1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.0"
31 #define DRV_RELDATE "June 27, 2006"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <asm/processor.h> /* Processor type for cache alignment. */
45 #include <asm/uaccess.h>
48 #include "starfire_firmware.h"
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
53 #define HAS_BROKEN_FIRMWARE
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 #ifdef HAS_BROKEN_FIRMWARE
59 #define PADDING_MASK 3
63 * Define this if using the driver with the zero-copy patch
67 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
71 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
72 #undef HAVE_NETDEV_POLL
75 /* The user-configurable values.
76 These may be modified when a driver module is loaded.*/
78 /* Used for tuning interrupt latency vs. overhead. */
79 static int intr_latency;
80 static int small_frames;
82 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
83 static int max_interrupt_work = 20;
85 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
86 The Starfire has a 512 element hash table based on the Ethernet CRC. */
87 static const int multicast_filter_limit = 512;
88 /* Whether to do TCP/UDP checksums in hardware */
89 static int enable_hw_cksum = 1;
91 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
93 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
94 * Setting to > 1518 effectively disables this feature.
97 * The ia64 doesn't allow for unaligned loads even of integers being
98 * misaligned on a 2 byte boundary. Thus always force copying of
99 * packets as the starfire doesn't allow for misaligned DMAs ;-(
102 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
103 * at least, having unaligned frames leads to a rather serious performance
106 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
107 static int rx_copybreak = PKT_BUF_SZ;
109 static int rx_copybreak /* = 0 */;
112 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
114 #define DMA_BURST_SIZE 64
116 #define DMA_BURST_SIZE 128
119 /* Used to pass the media type, etc.
120 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
121 The media type is usually passed in 'options[]'.
122 These variables are deprecated, use ethtool instead. -Ion
124 #define MAX_UNITS 8 /* More are supported, limit only on options */
125 static int options[MAX_UNITS] = {0, };
126 static int full_duplex[MAX_UNITS] = {0, };
128 /* Operational parameters that are set at compile time. */
130 /* The "native" ring sizes are either 256 or 2048.
131 However in some modes a descriptor may be marked to wrap the ring earlier.
133 #define RX_RING_SIZE 256
134 #define TX_RING_SIZE 32
135 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
136 #define DONE_Q_SIZE 1024
137 /* All queues must be aligned on a 256-byte boundary */
138 #define QUEUE_ALIGN 256
140 #if RX_RING_SIZE > 256
141 #define RX_Q_ENTRIES Rx2048QEntries
143 #define RX_Q_ENTRIES Rx256QEntries
146 /* Operational parameters that usually are not changed. */
147 /* Time in jiffies before concluding the transmitter is hung. */
148 #define TX_TIMEOUT (2 * HZ)
152 * We need a much better method to determine if dma_addr_t is 64-bit.
154 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
155 /* 64-bit dma_addr_t */
156 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
157 #define netdrv_addr_t u64
158 #define cpu_to_dma(x) cpu_to_le64(x)
159 #define dma_to_cpu(x) le64_to_cpu(x)
160 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
161 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
162 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
163 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
164 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
165 #else /* 32-bit dma_addr_t */
166 #define netdrv_addr_t u32
167 #define cpu_to_dma(x) cpu_to_le32(x)
168 #define dma_to_cpu(x) le32_to_cpu(x)
169 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
170 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
171 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
172 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
173 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
176 #define skb_first_frag_len(skb) skb_headlen(skb)
177 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
179 #ifdef HAVE_NETDEV_POLL
180 #define init_poll(dev) \
182 dev->poll = &netdev_poll; \
183 dev->weight = max_interrupt_work; \
185 #define netdev_rx(dev, ioaddr) \
188 if (netif_rx_schedule_prep(dev)) { \
189 __netif_rx_schedule(dev); \
190 intr_enable = readl(ioaddr + IntrEnable); \
191 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
192 writel(intr_enable, ioaddr + IntrEnable); \
193 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
195 /* Paranoia check */ \
196 intr_enable = readl(ioaddr + IntrEnable); \
197 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
198 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
199 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
200 writel(intr_enable, ioaddr + IntrEnable); \
204 #define netdev_receive_skb(skb) netif_receive_skb(skb)
205 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
206 static int netdev_poll(struct net_device *dev, int *budget);
207 #else /* not HAVE_NETDEV_POLL */
208 #define init_poll(dev)
209 #define netdev_receive_skb(skb) netif_rx(skb)
210 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
211 #define netdev_rx(dev, ioaddr) \
213 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
214 __netdev_rx(dev, "a);\
216 #endif /* not HAVE_NETDEV_POLL */
217 /* end of compatibility code */
220 /* These identify the driver base version and may not be removed. */
221 static const char version[] __devinitdata =
222 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
223 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
225 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
226 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
230 module_param(max_interrupt_work, int, 0);
231 module_param(mtu, int, 0);
232 module_param(debug, int, 0);
233 module_param(rx_copybreak, int, 0);
234 module_param(intr_latency, int, 0);
235 module_param(small_frames, int, 0);
236 module_param_array(options, int, NULL, 0);
237 module_param_array(full_duplex, int, NULL, 0);
238 module_param(enable_hw_cksum, int, 0);
239 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
240 MODULE_PARM_DESC(mtu, "MTU (all boards)");
241 MODULE_PARM_DESC(debug, "Debug level (0-6)");
242 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
243 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
244 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
245 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
246 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
247 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
252 I. Board Compatibility
254 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
256 II. Board-specific settings
258 III. Driver operation
262 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
263 ring sizes are set fixed by the hardware, but may optionally be wrapped
264 earlier by the END bit in the descriptor.
265 This driver uses that hardware queue size for the Rx ring, where a large
266 number of entries has no ill effect beyond increases the potential backlog.
267 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
268 disables the queue layer priority ordering and we have no mechanism to
269 utilize the hardware two-level priority queue. When modifying the
270 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
273 IIIb/c. Transmit/Receive Structure
275 See the Adaptec manual for the many possible structures, and options for
276 each structure. There are far too many to document all of them here.
