[PATCH] md: fix a use-after-free bug in raid1
[linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50 static mdk_personality_t raid1_personality;
51
52 static void unplug_slaves(mddev_t *mddev);
53
54
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
56 {
57         struct pool_info *pi = data;
58         r1bio_t *r1_bio;
59         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60
61         /* allocate a r1bio with room for raid_disks entries in the bios array */
62         r1_bio = kmalloc(size, gfp_flags);
63         if (r1_bio)
64                 memset(r1_bio, 0, size);
65         else
66                 unplug_slaves(pi->mddev);
67
68         return r1_bio;
69 }
70
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73         kfree(r1_bio);
74 }
75
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81
82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 {
84         struct pool_info *pi = data;
85         struct page *page;
86         r1bio_t *r1_bio;
87         struct bio *bio;
88         int i, j;
89
90         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91         if (!r1_bio) {
92                 unplug_slaves(pi->mddev);
93                 return NULL;
94         }
95
96         /*
97          * Allocate bios : 1 for reading, n-1 for writing
98          */
99         for (j = pi->raid_disks ; j-- ; ) {
100                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101                 if (!bio)
102                         goto out_free_bio;
103                 r1_bio->bios[j] = bio;
104         }
105         /*
106          * Allocate RESYNC_PAGES data pages and attach them to
107          * the first bio;
108          */
109         bio = r1_bio->bios[0];
110         for (i = 0; i < RESYNC_PAGES; i++) {
111                 page = alloc_page(gfp_flags);
112                 if (unlikely(!page))
113                         goto out_free_pages;
114
115                 bio->bi_io_vec[i].bv_page = page;
116         }
117
118         r1_bio->master_bio = NULL;
119
120         return r1_bio;
121
122 out_free_pages:
123         for ( ; i > 0 ; i--)
124                 __free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126         while ( ++j < pi->raid_disks )
127                 bio_put(r1_bio->bios[j]);
128         r1bio_pool_free(r1_bio, data);
129         return NULL;
130 }
131
132 static void r1buf_pool_free(void *__r1_bio, void *data)
133 {
134         struct pool_info *pi = data;
135         int i;
136         r1bio_t *r1bio = __r1_bio;
137         struct bio *bio = r1bio->bios[0];
138
139         for (i = 0; i < RESYNC_PAGES; i++) {
140                 __free_page(bio->bi_io_vec[i].bv_page);
141                 bio->bi_io_vec[i].bv_page = NULL;
142         }
143         for (i=0 ; i < pi->raid_disks; i++)
144                 bio_put(r1bio->bios[i]);
145
146         r1bio_pool_free(r1bio, data);
147 }
148
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
150 {
151         int i;
152
153         for (i = 0; i < conf->raid_disks; i++) {
154                 struct bio **bio = r1_bio->bios + i;
155                 if (*bio)
156                         bio_put(*bio);
157                 *bio = NULL;
158         }
159 }
160
161 static inline void free_r1bio(r1bio_t *r1_bio)
162 {
163         unsigned long flags;
164
165         conf_t *conf = mddev_to_conf(r1_bio->mddev);
166
167         /*
168          * Wake up any possible resync thread that waits for the device
169          * to go idle.
170          */
171         spin_lock_irqsave(&conf->resync_lock, flags);
172         if (!--conf->nr_pending) {
173                 wake_up(&conf->wait_idle);
174                 wake_up(&conf->wait_resume);
175         }
176         spin_unlock_irqrestore(&conf->resync_lock, flags);
177
178         put_all_bios(conf, r1_bio);
179         mempool_free(r1_bio, conf->r1bio_pool);
180 }
181
182 static inline void put_buf(r1bio_t *r1_bio)
183 {
184         conf_t *conf = mddev_to_conf(r1_bio->mddev);
185         unsigned long flags;
186
187         mempool_free(r1_bio, conf->r1buf_pool);
188
189         spin_lock_irqsave(&conf->resync_lock, flags);
190         if (!conf->barrier)
191                 BUG();
192         --conf->barrier;
193         wake_up(&conf->wait_resume);
194         wake_up(&conf->wait_idle);
195
196         if (!--conf->nr_pending) {
197                 wake_up(&conf->wait_idle);
198                 wake_up(&conf->wait_resume);
199         }
200         spin_unlock_irqrestore(&conf->resync_lock, flags);
201 }
202
203 static void reschedule_retry(r1bio_t *r1_bio)
204 {
205         unsigned long flags;
206         mddev_t *mddev = r1_bio->mddev;
207         conf_t *conf = mddev_to_conf(mddev);
208
209         spin_lock_irqsave(&conf->device_lock, flags);
210         list_add(&r1_bio->retry_list, &conf->retry_list);
211         spin_unlock_irqrestore(&conf->device_lock, flags);
212
213         md_wakeup_thread(mddev->thread);
214 }
215
216 /*
217  * raid_end_bio_io() is called when we have finished servicing a mirrored
218  * operation and are ready to return a success/failure code to the buffer
219  * cache layer.
220  */
221 static void raid_end_bio_io(r1bio_t *r1_bio)
222 {
223         struct bio *bio = r1_bio->master_bio;
224
225         /* if nobody has done the final endio yet, do it now */
226         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
227                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
228                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
229                         (unsigned long long) bio->bi_sector,
230                         (unsigned long long) bio->bi_sector +
231                                 (bio->bi_size >> 9) - 1);
232
233                 bio_endio(bio, bio->bi_size,
234                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
235         }
236         free_r1bio(r1_bio);
237 }
238
239 /*
240  * Update disk head position estimator based on IRQ completion info.
