4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/syscalls.h>
35 #include <linux/security.h>
37 #include <linux/module.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
46 struct timezone sys_tz;
48 EXPORT_SYMBOL(sys_tz);
50 #ifdef __ARCH_WANT_SYS_TIME
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
58 asmlinkage long sys_time(time_t __user * tloc)
61 * We read xtime.tv_sec atomically - it's updated
62 * atomically by update_wall_time(), so no need to
63 * even read-lock the xtime seqlock:
65 time_t i = xtime.tv_sec;
67 smp_rmb(); /* sys_time() results are coherent */
70 if (put_user(i, tloc))
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
83 asmlinkage long sys_stime(time_t __user *tptr)
88 if (get_user(tv.tv_sec, tptr))
93 err = security_settime(&tv, NULL);
101 #endif /* __ARCH_WANT_SYS_TIME */
103 asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
105 if (likely(tv != NULL)) {
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
119 * Adjust the time obtained from the CMOS to be UTC time instead of
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
124 * confusion if the program gets run more than once; it would also be
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
134 static inline void warp_clock(void)
136 write_seqlock_irq(&xtime_lock);
137 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
139 time_interpolator_reset();
140 write_sequnlock_irq(&xtime_lock);
145 * In case for some reason the CMOS clock has not already been running
146 * in UTC, but in some local time: The first time we set the timezone,
147 * we will warp the clock so that it is ticking UTC time instead of
148 * local time. Presumably, if someone is setting the timezone then we
149 * are running in an environment where the programs understand about
150 * timezones. This should be done at boot time in the /etc/rc script,
151 * as soon as possible, so that the clock can be set right. Otherwise,
152 * various programs will get confused when the clock gets warped.
155 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
157 static int firsttime = 1;
160 if (tv && !timespec_valid(tv))
163 error = security_settime(tv, tz);
168 /* SMP safe, global irq locking makes it work. */
178 /* SMP safe, again the code in arch/foo/time.c should
179 * globally block out interrupts when it runs.
181 return do_settimeofday(tv);
186 asmlinkage long sys_settimeofday(struct timeval __user *tv,
187 struct timezone __user *tz)
189 struct timeval user_tv;
190 struct timespec new_ts;
191 struct timezone new_tz;
194 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
196 new_ts.tv_sec = user_tv.tv_sec;
197 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
200 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
207 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
209 struct timex txc; /* Local copy of parameter */
212 /* Copy the user data space into the kernel copy
213 * structure. But bear in mind that the structures
216 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
218 ret = do_adjtimex(&txc);
219 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
222 inline struct timespec current_kernel_time(void)
228 seq = read_seqbegin(&xtime_lock);
231 } while (read_seqretry(&xtime_lock, seq));
236 EXPORT_SYMBOL(current_kernel_time);
239 * current_fs_time - Return FS time
242 * Return the current time truncated to the time granularity supported by
245 struct timespec current_fs_time(struct super_block *sb)
247 struct timespec now = current_kernel_time();
248 return timespec_trunc(now, sb->s_time_gran);
250 EXPORT_SYMBOL(current_fs_time);
253 * Convert jiffies to milliseconds and back.
255 * Avoid unnecessary multiplications/divisions in the
256 * two most common HZ cases:
258 unsigned int inline jiffies_to_msecs(const unsigned long j)
260 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
261 return (MSEC_PER_SEC / HZ) * j;
262 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
263 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
265 return (j * MSEC_PER_SEC) / HZ;
268 EXPORT_SYMBOL(jiffies_to_msecs);
270 unsigned int inline jiffies_to_usecs(const unsigned long j)
272 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
273 return (USEC_PER_SEC / HZ) * j;
274 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
275 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
277 return (j * USEC_PER_SEC) / HZ;
280 EXPORT_SYMBOL(jiffies_to_usecs);
283 * timespec_trunc - Truncate timespec to a granularity
285 * @gran: Granularity in ns.
287 * Truncate a timespec to a granularity. gran must be smaller than a second.
288 * Always rounds down.
290 * This function should be only used for timestamps returned by
291 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
292 * it doesn't handle the better resolution of the later.
294 struct timespec timespec_trunc(struct timespec t, unsigned gran)
297 * Division is pretty slow so avoid it for common cases.
298 * Currently current_kernel_time() never returns better than
299 * jiffies resolution. Exploit that.