278 For transmit this driver uses type 0/1 transmit descriptors (depending
279 on the 32/64 bitness of the architecture), and relies on automatic
280 minimum-length padding. It does not use the completion queue
281 consumer index, but instead checks for non-zero status entries.
283 For receive this driver uses type 2/3 receive descriptors. The driver
284 allocates full frame size skbuffs for the Rx ring buffers, so all frames
285 should fit in a single descriptor. The driver does not use the completion
286 queue consumer index, but instead checks for non-zero status entries.
288 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
289 is allocated and the frame is copied to the new skbuff. When the incoming
290 frame is larger, the skbuff is passed directly up the protocol stack.
291 Buffers consumed this way are replaced by newly allocated skbuffs in a later
294 A notable aspect of operation is that unaligned buffers are not permitted by
295 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
296 isn't longword aligned, which may cause problems on some machine
297 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
298 the frame into a new skbuff unconditionally. Copied frames are put into the
299 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
301 IIId. Synchronization
303 The driver runs as two independent, single-threaded flows of control. One
304 is the send-packet routine, which enforces single-threaded use by the
305 dev->tbusy flag. The other thread is the interrupt handler, which is single
306 threaded by the hardware and interrupt handling software.
308 The send packet thread has partial control over the Tx ring and the netif_queue
309 status. If the number of free Tx slots in the ring falls below a certain number
310 (currently hardcoded to 4), it signals the upper layer to stop the queue.
312 The interrupt handler has exclusive control over the Rx ring and records stats
313 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
314 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
315 number of free Tx slow is above the threshold, it signals the upper layer to
322 The Adaptec Starfire manuals, available only from Adaptec.
323 http://www.scyld.com/expert/100mbps.html
324 http://www.scyld.com/expert/NWay.html
328 - StopOnPerr is broken, don't enable
329 - Hardware ethernet padding exposes random data, perform software padding
330 instead (unverified -- works correctly for all the hardware I have)
336 enum chip_capability_flags {CanHaveMII=1, };
342 static struct pci_device_id starfire_pci_tbl[] = {
343 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
346 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
348 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
349 static const struct chip_info {
352 } netdrv_tbl[] __devinitdata = {
353 { "Adaptec Starfire 6915", CanHaveMII },
357 /* Offsets to the device registers.
358 Unlike software-only systems, device drivers interact with complex hardware.
359 It's not useful to define symbolic names for every register bit in the
360 device. The name can only partially document the semantics and make
361 the driver longer and more difficult to read.
362 In general, only the important configuration values or bits changed
363 multiple times should be defined symbolically.
365 enum register_offsets {
366 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
367 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
368 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
369 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
370 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
371 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
372 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
374 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
375 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
376 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
377 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
378 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
379 TxMode=0x55000, VlanType=0x55064,
380 PerfFilterTable=0x56000, HashTable=0x56100,
381 TxGfpMem=0x58000, RxGfpMem=0x5a000,
385 * Bits in the interrupt status/mask registers.
386 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
387 * enables all the interrupt sources that are or'ed into those status bits.
389 enum intr_status_bits {
390 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
391 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
392 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
393 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
394 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
395 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
396 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
397 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
398 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
399 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
400 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
401 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
402 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
403 IntrTxGfp=0x02, IntrPCIPad=0x01,
405 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
406 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
407 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
410 /* Bits in the RxFilterMode register. */
412 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
413 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
414 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
418 /* Bits in the TxMode register */
420 MiiSoftReset=0x8000, MIILoopback=0x4000,
421 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
422 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
425 /* Bits in the TxDescCtrl register. */
427 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
428 TxDescSpace128=0x30, TxDescSpace256=0x40,
429 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
430 TxDescType3=0x03, TxDescType4=0x04,
431 TxNoDMACompletion=0x08,
432 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
433 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
434 TxDMABurstSizeShift=8,
437 /* Bits in the RxDescQCtrl register. */
439 RxBufferLenShift=16, RxMinDescrThreshShift=0,
440 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
441 Rx2048QEntries=0x4000, Rx256QEntries=0,
442 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
443 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
444 RxDescSpace4=0x000, RxDescSpace8=0x100,
445 RxDescSpace16=0x200, RxDescSpace32=0x300,
446 RxDescSpace64=0x400, RxDescSpace128=0x500,
450 /* Bits in the RxDMACtrl register. */
451 enum rx_dmactrl_bits {
452 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
453 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
454 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
455 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
456 RxChecksumRejectTCPOnly=0x01000000,
457 RxCompletionQ2Enable=0x800000,
458 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
459 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
460 RxDMAQ2NonIP=0x400000,
461 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
462 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