241  */
242 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
243 {
244         conf_t *conf = mddev_to_conf(r1_bio->mddev);
245
246         conf->mirrors[disk].head_position =
247                 r1_bio->sector + (r1_bio->sectors);
248 }
249
250 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
251 {
252         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
253         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
254         int mirror;
255         conf_t *conf = mddev_to_conf(r1_bio->mddev);
256
257         if (bio->bi_size)
258                 return 1;
259         
260         mirror = r1_bio->read_disk;
261         /*
262          * this branch is our 'one mirror IO has finished' event handler:
263          */
264         if (!uptodate)
265                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
266         else
267                 /*
268                  * Set R1BIO_Uptodate in our master bio, so that
269                  * we will return a good error code for to the higher
270                  * levels even if IO on some other mirrored buffer fails.
271                  *
272                  * The 'master' represents the composite IO operation to
273                  * user-side. So if something waits for IO, then it will
274                  * wait for the 'master' bio.
275                  */
276                 set_bit(R1BIO_Uptodate, &r1_bio->state);
277
278         update_head_pos(mirror, r1_bio);
279
280         /*
281          * we have only one bio on the read side
282          */
283         if (uptodate)
284                 raid_end_bio_io(r1_bio);
285         else {
286                 /*
287                  * oops, read error:
288                  */
289                 char b[BDEVNAME_SIZE];
290                 if (printk_ratelimit())
291                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
292                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
293                 reschedule_retry(r1_bio);
294         }
295
296         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
297         return 0;
298 }
299
300 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
301 {
302         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
303         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
304         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
305         conf_t *conf = mddev_to_conf(r1_bio->mddev);
306
307         if (bio->bi_size)
308                 return 1;
309
310         for (mirror = 0; mirror < conf->raid_disks; mirror++)
311                 if (r1_bio->bios[mirror] == bio)
312                         break;
313
314         if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
315                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
316                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
317                 r1_bio->mddev->barriers_work = 0;
318         } else {
319                 /*
320                  * this branch is our 'one mirror IO has finished' event handler:
321                  */
322                 r1_bio->bios[mirror] = NULL;
323                 if (!uptodate) {
324                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
325                         /* an I/O failed, we can't clear the bitmap */
326                         set_bit(R1BIO_Degraded, &r1_bio->state);
327                 } else
328                         /*
329                          * Set R1BIO_Uptodate in our master bio, so that
330                          * we will return a good error code for to the higher
331                          * levels even if IO on some other mirrored buffer fails.
332                          *
333                          * The 'master' represents the composite IO operation to
334                          * user-side. So if something waits for IO, then it will
335                          * wait for the 'master' bio.
336                          */
337                         set_bit(R1BIO_Uptodate, &r1_bio->state);
338
339                 update_head_pos(mirror, r1_bio);
340
341                 if (behind) {
342                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
343                                 atomic_dec(&r1_bio->behind_remaining);
344
345                         /* In behind mode, we ACK the master bio once the I/O has safely
346                          * reached all non-writemostly disks. Setting the Returned bit
347                          * ensures that this gets done only once -- we don't ever want to
348                          * return -EIO here, instead we'll wait */
349
350                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
351                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
352                                 /* Maybe we can return now */
353                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
354                                         struct bio *mbio = r1_bio->master_bio;
355                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
356                                                (unsigned long long) mbio->bi_sector,
357                                                (unsigned long long) mbio->bi_sector +
358                                                (mbio->bi_size >> 9) - 1);
359                                         bio_endio(mbio, mbio->bi_size, 0);
360                                 }
361                         }
362                 }
363         }
364         /*
365          *
366          * Let's see if all mirrored write operations have finished
367          * already.
368          */
369         if (atomic_dec_and_test(&r1_bio->remaining)) {
370                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
371                         reschedule_retry(r1_bio);
372                         /* Don't dec_pending yet, we want to hold
373                          * the reference over the retry
374                          */
375                         return 0;
376                 }
377                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
378                         /* free extra copy of the data pages */
379                         int i = bio->bi_vcnt;
380                         while (i--)
381                                 __free_page(bio->bi_io_vec[i].bv_page);
382                 }
383                 /* clear the bitmap if all writes complete successfully */
384                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
385                                 r1_bio->sectors,
386                                 !test_bit(R1BIO_Degraded, &r1_bio->state),
387                                 behind);
388                 md_write_end(r1_bio->mddev);
389                 raid_end_bio_io(r1_bio);
390         }
391
392         if (r1_bio->bios[mirror]==NULL)
393                 bio_put(bio);
394
395         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
396         return 0;
397 }
398
399
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416         const unsigned long this_sector = r1_bio->sector;
417         int new_disk = conf->last_used, disk = new_disk;
418         int wonly_disk = -1;
419         const int sectors = r1_bio->sectors;
420         sector_t new_distance, current_distance;
421         mdk_rdev_t *rdev;
422
423         rcu_read_lock();
424         /*
425          * Check if we can balance. We can balance on the whole
426          * device if no resync is going on, or below the resync window.
427          * We take the first readable disk when above the resync window.