301 if (gran <= jiffies_to_usecs(1) * 1000) {
303 } else if (gran == 1000000000) {
306 t.tv_nsec -= t.tv_nsec % gran;
310 EXPORT_SYMBOL(timespec_trunc);
312 #ifdef CONFIG_TIME_INTERPOLATION
313 void getnstimeofday (struct timespec *tv)
315 unsigned long seq,sec,nsec;
318 seq = read_seqbegin(&xtime_lock);
320 nsec = xtime.tv_nsec+time_interpolator_get_offset();
321 } while (unlikely(read_seqretry(&xtime_lock, seq)));
323 while (unlikely(nsec >= NSEC_PER_SEC)) {
324 nsec -= NSEC_PER_SEC;
330 EXPORT_SYMBOL_GPL(getnstimeofday);
332 int do_settimeofday (struct timespec *tv)
334 time_t wtm_sec, sec = tv->tv_sec;
335 long wtm_nsec, nsec = tv->tv_nsec;
337 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
340 write_seqlock_irq(&xtime_lock);
342 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
343 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
345 set_normalized_timespec(&xtime, sec, nsec);
346 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
348 time_adjust = 0; /* stop active adjtime() */
349 time_status |= STA_UNSYNC;
350 time_maxerror = NTP_PHASE_LIMIT;
351 time_esterror = NTP_PHASE_LIMIT;
352 time_interpolator_reset();
354 write_sequnlock_irq(&xtime_lock);
358 EXPORT_SYMBOL(do_settimeofday);
360 void do_gettimeofday (struct timeval *tv)
362 unsigned long seq, nsec, usec, sec, offset;
364 seq = read_seqbegin(&xtime_lock);
365 offset = time_interpolator_get_offset();
367 nsec = xtime.tv_nsec;
368 } while (unlikely(read_seqretry(&xtime_lock, seq)));
370 usec = (nsec + offset) / 1000;
372 while (unlikely(usec >= USEC_PER_SEC)) {
373 usec -= USEC_PER_SEC;
381 * Make sure xtime.tv_sec [returned by sys_time()] always
382 * follows the gettimeofday() result precisely. This
383 * condition is extremely unlikely, it can hit at most
386 if (unlikely(xtime.tv_sec != tv->tv_sec)) {
389 write_seqlock_irqsave(&xtime_lock, flags);
391 write_sequnlock_irqrestore(&xtime_lock, flags);
394 EXPORT_SYMBOL(do_gettimeofday);
396 #else /* CONFIG_TIME_INTERPOLATION */
398 #ifndef CONFIG_GENERIC_TIME
400 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
401 * and therefore only yields usec accuracy
403 void getnstimeofday(struct timespec *tv)
408 tv->tv_sec = x.tv_sec;
409 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
411 EXPORT_SYMBOL_GPL(getnstimeofday);
413 #endif /* CONFIG_TIME_INTERPOLATION */
415 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
419 * [For the Julian calendar (which was used in Russia before 1917,
420 * Britain & colonies before 1752, anywhere else before 1582,
421 * and is still in use by some communities) leave out the
422 * -year/100+year/400 terms, and add 10.]
424 * This algorithm was first published by Gauss (I think).
426 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
427 * machines were long is 32-bit! (However, as time_t is signed, we
428 * will already get problems at other places on 2038-01-19 03:14:08)
431 mktime(const unsigned int year0, const unsigned int mon0,
432 const unsigned int day, const unsigned int hour,
433 const unsigned int min, const unsigned int sec)
435 unsigned int mon = mon0, year = year0;
437 /* 1..12 -> 11,12,1..10 */
438 if (0 >= (int) (mon -= 2)) {
439 mon += 12; /* Puts Feb last since it has leap day */
443 return ((((unsigned long)
444 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
446 )*24 + hour /* now have hours */
447 )*60 + min /* now have minutes */
448 )*60 + sec; /* finally seconds */
451 EXPORT_SYMBOL(mktime);
454 * set_normalized_timespec - set timespec sec and nsec parts and normalize
456 * @ts: pointer to timespec variable to be set
457 * @sec: seconds to set
458 * @nsec: nanoseconds to set
460 * Set seconds and nanoseconds field of a timespec variable and
461 * normalize to the timespec storage format
463 * Note: The tv_nsec part is always in the range of
464 * 0 <= tv_nsec < NSEC_PER_SEC
465 * For negative values only the tv_sec field is negative !
467 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
469 while (nsec >= NSEC_PER_SEC) {
470 nsec -= NSEC_PER_SEC;
474 nsec += NSEC_PER_SEC;
482 * ns_to_timespec - Convert nanoseconds to timespec
483 * @nsec: the nanoseconds value to be converted
485 * Returns the timespec representation of the nsec parameter.
487 struct timespec ns_to_timespec(const s64 nsec)
492 return (struct timespec) {0, 0};
494 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
495 if (unlikely(nsec < 0))
496 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
500 EXPORT_SYMBOL(ns_to_timespec);
503 * ns_to_timeval - Convert nanoseconds to timeval
504 * @nsec: the nanoseconds value to be converted
506 * Returns the timeval representation of the nsec parameter.
508 struct timeval ns_to_timeval(const s64 nsec)
510 struct timespec ts = ns_to_timespec(nsec);
513 tv.tv_sec = ts.tv_sec;
514 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
518 EXPORT_SYMBOL(ns_to_timeval);
521 * When we convert to jiffies then we interpret incoming values
524 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
526 * - 'too large' values [that would result in larger than
527 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
529 * - all other values are converted to jiffies by either multiplying
530 * the input value by a factor or dividing it with a factor
532 * We must also be careful about 32-bit overflows.