466 /* Bits in the RxCompletionAddr register */
468 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
469 RxComplProducerWrEn=0x40,
470 RxComplType0=0x00, RxComplType1=0x10,
471 RxComplType2=0x20, RxComplType3=0x30,
472 RxComplThreshShift=0,
475 /* Bits in the TxCompletionAddr register */
477 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
478 TxComplProducerWrEn=0x40,
479 TxComplIntrStatus=0x20,
480 CommonQueueMode=0x10,
481 TxComplThreshShift=0,
484 /* Bits in the GenCtrl register */
486 RxEnable=0x05, TxEnable=0x0a,
487 RxGFPEnable=0x10, TxGFPEnable=0x20,
490 /* Bits in the IntrTimerCtrl register */
491 enum intr_ctrl_bits {
492 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
493 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
494 IntrLatencyMask=0x1f,
497 /* The Rx and Tx buffer descriptors. */
498 struct starfire_rx_desc {
502 RxDescValid=1, RxDescEndRing=2,
505 /* Completion queue entry. */
506 struct short_rx_done_desc {
507 u32 status; /* Low 16 bits is length. */
509 struct basic_rx_done_desc {
510 u32 status; /* Low 16 bits is length. */
514 struct csum_rx_done_desc {
515 u32 status; /* Low 16 bits is length. */
516 u16 csum; /* Partial checksum */
519 struct full_rx_done_desc {
520 u32 status; /* Low 16 bits is length. */
524 u16 csum; /* partial checksum */
527 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
529 typedef struct full_rx_done_desc rx_done_desc;
530 #define RxComplType RxComplType3
531 #else /* not VLAN_SUPPORT */
532 typedef struct csum_rx_done_desc rx_done_desc;
533 #define RxComplType RxComplType2
534 #endif /* not VLAN_SUPPORT */
537 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
540 /* Type 1 Tx descriptor. */
541 struct starfire_tx_desc_1 {
542 u32 status; /* Upper bits are status, lower 16 length. */
546 /* Type 2 Tx descriptor. */
547 struct starfire_tx_desc_2 {
548 u32 status; /* Upper bits are status, lower 16 length. */
554 typedef struct starfire_tx_desc_2 starfire_tx_desc;
555 #define TX_DESC_TYPE TxDescType2
556 #else /* not ADDR_64BITS */
557 typedef struct starfire_tx_desc_1 starfire_tx_desc;
558 #define TX_DESC_TYPE TxDescType1
559 #endif /* not ADDR_64BITS */
560 #define TX_DESC_SPACING TxDescSpaceUnlim
564 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
565 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
567 struct tx_done_desc {
568 u32 status; /* timestamp, index. */
570 u32 intrstatus; /* interrupt status */
574 struct rx_ring_info {
578 struct tx_ring_info {
581 unsigned int used_slots;
585 struct netdev_private {
586 /* Descriptor rings first for alignment. */
587 struct starfire_rx_desc *rx_ring;
588 starfire_tx_desc *tx_ring;
589 dma_addr_t rx_ring_dma;
590 dma_addr_t tx_ring_dma;
591 /* The addresses of rx/tx-in-place skbuffs. */
592 struct rx_ring_info rx_info[RX_RING_SIZE];
593 struct tx_ring_info tx_info[TX_RING_SIZE];
594 /* Pointers to completion queues (full pages). */
595 rx_done_desc *rx_done_q;
596 dma_addr_t rx_done_q_dma;
597 unsigned int rx_done;
598 struct tx_done_desc *tx_done_q;
599 dma_addr_t tx_done_q_dma;
600 unsigned int tx_done;
601 struct net_device_stats stats;
602 struct pci_dev *pci_dev;
604 struct vlan_group *vlgrp;
607 dma_addr_t queue_mem_dma;
608 size_t queue_mem_size;
610 /* Frequently used values: keep some adjacent for cache effect. */
612 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
613 unsigned int cur_tx, dirty_tx, reap_tx;
614 unsigned int rx_buf_sz; /* Based on MTU+slack. */
615 /* These values keep track of the transceiver/media in use. */
616 int speed100; /* Set if speed == 100MBit. */
620 /* MII transceiver section. */
621 struct mii_if_info mii_if; /* MII lib hooks/info */
622 int phy_cnt; /* MII device addresses. */
623 unsigned char phys[PHY_CNT]; /* MII device addresses. */
628 static int mdio_read(struct net_device *dev, int phy_id, int location);
629 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
630 static int netdev_open(struct net_device *dev);
631 static void check_duplex(struct net_device *dev);
632 static void tx_timeout(struct net_device *dev);
633 static void init_ring(struct net_device *dev);
634 static int start_tx(struct sk_buff *skb, struct net_device *dev);
635 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
636 static void netdev_error(struct net_device *dev, int intr_status);
637 static int __netdev_rx(struct net_device *dev, int *quota);
638 static void refill_rx_ring(struct net_device *dev);
639 static void netdev_error(struct net_device *dev, int intr_status);
640 static void set_rx_mode(struct net_device *dev);
641 static struct net_device_stats *get_stats(struct net_device *dev);
642 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
643 static int netdev_close(struct net_device *dev);
644 static void netdev_media_change(struct net_device *dev);
645 static struct ethtool_ops ethtool_ops;
649 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
651 struct netdev_private *np = netdev_priv(dev);
653 spin_lock(&np->lock);
655 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
658 spin_unlock(&np->lock);
661 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
663 struct netdev_private *np = netdev_priv(dev);
665 spin_lock(&np->lock);
667 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
669 spin_unlock(&np->lock);
672 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
674 struct netdev_private *np = netdev_priv(dev);
676 spin_lock(&np->lock);
678 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
680 np->vlgrp->vlan_devices[vid] = NULL;
682 spin_unlock(&np->lock);
684 #endif /* VLAN_SUPPORT */
687 static int __devinit starfire_init_one(struct pci_dev *pdev,
688 const struct pci_device_id *ent)
690 struct netdev_private *np;
691 int i, irq, option, chip_idx = ent->driver_data;
692 struct net_device *dev;
693 static int card_idx = -1;
696 int drv_flags, io_size;
699 /* when built into the kernel, we only print version if device is found */
701 static int printed_version;
702 if (!printed_version++)
708 if (pci_enable_device (pdev))
711 ioaddr = pci_resource_start(pdev, 0);
712 io_size = pci_resource_len(pdev, 0);
713 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
714 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
718 dev = alloc_etherdev(sizeof(*np));
720 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
723 SET_MODULE_OWNER(dev);
724 SET_NETDEV_DEV(dev, &pdev->dev);
728 if (pci_request_regions (pdev, DRV_NAME)) {
729 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
730 goto err_out_free_netdev;
733 base = ioremap(ioaddr, io_size);
735 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
736 card_idx, io_size, ioaddr);
737 goto err_out_free_res;
740 pci_set_master(pdev);
742 /* enable MWI -- it vastly improves Rx performance on sparc64 */
746 /* Starfire can do TCP/UDP checksumming */
748 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
749 #endif /* ZEROCOPY */
751 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
752 dev->vlan_rx_register = netdev_vlan_rx_register;
753 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
754 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
755 #endif /* VLAN_RX_KILL_VID */
757 dev->features |= NETIF_F_HIGHDMA;