428          */
429  retry:
430         if (conf->mddev->recovery_cp < MaxSector &&
431             (this_sector + sectors >= conf->next_resync)) {
432                 /* Choose the first operation device, for consistancy */
433                 new_disk = 0;
434
435                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436                      !rdev || !test_bit(In_sync, &rdev->flags)
437                              || test_bit(WriteMostly, &rdev->flags);
438                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
439
440                         if (rdev && test_bit(In_sync, &rdev->flags))
441                                 wonly_disk = new_disk;
442
443                         if (new_disk == conf->raid_disks - 1) {
444                                 new_disk = wonly_disk;
445                                 break;
446                         }
447                 }
448                 goto rb_out;
449         }
450
451
452         /* make sure the disk is operational */
453         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
454              !rdev || !test_bit(In_sync, &rdev->flags) ||
455                      test_bit(WriteMostly, &rdev->flags);
456              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
457
458                 if (rdev && test_bit(In_sync, &rdev->flags))
459                         wonly_disk = new_disk;
460
461                 if (new_disk <= 0)
462                         new_disk = conf->raid_disks;
463                 new_disk--;
464                 if (new_disk == disk) {
465                         new_disk = wonly_disk;
466                         break;
467                 }
468         }
469
470         if (new_disk < 0)
471                 goto rb_out;
472
473         disk = new_disk;
474         /* now disk == new_disk == starting point for search */
475
476         /*
477          * Don't change to another disk for sequential reads:
478          */
479         if (conf->next_seq_sect == this_sector)
480                 goto rb_out;
481         if (this_sector == conf->mirrors[new_disk].head_position)
482                 goto rb_out;
483
484         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
485
486         /* Find the disk whose head is closest */
487
488         do {
489                 if (disk <= 0)
490                         disk = conf->raid_disks;
491                 disk--;
492
493                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
494
495                 if (!rdev ||
496                     !test_bit(In_sync, &rdev->flags) ||
497                     test_bit(WriteMostly, &rdev->flags))
498                         continue;
499
500                 if (!atomic_read(&rdev->nr_pending)) {
501                         new_disk = disk;
502                         break;
503                 }
504                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
505                 if (new_distance < current_distance) {
506                         current_distance = new_distance;
507                         new_disk = disk;
508                 }
509         } while (disk != conf->last_used);
510
511  rb_out:
512
513
514         if (new_disk >= 0) {
515                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
516                 if (!rdev)
517                         goto retry;
518                 atomic_inc(&rdev->nr_pending);
519                 if (!test_bit(In_sync, &rdev->flags)) {
520                         /* cannot risk returning a device that failed
521                          * before we inc'ed nr_pending
522                          */
523                         atomic_dec(&rdev->nr_pending);
524                         goto retry;
525                 }
526                 conf->next_seq_sect = this_sector + sectors;
527                 conf->last_used = new_disk;
528         }
529         rcu_read_unlock();
530
531         return new_disk;
532 }
533
534 static void unplug_slaves(mddev_t *mddev)
535 {
536         conf_t *conf = mddev_to_conf(mddev);
537         int i;
538
539         rcu_read_lock();
540         for (i=0; i<mddev->raid_disks; i++) {
541                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
542                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
543                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
544
545                         atomic_inc(&rdev->nr_pending);
546                         rcu_read_unlock();
547
548                         if (r_queue->unplug_fn)
549                                 r_queue->unplug_fn(r_queue);
550
551                         rdev_dec_pending(rdev, mddev);
552                         rcu_read_lock();
553                 }
554         }
555         rcu_read_unlock();
556 }
557
558 static void raid1_unplug(request_queue_t *q)
559 {
560         mddev_t *mddev = q->queuedata;
561
562         unplug_slaves(mddev);
563         md_wakeup_thread(mddev->thread);
564 }
565
566 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
567                              sector_t *error_sector)
568 {
569         mddev_t *mddev = q->queuedata;
570         conf_t *conf = mddev_to_conf(mddev);
571         int i, ret = 0;
572
573         rcu_read_lock();
574         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
575                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
576                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
577                         struct block_device *bdev = rdev->bdev;
578                         request_queue_t *r_queue = bdev_get_queue(bdev);
579
580                         if (!r_queue->issue_flush_fn)
581                                 ret = -EOPNOTSUPP;
582                         else {
583                                 atomic_inc(&rdev->nr_pending);
584                                 rcu_read_unlock();
585                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
586                                                               error_sector);
587                                 rdev_dec_pending(rdev, mddev);
588                                 rcu_read_lock();
589                         }
590                 }
591         }
592         rcu_read_unlock();
593         return ret;
594 }
595
596 /*
597  * Throttle resync depth, so that we can both get proper overlapping of
598  * requests, but are still able to handle normal requests quickly.
599  */
600 #define RESYNC_DEPTH 32
601
602 static void device_barrier(conf_t *conf, sector_t sect)
603 {
604         spin_lock_irq(&conf->resync_lock);
605         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
606                             conf->resync_lock, raid1_unplug(conf->mddev->queue));
607         
608         if (!conf->barrier++) {
609                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
610                                     conf->resync_lock, raid1_unplug(conf->mddev->queue));
611                 if (conf->nr_pending)
612                         BUG();
613         }
614         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
615                             conf->resync_lock, raid1_unplug(conf->mddev->queue));
616         conf->next_resync = sect;
617         spin_unlock_irq(&conf->resync_lock);
618 }
619
620 /* duplicate the data pages for behind I/O */
621 static struct page **alloc_behind_pages(struct bio *bio)
622 {
623         int i;
624         struct bio_vec *bvec;
625         struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
626                                         GFP_NOIO);
627         if (unlikely(!pages))
628                 goto do_sync_io;
629
630         memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
631
632         bio_for_each_segment(bvec, bio, i) {
633                 pages[i] = alloc_page(GFP_NOIO);
634                 if (unlikely(!pages[i]))
635                         goto do_sync_io;
636                 memcpy(kmap(pages[i]) + bvec->bv_offset,
637                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
638                 kunmap(pages[i]);
639                 kunmap(bvec->bv_page);
640         }
641
642         return pages;
643
644 do_sync_io:
645         if (pages)
646                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
647                         __free_page(pages[i]);
648         kfree(pages);
649         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
650         return NULL;
651 }
652
653 static int make_request(request_queue_t *q, struct bio * bio)
654 {
655         mddev_t *mddev = q->queuedata;
656         conf_t *conf = mddev_to_conf(mddev);
657         mirror_info_t *mirror;
658         r1bio_t *r1_bio;
659         struct bio *read_bio;
660         int i, targets = 0, disks;
661         mdk_rdev_t *rdev;
662         struct bitmap *bitmap = mddev->bitmap;
663         unsigned long flags;
664         struct bio_list bl;
665         struct page **behind_pages = NULL;
666         const int rw = bio_data_dir(bio);
667         int do_barriers;
668
669         if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
670                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
671                 return 0;
672         }
673
674         /*
675          * Register the new request and wait if the reconstruction
676          * thread has put up a bar for new requests.
677          * Continue immediately if no resync is active currently.
