se);
721 enqueue_entity(cfs_rq, se, wakeup);
726 * The dequeue_task method is called before nr_running is
727 * decreased. We remove the task from the rbtree and
728 * update the fair scheduling stats:
730 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
732 struct cfs_rq *cfs_rq;
733 struct sched_entity *se = &p->se;
735 for_each_sched_entity(se) {
736 cfs_rq = cfs_rq_of(se);
737 dequeue_entity(cfs_rq, se, sleep);
738 /* Don't dequeue parent if it has other entities besides us */
739 if (cfs_rq->load.weight)
745 * sched_yield() support is very simple - we dequeue and enqueue.
747 * If compat_yield is turned on then we requeue to the end of the tree.
749 static void yield_task_fair(struct rq *rq)
751 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
752 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
753 struct sched_entity *rightmost, *se = &rq->curr->se;
754 struct rb_node *parent;
757 * Are we the only task in the tree?
759 if (unlikely(cfs_rq->nr_running == 1))
762 if (likely(!sysctl_sched_compat_yield)) {
763 __update_rq_clock(rq);
765 * Dequeue and enqueue the task to update its
766 * position within the tree:
768 dequeue_entity(cfs_rq, se, 0);
769 enqueue_entity(cfs_rq, se, 0);
774 * Find the rightmost entry in the rbtree:
778 link = &parent->rb_right;
781 rightmost = rb_entry(parent, struct sched_entity, run_node);
783 * Already in the rightmost position?
785 if (unlikely(rightmost == se))
789 * Minimally necessary key value to be last in the tree:
791 se->vruntime = rightmost->vruntime + 1;
793 if (cfs_rq->rb_leftmost == &se->run_node)
794 cfs_rq->rb_leftmost = rb_next(&se->run_node);
796 * Relink the task to the rightmost position:
798 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
799 rb_link_node(&se->run_node, parent, link);
800 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
804 * Preempt the current task with a newly woken task if needed:
806 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
808 struct task_struct *curr = rq->curr;
809 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
811 if (unlikely(rt_prio(p->prio))) {
817 if (is_same_group(curr, p)) {
818 s64 delta = curr->se.vruntime - p->se.vruntime;
820 if (delta > (s64)sysctl_sched_wakeup_granularity)
825 static struct task_struct *pick_next_task_fair(struct rq *rq)
827 struct cfs_rq *cfs_rq = &rq->cfs;
828 struct sched_entity *se;
830 if (unlikely(!cfs_rq->nr_running))
834 se = pick_next_entity(cfs_rq);
835 cfs_rq = group_cfs_rq(se);
842 * Account for a descheduled task:
844 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
846 struct sched_entity *se = &prev->se;
847 struct cfs_rq *cfs_rq;
849 for_each_sched_entity(se) {
850 cfs_rq = cfs_rq_of(se);
851 put_prev_entity(cfs_rq, se);
855 /**************************************************
856 * Fair scheduling class load-balancing methods:
860 * Load-balancing iterator. Note: while the runqueue stays locked
861 * during the whole iteration, the current task might be
862 * dequeued so the iterator has to be dequeue-safe. Here we
863 * achieve that by always pre-iterating before returning
866 static inline struct task_struct *
867 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
869 struct task_struct *p;
874 p = rb_entry(curr, struct task_struct, se.run_node);
875 cfs_rq->rb_load_balance_curr = rb_next(curr);
880 static struct task_struct *load_balance_start_fair(void *arg)
882 struct cfs_rq *cfs_rq = arg;
884 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
887 static struct task_struct *load_balance_next_fair(void *arg)
889 struct cfs_rq *cfs_rq = arg;
891 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
894 #ifdef CONFIG_FAIR_GROUP_SCHED
895 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
897 struct sched_entity *curr;
898 struct task_struct *p;
900 if (!cfs_rq->nr_running)
905 curr = __pick_next_entity(cfs_rq);