758 #endif /* ADDR_64BITS */
760 /* Serial EEPROM reads are hidden by the hardware. */
761 for (i = 0; i < 6; i++)
762 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
764 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
766 for (i = 0; i < 0x20; i++)
768 (unsigned int)readb(base + EEPROMCtrl + i),
769 i % 16 != 15 ? " " : "\n");
772 /* Issue soft reset */
773 writel(MiiSoftReset, base + TxMode);
775 writel(0, base + TxMode);
777 /* Reset the chip to erase previous misconfiguration. */
778 writel(1, base + PCIDeviceConfig);
780 while (--boguscnt > 0) {
782 if ((readl(base + PCIDeviceConfig) & 1) == 0)
786 printk("%s: chipset reset never completed!\n", dev->name);
787 /* wait a little longer */
790 dev->base_addr = (unsigned long)base;
793 np = netdev_priv(dev);
795 spin_lock_init(&np->lock);
796 pci_set_drvdata(pdev, dev);
800 np->mii_if.dev = dev;
801 np->mii_if.mdio_read = mdio_read;
802 np->mii_if.mdio_write = mdio_write;
803 np->mii_if.phy_id_mask = 0x1f;
804 np->mii_if.reg_num_mask = 0x1f;
806 drv_flags = netdrv_tbl[chip_idx].drv_flags;
808 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
810 option = dev->mem_start;
812 /* The lower four bits are the media type. */
814 np->mii_if.full_duplex = 1;
816 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
817 np->mii_if.full_duplex = 1;
819 if (np->mii_if.full_duplex)
820 np->mii_if.force_media = 1;
822 np->mii_if.force_media = 0;
825 /* timer resolution is 128 * 0.8us */
826 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
827 Timer10X | EnableIntrMasking;
829 if (small_frames > 0) {
830 np->intr_timer_ctrl |= SmallFrameBypass;
831 switch (small_frames) {
833 np->intr_timer_ctrl |= SmallFrame64;
836 np->intr_timer_ctrl |= SmallFrame128;
839 np->intr_timer_ctrl |= SmallFrame256;
842 np->intr_timer_ctrl |= SmallFrame512;
843 if (small_frames > 512)
844 printk("Adjusting small_frames down to 512\n");
849 /* The chip-specific entries in the device structure. */
850 dev->open = &netdev_open;
851 dev->hard_start_xmit = &start_tx;
852 dev->tx_timeout = tx_timeout;
853 dev->watchdog_timeo = TX_TIMEOUT;
855 dev->stop = &netdev_close;
856 dev->get_stats = &get_stats;
857 dev->set_multicast_list = &set_rx_mode;
858 dev->do_ioctl = &netdev_ioctl;
859 SET_ETHTOOL_OPS(dev, ðtool_ops);
864 if (register_netdev(dev))
865 goto err_out_cleardev;
867 printk(KERN_INFO "%s: %s at %p, ",
868 dev->name, netdrv_tbl[chip_idx].name, base);
869 for (i = 0; i < 5; i++)
870 printk("%2.2x:", dev->dev_addr[i]);
871 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
873 if (drv_flags & CanHaveMII) {
874 int phy, phy_idx = 0;
876 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
877 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
880 while (--boguscnt > 0)
881 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
884 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
887 mii_status = mdio_read(dev, phy, MII_BMSR);
888 if (mii_status != 0) {
889 np->phys[phy_idx++] = phy;
890 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
891 printk(KERN_INFO "%s: MII PHY found at address %d, status "
892 "%#4.4x advertising %#4.4x.\n",
893 dev->name, phy, mii_status, np->mii_if.advertising);
894 /* there can be only one PHY on-board */
898 np->phy_cnt = phy_idx;
900 np->mii_if.phy_id = np->phys[0];
902 memset(&np->mii_if, 0, sizeof(np->mii_if));
905 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
906 dev->name, enable_hw_cksum ? "enabled" : "disabled");
910 pci_set_drvdata(pdev, NULL);
913 pci_release_regions (pdev);
920 /* Read the MII Management Data I/O (MDIO) interfaces. */
921 static int mdio_read(struct net_device *dev, int phy_id, int location)
923 struct netdev_private *np = netdev_priv(dev);
924 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
925 int result, boguscnt=1000;
926 /* ??? Should we add a busy-wait here? */
928 result = readl(mdio_addr);
929 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
932 if ((result & 0xffff) == 0xffff)
934 return result & 0xffff;
938 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
940 struct netdev_private *np = netdev_priv(dev);
941 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
942 writel(value, mdio_addr);
943 /* The busy-wait will occur before a read. */
947 static int netdev_open(struct net_device *dev)
949 struct netdev_private *np = netdev_priv(dev);
950 void __iomem *ioaddr = np->base;
952 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
954 /* Do we ever need to reset the chip??? */
956 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
960 /* Disable the Rx and Tx, and reset the chip. */
961 writel(0, ioaddr + GenCtrl);
962 writel(1, ioaddr + PCIDeviceConfig);
964 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
965 dev->name, dev->irq);
967 /* Allocate the various queues. */
968 if (np->queue_mem == 0) {
969 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
970 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
971 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
972 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
973 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
974 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
975 if (np->queue_mem == NULL) {
976 free_irq(dev->irq, dev);
980 np->tx_done_q = np->queue_mem;
981 np->tx_done_q_dma = np->queue_mem_dma;
982 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
983 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
984 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
985 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
986 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
987 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
990 /* Start with no carrier, it gets adjusted later */
991 netif_carrier_off(dev);
993 /* Set the size of the Rx buffers. */
994 writel((np->rx_buf_sz << RxBufferLenShift) |
995 (0 << RxMinDescrThreshShift) |
996 RxPrefetchMode | RxVariableQ |
998 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1000 ioaddr + RxDescQCtrl);
1002 /* Set up the Rx DMA controller. */
1003 writel(RxChecksumIgnore |
1004 (0 << RxEarlyIntThreshShift) |
1005 (6 << RxHighPrioThreshShift) |
1006 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1007 ioaddr + RxDMACtrl);
1009 /* Set Tx descriptor */
1010 writel((2 << TxHiPriFIFOThreshShift) |
1011 (0 << TxPadLenShift) |
1012 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1013 TX_DESC_Q_ADDR_SIZE |
1014 TX_DESC_SPACING | TX_DESC_TYPE,
1015 ioaddr + TxDescCtrl);
1017 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1018 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1019 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1020 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1021 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1023 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1024 writel(np->rx_done_q_dma |
1026 (0 << RxComplThreshShift),
1027 ioaddr + RxCompletionAddr);
1030 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1032 /* Fill both the Tx SA register and the Rx perfect filter. */
1033 for (i = 0; i < 6; i++)
1034 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1035 /* The first entry is special because it bypasses the VLAN filter.