678          */
679         md_write_start(mddev, bio); /* wait on superblock update early */
680
681         spin_lock_irq(&conf->resync_lock);
682         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
683         conf->nr_pending++;
684         spin_unlock_irq(&conf->resync_lock);
685
686         disk_stat_inc(mddev->gendisk, ios[rw]);
687         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
688
689         /*
690          * make_request() can abort the operation when READA is being
691          * used and no empty request is available.
692          *
693          */
694         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
695
696         r1_bio->master_bio = bio;
697         r1_bio->sectors = bio->bi_size >> 9;
698         r1_bio->state = 0;
699         r1_bio->mddev = mddev;
700         r1_bio->sector = bio->bi_sector;
701
702         if (rw == READ) {
703                 /*
704                  * read balancing logic:
705                  */
706                 int rdisk = read_balance(conf, r1_bio);
707
708                 if (rdisk < 0) {
709                         /* couldn't find anywhere to read from */
710                         raid_end_bio_io(r1_bio);
711                         return 0;
712                 }
713                 mirror = conf->mirrors + rdisk;
714
715                 r1_bio->read_disk = rdisk;
716
717                 read_bio = bio_clone(bio, GFP_NOIO);
718
719                 r1_bio->bios[rdisk] = read_bio;
720
721                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
722                 read_bio->bi_bdev = mirror->rdev->bdev;
723                 read_bio->bi_end_io = raid1_end_read_request;
724                 read_bio->bi_rw = READ;
725                 read_bio->bi_private = r1_bio;
726
727                 generic_make_request(read_bio);
728                 return 0;
729         }
730
731         /*
732          * WRITE:
733          */
734         /* first select target devices under spinlock and
735          * inc refcount on their rdev.  Record them by setting
736          * bios[x] to bio
737          */
738         disks = conf->raid_disks;
739 #if 0
740         { static int first=1;
741         if (first) printk("First Write sector %llu disks %d\n",
742                           (unsigned long long)r1_bio->sector, disks);
743         first = 0;
744         }
745 #endif
746         rcu_read_lock();
747         for (i = 0;  i < disks; i++) {
748                 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
749                     !test_bit(Faulty, &rdev->flags)) {
750                         atomic_inc(&rdev->nr_pending);
751                         if (test_bit(Faulty, &rdev->flags)) {
752                                 atomic_dec(&rdev->nr_pending);
753                                 r1_bio->bios[i] = NULL;
754                         } else
755                                 r1_bio->bios[i] = bio;
756                         targets++;
757                 } else
758                         r1_bio->bios[i] = NULL;
759         }
760         rcu_read_unlock();
761
762         BUG_ON(targets == 0); /* we never fail the last device */
763
764         if (targets < conf->raid_disks) {
765                 /* array is degraded, we will not clear the bitmap
766                  * on I/O completion (see raid1_end_write_request) */
767                 set_bit(R1BIO_Degraded, &r1_bio->state);
768         }
769
770         /* do behind I/O ? */
771         if (bitmap &&
772             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
773             (behind_pages = alloc_behind_pages(bio)) != NULL)
774                 set_bit(R1BIO_BehindIO, &r1_bio->state);
775
776         atomic_set(&r1_bio->remaining, 0);
777         atomic_set(&r1_bio->behind_remaining, 0);
778
779         do_barriers = bio->bi_rw & BIO_RW_BARRIER;
780         if (do_barriers)
781                 set_bit(R1BIO_Barrier, &r1_bio->state);
782
783         bio_list_init(&bl);
784         for (i = 0; i < disks; i++) {
785                 struct bio *mbio;
786                 if (!r1_bio->bios[i])
787                         continue;
788
789                 mbio = bio_clone(bio, GFP_NOIO);
790                 r1_bio->bios[i] = mbio;
791
792                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
793                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
794                 mbio->bi_end_io = raid1_end_write_request;
795                 mbio->bi_rw = WRITE | do_barriers;
796                 mbio->bi_private = r1_bio;
797
798                 if (behind_pages) {
799                         struct bio_vec *bvec;
800                         int j;
801
802                         /* Yes, I really want the '__' version so that
803                          * we clear any unused pointer in the io_vec, rather
804                          * than leave them unchanged.  This is important
805                          * because when we come to free the pages, we won't
806                          * know the originial bi_idx, so we just free
807                          * them all
808                          */
809                         __bio_for_each_segment(bvec, mbio, j, 0)
810                                 bvec->bv_page = behind_pages[j];
811                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
812                                 atomic_inc(&r1_bio->behind_remaining);
813                 }
814
815                 atomic_inc(&r1_bio->remaining);
816
817                 bio_list_add(&bl, mbio);
818         }
819         kfree(behind_pages); /* the behind pages are attached to the bios now */
820
821         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
822                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
823         spin_lock_irqsave(&conf->device_lock, flags);
824         bio_list_merge(&conf->pending_bio_list, &bl);
825         bio_list_init(&bl);
826
827         blk_plug_device(mddev->queue);
828         spin_unlock_irqrestore(&conf->device_lock, flags);
829
830 #if 0
831         while ((bio = bio_list_pop(&bl)) != NULL)
832                 generic_make_request(bio);
833 #endif
834
835         return 0;
836 }
837
838 static void status(struct seq_file *seq, mddev_t *mddev)
839 {
840         conf_t *conf = mddev_to_conf(mddev);
841         int i;
842
843         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
844                                                 conf->working_disks);
845         for (i = 0; i < conf->raid_disks; i++)
846                 seq_printf(seq, "%s",
847                               conf->mirrors[i].rdev &&
848                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
849         seq_printf(seq, "]");
850 }
851
852
853 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
854 {
855         char b[BDEVNAME_SIZE];
856         conf_t *conf = mddev_to_conf(mddev);
857
858         /*
859          * If it is not operational, then we have already marked it as dead
860          * else if it is the last working disks, ignore the error, let the
861          * next level up know.