914 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
915 unsigned long max_nr_move, unsigned long max_load_move,
916 struct sched_domain *sd, enum cpu_idle_type idle,
917 int *all_pinned, int *this_best_prio)
919 struct cfs_rq *busy_cfs_rq;
920 unsigned long load_moved, total_nr_moved = 0, nr_moved;
921 long rem_load_move = max_load_move;
922 struct rq_iterator cfs_rq_iterator;
924 cfs_rq_iterator.start = load_balance_start_fair;
925 cfs_rq_iterator.next = load_balance_next_fair;
927 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
928 #ifdef CONFIG_FAIR_GROUP_SCHED
929 struct cfs_rq *this_cfs_rq;
931 unsigned long maxload;
933 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
935 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
936 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
940 /* Don't pull more than imbalance/2 */
942 maxload = min(rem_load_move, imbalance);
944 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
946 # define maxload rem_load_move
948 /* pass busy_cfs_rq argument into
949 * load_balance_[start|next]_fair iterators
951 cfs_rq_iterator.arg = busy_cfs_rq;
952 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
953 max_nr_move, maxload, sd, idle, all_pinned,
954 &load_moved, this_best_prio, &cfs_rq_iterator);
956 total_nr_moved += nr_moved;
957 max_nr_move -= nr_moved;
958 rem_load_move -= load_moved;
960 if (max_nr_move <= 0 || rem_load_move <= 0)
964 return max_load_move - rem_load_move;
968 * scheduler tick hitting a task of our scheduling class:
970 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
972 struct cfs_rq *cfs_rq;
973 struct sched_entity *se = &curr->se;
975 for_each_sched_entity(se) {
976 cfs_rq = cfs_rq_of(se);
977 entity_tick(cfs_rq, se);
981 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
984 * Share the fairness runtime between parent and child, thus the
985 * total amount of pressure for CPU stays equal - new tasks
986 * get a chance to run but frequent forkers are not allowed to
987 * monopolize the CPU. Note: the parent runqueue is locked,
988 * the child is not running yet.
990 static void task_new_fair(struct rq *rq, struct task_struct *p)
992 struct cfs_rq *cfs_rq = task_cfs_rq(p);
993 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
995 sched_info_queued(p);
998 place_entity(cfs_rq, se, 1);
1000 if (sysctl_sched_child_runs_first &&
1001 curr->vruntime < se->vruntime) {
1003 * Upon rescheduling, sched_class::put_prev_task() will place
1004 * 'current' within the tree based on its new key value.
1006 swap(curr->vruntime, se->vruntime);
1009 update_stats_enqueue(cfs_rq, se);
1010 check_spread(cfs_rq, se);
1011 check_spread(cfs_rq, curr);
1012 __enqueue_entity(cfs_rq, se);
1013 account_entity_enqueue(cfs_rq, se);
1014 resched_task(rq->curr);
1017 /* Account for a task changing its policy or group.
1019 * This routine is mostly called to set cfs_rq->curr field when a task
1020 * migrates between groups/classes.
1022 static void set_curr_task_fair(struct rq *rq)
1024 struct sched_entity *se = &rq->curr->se;
1026 for_each_sched_entity(se)
1027 set_next_entity(cfs_rq_of(se), se);
1031 * All the scheduling class methods:
1033 struct sched_class fair_sched_class __read_mostly = {
1034 .enqueue_task = enqueue_task_fair,
1035 .dequeue_task = dequeue_task_fair,
1036 .yield_task = yield_task_fair,
1038 .check_preempt_curr = check_preempt_wakeup,
1040 .pick_next_task = pick_next_task_fair,
1041 .put_prev_task = put_prev_task_fair,
1043 .load_balance = load_balance_fair,
1045 .set_curr_task = set_curr_task_fair,
1046 .task_tick = task_tick_fair,
1047 .task_new = task_new_fair,
1050 #ifdef CONFIG_SCHED_DEBUG
1051 static void print_cfs_stats(struct seq_file *m, int cpu)
1053 struct cfs_rq *cfs_rq;
1055 #ifdef CONFIG_FAIR_GROUP_SCHED
1056 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1058 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1059 print_cfs_rq(m, cpu, cfs_rq);