1037 writew(0, ioaddr + PerfFilterTable);
1038 writew(0, ioaddr + PerfFilterTable + 4);
1039 writew(0, ioaddr + PerfFilterTable + 8);
1040 for (i = 1; i < 16; i++) {
1041 u16 *eaddrs = (u16 *)dev->dev_addr;
1042 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1043 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1044 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1045 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1048 /* Initialize other registers. */
1049 /* Configure the PCI bus bursts and FIFO thresholds. */
1050 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1051 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1053 writel(np->tx_mode, ioaddr + TxMode);
1054 np->tx_threshold = 4;
1055 writel(np->tx_threshold, ioaddr + TxThreshold);
1057 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1059 netif_start_queue(dev);
1062 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1065 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1068 /* Enable GPIO interrupts on link change */
1069 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1071 /* Set the interrupt mask */
1072 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1073 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1074 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1075 ioaddr + IntrEnable);
1076 /* Enable PCI interrupts. */
1077 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1078 ioaddr + PCIDeviceConfig);
1081 /* Set VLAN type to 802.1q */
1082 writel(ETH_P_8021Q, ioaddr + VlanType);
1083 #endif /* VLAN_SUPPORT */
1085 /* Load Rx/Tx firmware into the frame processors */
1086 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1087 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1088 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1089 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1090 if (enable_hw_cksum)
1091 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1092 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1094 /* Enable the Rx and Tx units only. */
1095 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1098 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1105 static void check_duplex(struct net_device *dev)
1107 struct netdev_private *np = netdev_priv(dev);
1109 int silly_count = 1000;
1111 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1114 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1117 printk("%s: MII reset failed!\n", dev->name);
1121 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1123 if (!np->mii_if.force_media) {
1124 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1126 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1128 reg0 |= BMCR_SPEED100;
1129 if (np->mii_if.full_duplex)
1130 reg0 |= BMCR_FULLDPLX;
1131 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1133 np->speed100 ? "100" : "10",
1134 np->mii_if.full_duplex ? "full" : "half");
1136 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1140 static void tx_timeout(struct net_device *dev)
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = np->base;
1146 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1149 /* Perhaps we should reinitialize the hardware here. */
1152 * Stop and restart the interface.
1153 * Cheat and increase the debug level temporarily.
1161 /* Trigger an immediate transmit demand. */
1163 dev->trans_start = jiffies;
1164 np->stats.tx_errors++;
1165 netif_wake_queue(dev);
1169 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170 static void init_ring(struct net_device *dev)
1172 struct netdev_private *np = netdev_priv(dev);
1175 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1178 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1180 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1181 for (i = 0; i < RX_RING_SIZE; i++) {
1182 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1183 np->rx_info[i].skb = skb;
1186 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1187 skb->dev = dev; /* Mark as being used by this device. */
1188 /* Grrr, we cannot offset to correctly align the IP header. */
1189 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1191 writew(i - 1, np->base + RxDescQIdx);
1192 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1194 /* Clear the remainder of the Rx buffer ring. */
1195 for ( ; i < RX_RING_SIZE; i++) {
1196 np->rx_ring[i].rxaddr = 0;
1197 np->rx_info[i].skb = NULL;
1198 np->rx_info[i].mapping = 0;
1200 /* Mark the last entry as wrapping the ring. */
1201 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1203 /* Clear the completion rings. */
1204 for (i = 0; i < DONE_Q_SIZE; i++) {
1205 np->rx_done_q[i].status = 0;
1206 np->tx_done_q[i].status = 0;
1209 for (i = 0; i < TX_RING_SIZE; i++)
1210 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1216 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1218 struct netdev_private *np = netdev_priv(dev);
1224 * be cautious here, wrapping the queue has weird semantics
1225 * and we may not have enough slots even when it seems we do.
1227 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1228 netif_stop_queue(dev);
1232 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1233 if (skb->ip_summed == CHECKSUM_HW) {
1234 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1235 return NETDEV_TX_OK;
1237 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1239 entry = np->cur_tx % TX_RING_SIZE;
1240 for (i = 0; i < skb_num_frags(skb); i++) {
1245 np->tx_info[entry].skb = skb;
1247 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1248 status |= TxRingWrap;
1252 status |= TxDescIntr;
1255 if (skb->ip_summed == CHECKSUM_HW) {
1257 np->stats.tx_compressed++;
1259 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1261 np->tx_info[entry].mapping =
1262 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1264 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1265 status |= this_frag->size;
1266 np->tx_info[entry].mapping =
1267 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1270 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1271 np->tx_ring[entry].status = cpu_to_le32(status);
1273 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1274 dev->name, np->cur_tx, np->dirty_tx,
1277 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1278 np->cur_tx += np->tx_info[entry].used_slots;
1281 np->tx_info[entry].used_slots = 1;
1282 np->cur_tx += np->tx_info[entry].used_slots;
1285 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1286 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1290 /* Non-x86: explicitly flush descriptor cache lines here. */
1291 /* Ensure all descriptors are written back before the transmit is
1295 /* Update the producer index. */
1296 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1298 /* 4 is arbitrary, but should be ok */
1299 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1300 netif_stop_queue(dev);
1302 dev->trans_start = jiffies;
1308 /* The interrupt handler does all of the Rx thread work and cleans up
1309 after the Tx thread. */
1310 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1312 struct net_device *dev = dev_instance;
1313 struct netdev_private *np = netdev_priv(dev);
1314 void __iomem *ioaddr = np->base;
1315 int boguscnt = max_interrupt_work;
1321 u32 intr_status = readl(ioaddr + IntrClear);
1324 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1325 dev->name, intr_status);
1327 if (intr_status == 0 || intr_status == (u32) -1)
1332 if (intr_status & (IntrRxDone | IntrRxEmpty))
1333 netdev_rx(dev, ioaddr);
1335 /* Scavenge the skbuff list based on the Tx-done queue.