862          * else mark the drive as failed
863          */
864         if (test_bit(In_sync, &rdev->flags)
865             && conf->working_disks == 1)
866                 /*
867                  * Don't fail the drive, act as though we were just a
868                  * normal single drive
869                  */
870                 return;
871         if (test_bit(In_sync, &rdev->flags)) {
872                 mddev->degraded++;
873                 conf->working_disks--;
874                 /*
875                  * if recovery is running, make sure it aborts.
876                  */
877                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
878         }
879         clear_bit(In_sync, &rdev->flags);
880         set_bit(Faulty, &rdev->flags);
881         mddev->sb_dirty = 1;
882         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
883                 "       Operation continuing on %d devices\n",
884                 bdevname(rdev->bdev,b), conf->working_disks);
885 }
886
887 static void print_conf(conf_t *conf)
888 {
889         int i;
890         mirror_info_t *tmp;
891
892         printk("RAID1 conf printout:\n");
893         if (!conf) {
894                 printk("(!conf)\n");
895                 return;
896         }
897         printk(" --- wd:%d rd:%d\n", conf->working_disks,
898                 conf->raid_disks);
899
900         for (i = 0; i < conf->raid_disks; i++) {
901                 char b[BDEVNAME_SIZE];
902                 tmp = conf->mirrors + i;
903                 if (tmp->rdev)
904                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
905                                 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
906                                 bdevname(tmp->rdev->bdev,b));
907         }
908 }
909
910 static void close_sync(conf_t *conf)
911 {
912         spin_lock_irq(&conf->resync_lock);
913         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
914                             conf->resync_lock,  raid1_unplug(conf->mddev->queue));
915         spin_unlock_irq(&conf->resync_lock);
916
917         if (conf->barrier) BUG();
918         if (waitqueue_active(&conf->wait_idle)) BUG();
919
920         mempool_destroy(conf->r1buf_pool);
921         conf->r1buf_pool = NULL;
922 }
923
924 static int raid1_spare_active(mddev_t *mddev)
925 {
926         int i;
927         conf_t *conf = mddev->private;
928         mirror_info_t *tmp;
929
930         /*
931          * Find all failed disks within the RAID1 configuration 
932          * and mark them readable
933          */
934         for (i = 0; i < conf->raid_disks; i++) {
935                 tmp = conf->mirrors + i;
936                 if (tmp->rdev 
937                     && !test_bit(Faulty, &tmp->rdev->flags)
938                     && !test_bit(In_sync, &tmp->rdev->flags)) {
939                         conf->working_disks++;
940                         mddev->degraded--;
941                         set_bit(In_sync, &tmp->rdev->flags);
942                 }
943         }
944
945         print_conf(conf);
946         return 0;
947 }
948
949
950 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
951 {
952         conf_t *conf = mddev->private;
953         int found = 0;
954         int mirror = 0;
955         mirror_info_t *p;
956
957         for (mirror=0; mirror < mddev->raid_disks; mirror++)
958                 if ( !(p=conf->mirrors+mirror)->rdev) {
959
960                         blk_queue_stack_limits(mddev->queue,
961                                                rdev->bdev->bd_disk->queue);
962                         /* as we don't honour merge_bvec_fn, we must never risk
963                          * violating it, so limit ->max_sector to one PAGE, as
964                          * a one page request is never in violation.
965                          */
966                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
967                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
968                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
969
970                         p->head_position = 0;
971                         rdev->raid_disk = mirror;
972                         found = 1;
973                         /* As all devices are equivalent, we don't need a full recovery
974                          * if this was recently any drive of the array
975                          */
976                         if (rdev->saved_raid_disk < 0)
977                                 conf->fullsync = 1;
978                         rcu_assign_pointer(p->rdev, rdev);
979                         break;
980                 }
981
982         print_conf(conf);
983         return found;
984 }
985
986 static int raid1_remove_disk(mddev_t *mddev, int number)
987 {
988         conf_t *conf = mddev->private;
989         int err = 0;
990         mdk_rdev_t *rdev;
991         mirror_info_t *p = conf->mirrors+ number;
992
993         print_conf(conf);
994         rdev = p->rdev;
995         if (rdev) {
996                 if (test_bit(In_sync, &rdev->flags) ||
997                     atomic_read(&rdev->nr_pending)) {
998                         err = -EBUSY;
999                         goto abort;
1000                 }
1001                 p->rdev = NULL;
1002                 synchronize_rcu();
1003                 if (atomic_read(&rdev->nr_pending)) {
1004                         /* lost the race, try later */
1005                         err = -EBUSY;
1006                         p->rdev = rdev;
1007                 }
1008         }
1009 abort:
1010
1011         print_conf(conf);
1012         return err;
1013 }
1014
1015
1016 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1017 {
1018         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1019         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1020         conf_t *conf = mddev_to_conf(r1_bio->mddev);
1021
1022         if (bio->bi_size)
1023                 return 1;
1024
1025         if (r1_bio->bios[r1_bio->read_disk] != bio)
1026                 BUG();
1027         update_head_pos(r1_bio->read_disk, r1_bio);
1028         /*
1029          * we have read a block, now it needs to be re-written,
1030          * or re-read if the read failed.