534 unsigned long msecs_to_jiffies(const unsigned int m)
537 * Negative value, means infinite timeout:
540 return MAX_JIFFY_OFFSET;
542 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
544 * HZ is equal to or smaller than 1000, and 1000 is a nice
545 * round multiple of HZ, divide with the factor between them,
548 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
549 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
551 * HZ is larger than 1000, and HZ is a nice round multiple of
552 * 1000 - simply multiply with the factor between them.
554 * But first make sure the multiplication result cannot
557 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
558 return MAX_JIFFY_OFFSET;
560 return m * (HZ / MSEC_PER_SEC);
563 * Generic case - multiply, round and divide. But first
564 * check that if we are doing a net multiplication, that
565 * we wouldnt overflow:
567 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
568 return MAX_JIFFY_OFFSET;
570 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
573 EXPORT_SYMBOL(msecs_to_jiffies);
575 unsigned long usecs_to_jiffies(const unsigned int u)
577 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
578 return MAX_JIFFY_OFFSET;
579 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
580 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
581 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
582 return u * (HZ / USEC_PER_SEC);
584 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
587 EXPORT_SYMBOL(usecs_to_jiffies);
590 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
591 * that a remainder subtract here would not do the right thing as the
592 * resolution values don't fall on second boundries. I.e. the line:
593 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
595 * Rather, we just shift the bits off the right.
597 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
598 * value to a scaled second value.
601 timespec_to_jiffies(const struct timespec *value)
603 unsigned long sec = value->tv_sec;
604 long nsec = value->tv_nsec + TICK_NSEC - 1;
606 if (sec >= MAX_SEC_IN_JIFFIES){
607 sec = MAX_SEC_IN_JIFFIES;
610 return (((u64)sec * SEC_CONVERSION) +
611 (((u64)nsec * NSEC_CONVERSION) >>
612 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
615 EXPORT_SYMBOL(timespec_to_jiffies);
618 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
621 * Convert jiffies to nanoseconds and separate with
624 u64 nsec = (u64)jiffies * TICK_NSEC;
625 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
627 EXPORT_SYMBOL(jiffies_to_timespec);
629 /* Same for "timeval"
631 * Well, almost. The problem here is that the real system resolution is
632 * in nanoseconds and the value being converted is in micro seconds.
633 * Also for some machines (those that use HZ = 1024, in-particular),
634 * there is a LARGE error in the tick size in microseconds.
636 * The solution we use is to do the rounding AFTER we convert the
637 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
638 * Instruction wise, this should cost only an additional add with carry
639 * instruction above the way it was done above.
642 timeval_to_jiffies(const struct timeval *value)
644 unsigned long sec = value->tv_sec;
645 long usec = value->tv_usec;
647 if (sec >= MAX_SEC_IN_JIFFIES){
648 sec = MAX_SEC_IN_JIFFIES;
651 return (((u64)sec * SEC_CONVERSION) +
652 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
653 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
655 EXPORT_SYMBOL(timeval_to_jiffies);
657 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
660 * Convert jiffies to nanoseconds and separate with
663 u64 nsec = (u64)jiffies * TICK_NSEC;
666 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
667 tv_usec /= NSEC_PER_USEC;
668 value->tv_usec = tv_usec;
670 EXPORT_SYMBOL(jiffies_to_timeval);
673 * Convert jiffies/jiffies_64 to clock_t and back.
675 clock_t jiffies_to_clock_t(long x)
677 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
678 return x / (HZ / USER_HZ);
680 u64 tmp = (u64)x * TICK_NSEC;
681 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
685 EXPORT_SYMBOL(jiffies_to_clock_t);
687 unsigned long clock_t_to_jiffies(unsigned long x)
689 #if (HZ % USER_HZ)==0
690 if (x >= ~0UL / (HZ / USER_HZ))
692 return x * (HZ / USER_HZ);
696 /* Don't worry about loss of precision here .. */
697 if (x >= ~0UL / HZ * USER_HZ)
700 /* .. but do try to contain it here */
702 do_div(jif, USER_HZ);
706 EXPORT_SYMBOL(clock_t_to_jiffies);
708 u64 jiffies_64_to_clock_t(u64 x)
710 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
711 do_div(x, HZ / USER_HZ);
714 * There are better ways that don't overflow early,
715 * but even this doesn't overflow in hundreds of years
719 do_div(x, (NSEC_PER_SEC / USER_HZ));
724 EXPORT_SYMBOL(jiffies_64_to_clock_t);
726 u64 nsec_to_clock_t(u64 x)
728 #if (NSEC_PER_SEC % USER_HZ) == 0
729 do_div(x, (NSEC_PER_SEC / USER_HZ));
730 #elif (USER_HZ % 512) == 0
732 do_div(x, (NSEC_PER_SEC / 512));
735 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
736 * overflow after 64.99 years.
737 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
740 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
746 #if (BITS_PER_LONG < 64)
747 u64 get_jiffies_64(void)
753 seq = read_seqbegin(&xtime_lock);
755 } while (read_seqretry(&xtime_lock, seq));
759 EXPORT_SYMBOL(get_jiffies_64);
762 EXPORT_SYMBOL(jiffies);