1 #ifndef _ALPHA_PGTABLE_H
2 #define _ALPHA_PGTABLE_H
4 #include <asm-generic/4level-fixup.h>
7 * This file contains the functions and defines necessary to modify and use
8 * the Alpha page table tree.
10 * This hopefully works with any standard Alpha page-size, as defined
11 * in <asm/page.h> (currently 8192).
13 #include <linux/config.h>
14 #include <linux/mmzone.h>
17 #include <asm/processor.h> /* For TASK_SIZE */
18 #include <asm/machvec.h>
20 /* Certain architectures need to do special things when PTEs
21 * within a page table are directly modified. Thus, the following
22 * hook is made available.
24 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
25 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
27 /* PMD_SHIFT determines the size of the area a second-level page table can map */
28 #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
29 #define PMD_SIZE (1UL << PMD_SHIFT)
30 #define PMD_MASK (~(PMD_SIZE-1))
32 /* PGDIR_SHIFT determines what a third-level page table entry can map */
33 #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
34 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
35 #define PGDIR_MASK (~(PGDIR_SIZE-1))
38 * Entries per page directory level: the Alpha is three-level, with
39 * all levels having a one-page page table.
41 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
42 #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3))
43 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3))
44 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
45 #define FIRST_USER_ADDRESS 0
47 /* Number of pointers that fit on a page: this will go away. */
48 #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3))
50 #ifdef CONFIG_ALPHA_LARGE_VMALLOC
51 #define VMALLOC_START 0xfffffe0000000000
53 #define VMALLOC_START (-2*PGDIR_SIZE)
55 #define VMALLOC_END (-PGDIR_SIZE)
58 * OSF/1 PAL-code-imposed page table bits
60 #define _PAGE_VALID 0x0001
61 #define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */
62 #define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */
63 #define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */
64 #define _PAGE_ASM 0x0010
65 #define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */
66 #define _PAGE_URE 0x0200 /* xxx */
67 #define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */
68 #define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */
70 /* .. and these are ours ... */
71 #define _PAGE_DIRTY 0x20000
72 #define _PAGE_ACCESSED 0x40000
73 #define _PAGE_FILE 0x80000 /* set:pagecache, unset:swap */
76 * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly
77 * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
78 * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
79 * the KRE/URE bits to watch for it. That way we don't need to overload the
80 * KWE/UWE bits with both handling dirty and accessed.
82 * Note that the kernel uses the accessed bit just to check whether to page
83 * out a page or not, so it doesn't have to be exact anyway.
86 #define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
87 #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
89 #define _PFN_MASK 0xFFFFFFFF00000000UL
91 #define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
92 #define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
95 * All the normal masks have the "page accessed" bits on, as any time they are used,
96 * the page is accessed. They are cleared only by the page-out routines
98 #define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
99 #define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS)
100 #define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
101 #define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
102 #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
104 #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
106 #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
107 #define _PAGE_S(x) _PAGE_NORMAL(x)
110 * The hardware can handle write-only mappings, but as the Alpha
111 * architecture does byte-wide writes with a read-modify-write
112 * sequence, it's not practical to have write-without-read privs.
113 * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
114 * arch/alpha/mm/fault.c)
117 #define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
118 #define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW)
119 #define __P010 _PAGE_P(_PAGE_FOE)
120 #define __P011 _PAGE_P(_PAGE_FOE)
121 #define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR)
122 #define __P101 _PAGE_P(_PAGE_FOW)
123 #define __P110 _PAGE_P(0)
124 #define __P111 _PAGE_P(0)
126 #define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
127 #define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW)
128 #define __S010 _PAGE_S(_PAGE_FOE)
129 #define __S011 _PAGE_S(_PAGE_FOE)
130 #define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR)
131 #define __S101 _PAGE_S(_PAGE_FOW)
132 #define __S110 _PAGE_S(0)
133 #define __S111 _PAGE_S(0)
136 * pgprot_noncached() is only for infiniband pci support, and a real
137 * implementation for RAM would be more complicated.
139 #define pgprot_noncached(prot) (prot)
142 * BAD_PAGETABLE is used when we need a bogus page-table, while
143 * BAD_PAGE is used for a bogus page.
145 * ZERO_PAGE is a global shared page that is always zero: used
146 * for zero-mapped memory areas etc..
148 extern pte_t __bad_page(void);
149 extern pmd_t * __bad_pagetable(void);
151 extern unsigned long __zero_page(void);
153 #define BAD_PAGETABLE __bad_pagetable()
154 #define BAD_PAGE __bad_page()
155 #define ZERO_PAGE(vaddr) (virt_to_page(ZERO_PGE))
157 /* number of bits that fit into a memory pointer */
158 #define BITS_PER_PTR (8*sizeof(unsigned long))
160 /* to align the pointer to a pointer address */
161 #define PTR_MASK (~(sizeof(void*)-1))
163 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
164 #define SIZEOF_PTR_LOG2 3
166 /* to find an entry in a page-table */
167 #define PAGE_PTR(address) \
168 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
171 * On certain platforms whose physical address space can overlap KSEG,
172 * namely EV6 and above, we must re-twiddle the physaddr to restore the
173 * correct high-order bits.