1031          * We don't do much here, just schedule handling by raid1d
1032          */
1033         if (!uptodate) {
1034                 md_error(r1_bio->mddev,
1035                          conf->mirrors[r1_bio->read_disk].rdev);
1036         } else
1037                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1038         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
1039         reschedule_retry(r1_bio);
1040         return 0;
1041 }
1042
1043 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1044 {
1045         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1046         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1047         mddev_t *mddev = r1_bio->mddev;
1048         conf_t *conf = mddev_to_conf(mddev);
1049         int i;
1050         int mirror=0;
1051
1052         if (bio->bi_size)
1053                 return 1;
1054
1055         for (i = 0; i < conf->raid_disks; i++)
1056                 if (r1_bio->bios[i] == bio) {
1057                         mirror = i;
1058                         break;
1059                 }
1060         if (!uptodate)
1061                 md_error(mddev, conf->mirrors[mirror].rdev);
1062
1063         update_head_pos(mirror, r1_bio);
1064
1065         if (atomic_dec_and_test(&r1_bio->remaining)) {
1066                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1067                 put_buf(r1_bio);
1068         }
1069         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1070         return 0;
1071 }
1072
1073 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1074 {
1075         conf_t *conf = mddev_to_conf(mddev);
1076         int i;
1077         int disks = conf->raid_disks;
1078         struct bio *bio, *wbio;
1079
1080         bio = r1_bio->bios[r1_bio->read_disk];
1081
1082 /*
1083         if (r1_bio->sector == 0) printk("First sync write startss\n");
1084 */
1085         /*
1086          * schedule writes
1087          */
1088         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1089                 /*
1090                  * There is no point trying a read-for-reconstruct as
1091                  * reconstruct is about to be aborted
1092                  */
1093                 char b[BDEVNAME_SIZE];
1094                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1095                         " for block %llu\n",
1096                         bdevname(bio->bi_bdev,b), 
1097                         (unsigned long long)r1_bio->sector);
1098                 md_done_sync(mddev, r1_bio->sectors, 0);
1099                 put_buf(r1_bio);
1100                 return;
1101         }
1102
1103         atomic_set(&r1_bio->remaining, 1);
1104         for (i = 0; i < disks ; i++) {
1105                 wbio = r1_bio->bios[i];
1106                 if (wbio->bi_end_io != end_sync_write)
1107                         continue;
1108
1109                 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
1110                 atomic_inc(&r1_bio->remaining);
1111                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1112
1113                 generic_make_request(wbio);
1114         }
1115
1116         if (atomic_dec_and_test(&r1_bio->remaining)) {
1117                 /* if we're here, all write(s) have completed, so clean up */
1118                 md_done_sync(mddev, r1_bio->sectors, 1);
1119                 put_buf(r1_bio);
1120         }
1121 }
1122
1123 /*
1124  * This is a kernel thread which:
1125  *
1126  *      1.      Retries failed read operations on working mirrors.
1127  *      2.      Updates the raid superblock when problems encounter.
1128  *      3.      Performs writes following reads for array syncronising.
1129  */
1130
1131 static void raid1d(mddev_t *mddev)
1132 {
1133         r1bio_t *r1_bio;
1134         struct bio *bio;
1135         unsigned long flags;
1136         conf_t *conf = mddev_to_conf(mddev);
1137         struct list_head *head = &conf->retry_list;
1138         int unplug=0;
1139         mdk_rdev_t *rdev;
1140
1141         md_check_recovery(mddev);
1142         
1143         for (;;) {
1144                 char b[BDEVNAME_SIZE];
1145                 spin_lock_irqsave(&conf->device_lock, flags);
1146
1147                 if (conf->pending_bio_list.head) {
1148                         bio = bio_list_get(&conf->pending_bio_list);
1149                         blk_remove_plug(mddev->queue);
1150                         spin_unlock_irqrestore(&conf->device_lock, flags);
1151                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1152                         if (bitmap_unplug(mddev->bitmap) != 0)
1153                                 printk("%s: bitmap file write failed!\n", mdname(mddev));
1154
1155                         while (bio) { /* submit pending writes */
1156                                 struct bio *next = bio->bi_next;
1157                                 bio->bi_next = NULL;
1158                                 generic_make_request(bio);
1159                                 bio = next;
1160                         }
1161                         unplug = 1;
1162
1163                         continue;
1164                 }
1165
1166                 if (list_empty(head))
1167                         break;
1168                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1169                 list_del(head->prev);
1170                 spin_unlock_irqrestore(&conf->device_lock, flags);
1171
1172                 mddev = r1_bio->mddev;
1173                 conf = mddev_to_conf(mddev);
1174                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1175                         sync_request_write(mddev, r1_bio);
1176                         unplug = 1;
1177                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1178                         /* some requests in the r1bio were BIO_RW_BARRIER
1179                          * requests which failed with -ENOTSUPP.  Hohumm..
1180                          * Better resubmit without the barrier.
1181                          * We know which devices to resubmit for, because
1182                          * all others have had their bios[] entry cleared.
1183                          */
1184                         int i;
1185                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1186                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1187                         for (i=0; i < conf->raid_disks; i++)
1188                                 if (r1_bio->bios[i]) {
1189                                         struct bio_vec *bvec;
1190                                         int j;
1191
1192                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1193                                         /* copy pages from the failed bio, as
1194                                          * this might be a write-behind device */
1195                                         __bio_for_each_segment(bvec, bio, j, 0)
1196                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1197                                         bio_put(r1_bio->bios[i]);
1198                                         bio->bi_sector = r1_bio->sector +
1199                                                 conf->mirrors[i].rdev->data_offset;
1200                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1201                                         bio->bi_end_io = raid1_end_write_request;
1202                                         bio->bi_rw = WRITE;
1203                                         bio->bi_private = r1_bio;
1204                                         r1_bio->bios[i] = bio;
1205                                         generic_make_request(bio);
1206                                 }
1207                 } else {
1208                         int disk;
1209                         bio = r1_bio->bios[r1_bio->read_disk];
1210                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1211                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1212                                        " read error for block %llu\n",
1213                                        bdevname(bio->bi_bdev,b),
1214                                        (unsigned long long)r1_bio->sector);
1215                                 raid_end_bio_io(r1_bio);
1216                         } else {
1217                                 r1_bio->bios[r1_bio->read_disk] = NULL;
1218                                 r1_bio->read_disk = disk;
1219                                 bio_put(bio);
1220                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1221                                 r1_bio->bios[r1_bio->read_disk] = bio;
1222                                 rdev = conf->mirrors[disk].rdev;
1223                                 if (printk_ratelimit())
1224                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1225                                                " another mirror\n",
1226                                                bdevname(rdev->bdev,b),
1227                                                (unsigned long long)r1_bio->sector);
1228                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1229                                 bio->bi_bdev = rdev->bdev;
1230                                 bio->bi_end_io = raid1_end_read_request;
1231                                 bio->bi_rw = READ;
1232                                 bio->bi_private = r1_bio;
1233                                 unplug = 1;
1234                                 generic_make_request(bio);
1235                         }
1236                 }
1237         }
1238         spin_unlock_irqrestore(&conf->device_lock, flags);
1239         if (unplug)
1240                 unplug_slaves(mddev);
1241 }
1242
1243
1244 static int init_resync(conf_t *conf)
1245 {
1246         int buffs;
1247
1248         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1249         if (conf->r1buf_pool)
1250                 BUG();
1251         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1252                                           conf->poolinfo);
1253         if (!conf->r1buf_pool)
1254                 return -ENOMEM;
1255         conf->next_resync = 0;
1256         return 0;
1257 }
1258
1259 /*
1260  * perform a "sync" on one "block"
1261  *
1262  * We need to make sure that no normal I/O request - particularly write
1263  * requests - conflict with active sync requests.