1336 There are redundant checks here that may be cleaned up
1337 after the driver has proven to be reliable. */
1338 consumer = readl(ioaddr + TxConsumerIdx);
1340 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1341 dev->name, consumer);
1343 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1345 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1346 dev->name, np->dirty_tx, np->tx_done, tx_status);
1347 if ((tx_status & 0xe0000000) == 0xa0000000) {
1348 np->stats.tx_packets++;
1349 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1350 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1351 struct sk_buff *skb = np->tx_info[entry].skb;
1352 np->tx_info[entry].skb = NULL;
1353 pci_unmap_single(np->pci_dev,
1354 np->tx_info[entry].mapping,
1355 skb_first_frag_len(skb),
1357 np->tx_info[entry].mapping = 0;
1358 np->dirty_tx += np->tx_info[entry].used_slots;
1359 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1362 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1363 pci_unmap_single(np->pci_dev,
1364 np->tx_info[entry].mapping,
1365 skb_shinfo(skb)->frags[i].size,
1372 dev_kfree_skb_irq(skb);
1374 np->tx_done_q[np->tx_done].status = 0;
1375 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1377 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1379 if (netif_queue_stopped(dev) &&
1380 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1381 /* The ring is no longer full, wake the queue. */
1382 netif_wake_queue(dev);
1385 /* Stats overflow */
1386 if (intr_status & IntrStatsMax)
1389 /* Media change interrupt. */
1390 if (intr_status & IntrLinkChange)
1391 netdev_media_change(dev);
1393 /* Abnormal error summary/uncommon events handlers. */
1394 if (intr_status & IntrAbnormalSummary)
1395 netdev_error(dev, intr_status);
1397 if (--boguscnt < 0) {
1399 printk(KERN_WARNING "%s: Too much work at interrupt, "
1401 dev->name, intr_status);
1407 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1408 dev->name, (int) readl(ioaddr + IntrStatus));
1409 return IRQ_RETVAL(handled);
1413 /* This routine is logically part of the interrupt/poll handler, but separated
1414 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1415 static int __netdev_rx(struct net_device *dev, int *quota)
1417 struct netdev_private *np = netdev_priv(dev);
1421 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1422 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1423 struct sk_buff *skb;
1426 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1429 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1430 if (!(desc_status & RxOK)) {
1431 /* There was an error. */
1433 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1434 np->stats.rx_errors++;
1435 if (desc_status & RxFIFOErr)
1436 np->stats.rx_fifo_errors++;
1440 if (*quota <= 0) { /* out of rx quota */
1446 pkt_len = desc_status; /* Implicitly Truncate */
1447 entry = (desc_status >> 16) & 0x7ff;
1450 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1451 /* Check if the packet is long enough to accept without copying
1452 to a minimally-sized skbuff. */
1453 if (pkt_len < rx_copybreak
1454 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1456 skb_reserve(skb, 2); /* 16 byte align the IP header */
1457 pci_dma_sync_single_for_cpu(np->pci_dev,
1458 np->rx_info[entry].mapping,
1459 pkt_len, PCI_DMA_FROMDEVICE);
1460 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1461 pci_dma_sync_single_for_device(np->pci_dev,
1462 np->rx_info[entry].mapping,
1463 pkt_len, PCI_DMA_FROMDEVICE);
1464 skb_put(skb, pkt_len);
1466 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1467 skb = np->rx_info[entry].skb;
1468 skb_put(skb, pkt_len);
1469 np->rx_info[entry].skb = NULL;
1470 np->rx_info[entry].mapping = 0;
1472 #ifndef final_version /* Remove after testing. */
1473 /* You will want this info for the initial debug. */
1475 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1476 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1477 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1478 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1479 skb->data[8], skb->data[9], skb->data[10],
1480 skb->data[11], skb->data[12], skb->data[13]);
1483 skb->protocol = eth_type_trans(skb, dev);
1486 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1488 if (le16_to_cpu(desc->status2) & 0x0100) {
1489 skb->ip_summed = CHECKSUM_UNNECESSARY;
1490 np->stats.rx_compressed++;
1493 * This feature doesn't seem to be working, at least
1494 * with the two firmware versions I have. If the GFP sees
1495 * an IP fragment, it either ignores it completely, or reports
1496 * "bad checksum" on it.
1498 * Maybe I missed something -- corrections are welcome.