175 * This is extremely confusing until you realize that this is actually
176 * just working around a userspace bug. The X server was intending to
177 * provide the physical address but instead provided the KSEG address.
178 * Or tried to, except it's not representable.
180 * On Tsunami there's nothing meaningful at 0x40000000000, so this is
181 * a safe thing to do. Come the first core logic that does put something
182 * in this area -- memory or whathaveyou -- then this hack will have
183 * to go away. So be prepared!
186 #if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG)
187 #error "EV6-only feature in a generic kernel"
189 #if defined(CONFIG_ALPHA_GENERIC) || \
190 (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG))
191 #define KSEG_PFN (0xc0000000000UL >> PAGE_SHIFT)
192 #define PHYS_TWIDDLE(pfn) \
193 ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \
194 ? ((pfn) ^= KSEG_PFN) : (pfn))
196 #define PHYS_TWIDDLE(pfn) (pfn)
200 * Conversion functions: convert a page and protection to a page entry,
201 * and a page entry and page directory to the page they refer to.
203 #ifndef CONFIG_DISCONTIGMEM
204 #define page_to_pa(page) (((page) - mem_map) << PAGE_SHIFT)
206 #define pte_pfn(pte) (pte_val(pte) >> 32)
207 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
208 #define mk_pte(page, pgprot) \
212 pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot); \
217 extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot)
218 { pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; }
220 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
221 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
223 extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
224 { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
226 extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
227 { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
230 extern inline unsigned long
231 pmd_page_kernel(pmd_t pmd)
233 return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET;
236 #ifndef CONFIG_DISCONTIGMEM
237 #define pmd_page(pmd) (mem_map + ((pmd_val(pmd) & _PFN_MASK) >> 32))
240 extern inline unsigned long pgd_page(pgd_t pgd)
241 { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
243 extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
244 extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
245 extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
250 extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
251 extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; }
252 extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; }
253 extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; }
255 extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
256 extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE; }
257 extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; }
258 extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
261 * The following only work if pte_present() is true.
262 * Undefined behaviour if not..
264 extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_FOR); }
265 extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); }
266 extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_FOE); }
267 extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
268 extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
269 extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
271 extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; }
272 extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOR; return pte; }
273 extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOE; return pte; }
274 extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
275 extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
276 extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; }
277 extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= ~_PAGE_FOR; return pte; }
278 extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_FOE; return pte; }
279 extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; }
280 extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; }
282 #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
284 /* to find an entry in a kernel page-table-directory */
285 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
287 /* to find an entry in a page-table-directory. */
288 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
289 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
291 /* Find an entry in the second-level page table.. */
292 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
294 return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
297 /* Find an entry in the third-level page table.. */
298 extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address)
300 return (pte_t *) pmd_page_kernel(*dir)
301 + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
304 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
305 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
306 #define pte_unmap(pte) do { } while (0)
307 #define pte_unmap_nested(pte) do { } while (0)
309 extern pgd_t swapper_pg_dir[1024];
312 * The Alpha doesn't have any external MMU info: the kernel page
313 * tables contain all the necessary information.
315 extern inline void update_mmu_cache(struct vm_area_struct * vma,
316 unsigned long address, pte_t pte)
321 * Non-present pages: high 24 bits are offset, next 8 bits type,
324 extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
325 { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
327 #define __swp_type(x) (((x).val >> 32) & 0xff)
328 #define __swp_offset(x) ((x).val >> 40)
329 #define __swp_entry(type, off) ((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) })
330 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
331 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
333 #define pte_to_pgoff(pte) (pte_val(pte) >> 32)
334 #define pgoff_to_pte(off) ((pte_t) { ((off) << 32) | _PAGE_FILE })
336 #define PTE_FILE_MAX_BITS 32
338 #ifndef CONFIG_DISCONTIGMEM
339 #define kern_addr_valid(addr) (1)
342 #define io_remap_page_range(vma, start, busaddr, size, prot) \
344 void *va = (void __force *)ioremap(busaddr, size); \
345 unsigned long pfn = virt_to_phys(va) >> PAGE_SHIFT; \
346 remap_pfn_range(vma, start, pfn, size, prot); \
349 #define io_remap_pfn_range(vma, start, pfn, size, prot) \
350 remap_pfn_range(vma, start, pfn, size, prot)
352 #define MK_IOSPACE_PFN(space, pfn) (pfn)
353 #define GET_IOSPACE(pfn) 0
354 #define GET_PFN(pfn) (pfn)
356 #define pte_ERROR(e) \
357 printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
358 #define pmd_ERROR(e) \
359 printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
360 #define pgd_ERROR(e) \
361 printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
363 extern void paging_init(void);
365 #include <asm-generic/pgtable.h>
368 * No page table caches to initialise
370 #define pgtable_cache_init() do { } while (0)
372 /* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT. */
373 #define HAVE_ARCH_UNMAPPED_AREA
375 #endif /* _ALPHA_PGTABLE_H */