1264  *
1265  * This is achieved by tracking pending requests and a 'barrier' concept
1266  * that can be installed to exclude normal IO requests.
1267  */
1268
1269 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1270 {
1271         conf_t *conf = mddev_to_conf(mddev);
1272         mirror_info_t *mirror;
1273         r1bio_t *r1_bio;
1274         struct bio *bio;
1275         sector_t max_sector, nr_sectors;
1276         int disk;
1277         int i;
1278         int wonly;
1279         int write_targets = 0;
1280         int sync_blocks;
1281         int still_degraded = 0;
1282
1283         if (!conf->r1buf_pool)
1284         {
1285 /*
1286                 printk("sync start - bitmap %p\n", mddev->bitmap);
1287 */
1288                 if (init_resync(conf))
1289                         return 0;
1290         }
1291
1292         max_sector = mddev->size << 1;
1293         if (sector_nr >= max_sector) {
1294                 /* If we aborted, we need to abort the
1295                  * sync on the 'current' bitmap chunk (there will
1296                  * only be one in raid1 resync.
1297                  * We can find the current addess in mddev->curr_resync
1298                  */
1299                 if (mddev->curr_resync < max_sector) /* aborted */
1300                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1301                                                 &sync_blocks, 1);
1302                 else /* completed sync */
1303                         conf->fullsync = 0;
1304
1305                 bitmap_close_sync(mddev->bitmap);
1306                 close_sync(conf);
1307                 return 0;
1308         }
1309
1310         /* before building a request, check if we can skip these blocks..
1311          * This call the bitmap_start_sync doesn't actually record anything
1312          */
1313         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1314             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1315                 /* We can skip this block, and probably several more */
1316                 *skipped = 1;
1317                 return sync_blocks;
1318         }
1319         /*
1320          * If there is non-resync activity waiting for us then
1321          * put in a delay to throttle resync.
1322          */
1323         if (!go_faster && waitqueue_active(&conf->wait_resume))
1324                 msleep_interruptible(1000);
1325         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1326
1327         /*
1328          * If reconstructing, and >1 working disc,
1329          * could dedicate one to rebuild and others to
1330          * service read requests ..
1331          */
1332         disk = conf->last_used;
1333         /* make sure disk is operational */
1334         wonly = disk;
1335         while (conf->mirrors[disk].rdev == NULL ||
1336                !test_bit(In_sync, &conf->mirrors[disk].rdev->flags) ||
1337                test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags)
1338                 ) {
1339                 if (conf->mirrors[disk].rdev  &&
1340                     test_bit(In_sync, &conf->mirrors[disk].rdev->flags))
1341                         wonly = disk;
1342                 if (disk <= 0)
1343                         disk = conf->raid_disks;
1344                 disk--;
1345                 if (disk == conf->last_used) {
1346                         disk = wonly;
1347                         break;
1348                 }
1349         }
1350         conf->last_used = disk;
1351         atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1352
1353
1354         mirror = conf->mirrors + disk;
1355
1356         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1357
1358         spin_lock_irq(&conf->resync_lock);
1359         conf->nr_pending++;
1360         spin_unlock_irq(&conf->resync_lock);
1361
1362         r1_bio->mddev = mddev;
1363         r1_bio->sector = sector_nr;
1364         r1_bio->state = 0;
1365         set_bit(R1BIO_IsSync, &r1_bio->state);
1366         r1_bio->read_disk = disk;
1367
1368         for (i=0; i < conf->raid_disks; i++) {
1369                 bio = r1_bio->bios[i];
1370
1371                 /* take from bio_init */
1372                 bio->bi_next = NULL;
1373                 bio->bi_flags |= 1 << BIO_UPTODATE;
1374                 bio->bi_rw = 0;
1375                 bio->bi_vcnt = 0;
1376                 bio->bi_idx = 0;
1377                 bio->bi_phys_segments = 0;
1378                 bio->bi_hw_segments = 0;
1379                 bio->bi_size = 0;
1380                 bio->bi_end_io = NULL;
1381                 bio->bi_private = NULL;
1382
1383                 if (i == disk) {
1384                         bio->bi_rw = READ;
1385                         bio->bi_end_io = end_sync_read;
1386                 } else if (conf->mirrors[i].rdev == NULL ||
1387                            test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
1388                         still_degraded = 1;
1389                         continue;
1390                 } else if (!test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
1391                            sector_nr + RESYNC_SECTORS > mddev->recovery_cp   ||
1392                            test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1393                         bio->bi_rw = WRITE;
1394                         bio->bi_end_io = end_sync_write;
1395                         write_targets ++;
1396                 } else
1397                         /* no need to read or write here */
1398                         continue;
1399                 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1400                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401                 bio->bi_private = r1_bio;
1402         }
1403
1404         if (write_targets == 0) {
1405                 /* There is nowhere to write, so all non-sync
1406                  * drives must be failed - so we are finished
1407                  */
1408                 sector_t rv = max_sector - sector_nr;
1409                 *skipped = 1;
1410                 put_buf(r1_bio);
1411                 rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1412                 return rv;
1413         }
1414
1415         nr_sectors = 0;
1416         sync_blocks = 0;
1417         do {
1418                 struct page *page;
1419                 int len = PAGE_SIZE;
1420                 if (sector_nr + (len>>9) > max_sector)
1421                         len = (max_sector - sector_nr) << 9;
1422                 if (len == 0)
1423                         break;
1424                 if (sync_blocks == 0) {
1425                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1426                                                &sync_blocks, still_degraded) &&
1427                             !conf->fullsync &&