1499 * Until then, the printk stays. :-) -Ion
1501 else if (le16_to_cpu(desc->status2) & 0x0040) {
1502 skb->ip_summed = CHECKSUM_HW;
1503 skb->csum = le16_to_cpu(desc->csum);
1504 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1507 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1509 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1510 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1511 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1513 #endif /* VLAN_SUPPORT */
1514 netdev_receive_skb(skb);
1515 dev->last_rx = jiffies;
1516 np->stats.rx_packets++;
1521 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1523 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1526 refill_rx_ring(dev);
1528 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1529 retcode, np->rx_done, desc_status);
1534 #ifdef HAVE_NETDEV_POLL
1535 static int netdev_poll(struct net_device *dev, int *budget)
1538 struct netdev_private *np = netdev_priv(dev);
1539 void __iomem *ioaddr = np->base;
1540 int retcode = 0, quota = dev->quota;
1543 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1545 retcode = __netdev_rx(dev, "a);
1546 *budget -= (dev->quota - quota);
1551 intr_status = readl(ioaddr + IntrStatus);
1552 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1554 netif_rx_complete(dev);
1555 intr_status = readl(ioaddr + IntrEnable);
1556 intr_status |= IntrRxDone | IntrRxEmpty;
1557 writel(intr_status, ioaddr + IntrEnable);
1561 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1563 /* Restart Rx engine if stopped. */
1566 #endif /* HAVE_NETDEV_POLL */
1569 static void refill_rx_ring(struct net_device *dev)
1571 struct netdev_private *np = netdev_priv(dev);
1572 struct sk_buff *skb;
1575 /* Refill the Rx ring buffers. */
1576 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1577 entry = np->dirty_rx % RX_RING_SIZE;
1578 if (np->rx_info[entry].skb == NULL) {
1579 skb = dev_alloc_skb(np->rx_buf_sz);
1580 np->rx_info[entry].skb = skb;
1582 break; /* Better luck next round. */
1583 np->rx_info[entry].mapping =
1584 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1585 skb->dev = dev; /* Mark as being used by this device. */
1586 np->rx_ring[entry].rxaddr =
1587 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1589 if (entry == RX_RING_SIZE - 1)
1590 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1593 writew(entry, np->base + RxDescQIdx);
1597 static void netdev_media_change(struct net_device *dev)
1599 struct netdev_private *np = netdev_priv(dev);
1600 void __iomem *ioaddr = np->base;
1601 u16 reg0, reg1, reg4, reg5;
1603 u32 new_intr_timer_ctrl;
1605 /* reset status first */
1606 mdio_read(dev, np->phys[0], MII_BMCR);
1607 mdio_read(dev, np->phys[0], MII_BMSR);
1609 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1610 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1612 if (reg1 & BMSR_LSTATUS) {
1614 if (reg0 & BMCR_ANENABLE) {
1615 /* autonegotiation is enabled */
1616 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1617 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1618 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1620 np->mii_if.full_duplex = 1;
1621 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1623 np->mii_if.full_duplex = 0;
1624 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1626 np->mii_if.full_duplex = 1;
1629 np->mii_if.full_duplex = 0;
1632 /* autonegotiation is disabled */
1633 if (reg0 & BMCR_SPEED100)
1637 if (reg0 & BMCR_FULLDPLX)
1638 np->mii_if.full_duplex = 1;
1640 np->mii_if.full_duplex = 0;
1642 netif_carrier_on(dev);
1643 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1645 np->speed100 ? "100" : "10",
1646 np->mii_if.full_duplex ? "full" : "half");
1648 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1649 if (np->mii_if.full_duplex)
1650 new_tx_mode |= FullDuplex;
1651 if (np->tx_mode != new_tx_mode) {
1652 np->tx_mode = new_tx_mode;
1653 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1655 writel(np->tx_mode, ioaddr + TxMode);
1658 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1660 new_intr_timer_ctrl |= Timer10X;
1661 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1662 np->intr_timer_ctrl = new_intr_timer_ctrl;
1663 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1666 netif_carrier_off(dev);
1667 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1672 static void netdev_error(struct net_device *dev, int intr_status)
1674 struct netdev_private *np = netdev_priv(dev);
1676 /* Came close to underrunning the Tx FIFO, increase threshold. */
1677 if (intr_status & IntrTxDataLow) {
1678 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1679 writel(++np->tx_threshold, np->base + TxThreshold);
1680 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1681 dev->name, np->tx_threshold * 16);
1683 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1685 if (intr_status & IntrRxGFPDead) {
1686 np->stats.rx_fifo_errors++;
1687 np->stats.rx_errors++;
1689 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1690 np->stats.tx_fifo_errors++;
1691 np->stats.tx_errors++;
1693 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1694 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1695 dev->name, intr_status);
1699 static struct net_device_stats *get_stats(struct net_device *dev)
1701 struct netdev_private *np = netdev_priv(dev);
1702 void __iomem *ioaddr = np->base;
1704 /* This adapter architecture needs no SMP locks. */
1705 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1706 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1707 np->stats.tx_packets = readl(ioaddr + 0x57000);
1708 np->stats.tx_aborted_errors =
1709 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1710 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1711 np->stats.collisions =
1712 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1714 /* The chip only need report frame silently dropped. */
1715 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1716 writew(0, ioaddr + RxDMAStatus);
1717 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1718 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1719 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1720 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1726 static void set_rx_mode(struct net_device *dev)
1728 struct netdev_private *np = netdev_priv(dev);
1729 void __iomem *ioaddr = np->base;
1730 u32 rx_mode = MinVLANPrio;
1731 struct dev_mc_list *mclist;
1735 rx_mode |= VlanMode;
1738 void __iomem *filter_addr = ioaddr + HashTable + 8;
1739 for (i = 0; i < VLAN_VID_MASK; i++) {
1740 if (np->vlgrp->vlan_devices[i]) {
1741 if (vlan_count >= 32)
1743 writew(cpu_to_be16(i), filter_addr);
1748 if (i == VLAN_VID_MASK) {
1749 rx_mode |= PerfectFilterVlan;
1750 while (vlan_count < 32) {
1751 writew(0, filter_addr);
1757 #endif /* VLAN_SUPPORT */
1759 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1760 rx_mode |= AcceptAll;
1761 } else if ((dev->mc_count > multicast_filter_limit)
1762 || (dev->flags & IFF_ALLMULTI)) {
1763 /* Too many to match, or accept all multicasts. */
1764 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1765 } else if (dev->mc_count <= 14) {
1766 /* Use the 16 element perfect filter, skip first two entries. */
1767 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1769 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1770 i++, mclist = mclist->next) {
1771 eaddrs = (u16 *)mclist->dmi_addr;
1772 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1773 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1774 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1776 eaddrs = (u16 *)dev->dev_addr;
1778 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1779 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1780 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1782 rx_mode |= AcceptBroadcast|PerfectFilter;
1784 /* Must use a multicast hash table. */
1785 void __iomem *filter_addr;
1787 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1789 memset(mc_filter, 0, sizeof(mc_filter));
1790 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1791 i++, mclist = mclist->next) {
1792 /* The chip uses the upper 9 CRC bits
1793 as index into the hash table */
1794 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1795 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1797 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1799 /* Clear the perfect filter list, skip first two entries. */
1800 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1801 eaddrs = (u16 *)dev->dev_addr;
1802 for (i = 2; i < 16; i++) {
1803 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1804 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1807 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1808 writew(mc_filter[i], filter_addr);
1809 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1811 writel(rx_mode, ioaddr + RxFilterMode);
1814 static int check_if_running(struct net_device *dev)
1816 if (!netif_running(dev))
1821 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1823 struct netdev_private *np = netdev_priv(dev);
1824 strcpy(info->driver, DRV_NAME);
1825 strcpy(info->version, DRV_VERSION);
1826 strcpy(info->bus_info, pci_name(np->pci_dev));
1829 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1831 struct netdev_private *np = netdev_priv(dev);
1832 spin_lock_irq(&np->lock);
1833 mii_ethtool_gset(&np->mii_if, ecmd);
1834 spin_unlock_irq(&np->lock);
1838 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1840 struct netdev_private *np = netdev_priv(dev);
1842 spin_lock_irq(&np->lock);
1843 res = mii_ethtool_sset(&np->mii_if, ecmd);
1844 spin_unlock_irq(&np->lock);
1849 static int nway_reset(struct net_device *dev)
1851 struct netdev_private *np = netdev_priv(dev);
1852 return mii_nway_restart(&np->mii_if);
1855 static u32 get_link(struct net_device *dev)
1857 struct netdev_private *np = netdev_priv(dev);
1858 return mii_link_ok(&np->mii_if);
1861 static u32 get_msglevel(struct net_device *dev)
1866 static void set_msglevel(struct net_device *dev, u32 val)
1871 static struct ethtool_ops ethtool_ops = {
1872 .begin = check_if_running,
1873 .get_drvinfo = get_drvinfo,
1874 .get_settings = get_settings,
1875 .set_settings = set_settings,
1876 .nway_reset = nway_reset,
1877 .get_link = get_link,
1878 .get_msglevel = get_msglevel,
1879 .set_msglevel = set_msglevel,
1882 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1884 struct netdev_private *np = netdev_priv(dev);
1885 struct mii_ioctl_data *data = if_mii(rq);
1888 if (!netif_running(dev))
1891 spin_lock_irq(&np->lock);
1892 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1893 spin_unlock_irq(&np->lock);
1895 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1901 static int netdev_close(struct net_device *dev)
1903 struct netdev_private *np = netdev_priv(dev);
1904 void __iomem *ioaddr = np->base;
1907 netif_stop_queue(dev);
1910 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1911 dev->name, (int) readl(ioaddr + IntrStatus));
1912 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1913 dev->name, np->cur_tx, np->dirty_tx,
1914 np->cur_rx, np->dirty_rx);
1917 /* Disable interrupts by clearing the interrupt mask. */
1918 writel(0, ioaddr + IntrEnable);
1920 /* Stop the chip's Tx and Rx processes. */
1921 writel(0, ioaddr + GenCtrl);
1922 readl(ioaddr + GenCtrl);
1925 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1926 (long long) np->tx_ring_dma);
1927 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1928 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1929 i, le32_to_cpu(np->tx_ring[i].status),
1930 (long long) dma_to_cpu(np->tx_ring[i].addr),
1931 le32_to_cpu(np->tx_done_q[i].status));
1932 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1933 (long long) np->rx_ring_dma, np->rx_done_q);
1935 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1936 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1937 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1941 free_irq(dev->irq, dev);
1943 /* Free all the skbuffs in the Rx queue. */
1944 for (i = 0; i < RX_RING_SIZE; i++) {
1945 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1946 if (np->rx_info[i].skb != NULL) {
1947 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1948 dev_kfree_skb(np->rx_info[i].skb);
1950 np->rx_info[i].skb = NULL;
1951 np->rx_info[i].mapping = 0;
1953 for (i = 0; i < TX_RING_SIZE; i++) {
1954 struct sk_buff *skb = np->tx_info[i].skb;
1957 pci_unmap_single(np->pci_dev,
1958 np->tx_info[i].mapping,
1959 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1960 np->tx_info[i].mapping = 0;
1962 np->tx_info[i].skb = NULL;
1969 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1971 struct net_device *dev = pci_get_drvdata(pdev);
1973 if (netif_running(dev)) {
1974 netif_device_detach(dev);
1978 pci_save_state(pdev);
1979 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1984 static int starfire_resume(struct pci_dev *pdev)
1986 struct net_device *dev = pci_get_drvdata(pdev);
1988 pci_set_power_state(pdev, PCI_D0);
1989 pci_restore_state(pdev);
1991 if (netif_running(dev)) {
1993 netif_device_attach(dev);
1998 #endif /* CONFIG_PM */
2001 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2003 struct net_device *dev = pci_get_drvdata(pdev);
2004 struct netdev_private *np = netdev_priv(dev);
2008 unregister_netdev(dev);
2011 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2014 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2015 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2016 pci_disable_device(pdev);
2019 pci_release_regions(pdev);
2021 pci_set_drvdata(pdev, NULL);
2022 free_netdev(dev); /* Will also free np!! */
2026 static struct pci_driver starfire_driver = {
2028 .probe = starfire_init_one,
2029 .remove = __devexit_p(starfire_remove_one),
2031 .suspend = starfire_suspend,
2032 .resume = starfire_resume,
2033 #endif /* CONFIG_PM */
2034 .id_table = starfire_pci_tbl,
2038 static int __init starfire_init (void)
2040 /* when a module, this is printed whether or not devices are found in probe */
2043 #ifdef HAVE_NETDEV_POLL
2044 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2046 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2050 /* we can do this test only at run-time... sigh */
2051 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2052 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2056 return pci_register_driver(&starfire_driver);
2060 static void __exit starfire_cleanup (void)
2062 pci_unregister_driver (&starfire_driver);
2066 module_init(starfire_init);
2067 module_exit(starfire_cleanup);