1428                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1429                                 break;
1430                         if (sync_blocks < (PAGE_SIZE>>9))
1431                                 BUG();
1432                         if (len > (sync_blocks<<9))
1433                                 len = sync_blocks<<9;
1434                 }
1435
1436                 for (i=0 ; i < conf->raid_disks; i++) {
1437                         bio = r1_bio->bios[i];
1438                         if (bio->bi_end_io) {
1439                                 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1440                                 if (bio_add_page(bio, page, len, 0) == 0) {
1441                                         /* stop here */
1442                                         r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1443                                         while (i > 0) {
1444                                                 i--;
1445                                                 bio = r1_bio->bios[i];
1446                                                 if (bio->bi_end_io==NULL)
1447                                                         continue;
1448                                                 /* remove last page from this bio */
1449                                                 bio->bi_vcnt--;
1450                                                 bio->bi_size -= len;
1451                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1452                                         }
1453                                         goto bio_full;
1454                                 }
1455                         }
1456                 }
1457                 nr_sectors += len>>9;
1458                 sector_nr += len>>9;
1459                 sync_blocks -= (len>>9);
1460         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1461  bio_full:
1462         bio = r1_bio->bios[disk];
1463         r1_bio->sectors = nr_sectors;
1464
1465         md_sync_acct(mirror->rdev->bdev, nr_sectors);
1466
1467         generic_make_request(bio);
1468
1469         return nr_sectors;
1470 }
1471
1472 static int run(mddev_t *mddev)
1473 {
1474         conf_t *conf;
1475         int i, j, disk_idx;
1476         mirror_info_t *disk;
1477         mdk_rdev_t *rdev;
1478         struct list_head *tmp;
1479
1480         if (mddev->level != 1) {
1481                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1482                        mdname(mddev), mddev->level);
1483                 goto out;
1484         }
1485         /*
1486          * copy the already verified devices into our private RAID1
1487          * bookkeeping area. [whatever we allocate in run(),
1488          * should be freed in stop()]
1489          */
1490         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1491         mddev->private = conf;
1492         if (!conf)
1493                 goto out_no_mem;
1494
1495         memset(conf, 0, sizeof(*conf));
1496         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 
1497                                  GFP_KERNEL);
1498         if (!conf->mirrors)
1499                 goto out_no_mem;
1500
1501         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1502
1503         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1504         if (!conf->poolinfo)
1505                 goto out_no_mem;
1506         conf->poolinfo->mddev = mddev;
1507         conf->poolinfo->raid_disks = mddev->raid_disks;
1508         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1509                                           r1bio_pool_free,
1510                                           conf->poolinfo);
1511         if (!conf->r1bio_pool)
1512                 goto out_no_mem;
1513
1514         ITERATE_RDEV(mddev, rdev, tmp) {
1515                 disk_idx = rdev->raid_disk;
1516                 if (disk_idx >= mddev->raid_disks
1517                     || disk_idx < 0)
1518                         continue;
1519                 disk = conf->mirrors + disk_idx;
1520
1521                 disk->rdev = rdev;
1522
1523                 blk_queue_stack_limits(mddev->queue,
1524                                        rdev->bdev->bd_disk->queue);
1525                 /* as we don't honour merge_bvec_fn, we must never risk
1526                  * violating it, so limit ->max_sector to one PAGE, as
1527                  * a one page request is never in violation.
1528                  */
1529                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1530                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1531                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1532
1533                 disk->head_position = 0;
1534                 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1535                         conf->working_disks++;
1536         }
1537         conf->raid_disks = mddev->raid_disks;
1538         conf->mddev = mddev;
1539         spin_lock_init(&conf->device_lock);
1540         INIT_LIST_HEAD(&conf->retry_list);
1541         if (conf->working_disks == 1)
1542                 mddev->recovery_cp = MaxSector;
1543
1544         spin_lock_init(&conf->resync_lock);
1545         init_waitqueue_head(&conf->wait_idle);
1546         init_waitqueue_head(&conf->wait_resume);
1547
1548         bio_list_init(&conf->pending_bio_list);
1549         bio_list_init(&conf->flushing_bio_list);
1550
1551         if (!conf->working_disks) {
1552                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1553                         mdname(mddev));
1554                 goto out_free_conf;
1555         }
1556
1557         mddev->degraded = 0;
1558         for (i = 0; i < conf->raid_disks; i++) {
1559
1560                 disk = conf->mirrors + i;
1561
1562                 if (!disk->rdev) {
1563                         disk->head_position = 0;
1564                         mddev->degraded++;
1565                 }
1566         }
1567
1568         /*
1569          * find the first working one and use it as a starting point
1570          * to read balancing.
1571          */
1572         for (j = 0; j < conf->raid_disks &&
1573                      (!conf->mirrors[j].rdev ||
1574                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1575                 /* nothing */;
1576         conf->last_used = j;
1577
1578
1579         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1580         if (!mddev->thread) {
1581                 printk(KERN_ERR
1582                        "raid1: couldn't allocate thread for %s\n",
1583                        mdname(mddev));
1584                 goto out_free_conf;
1585         }
1586         if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1587
1588         printk(KERN_INFO 
1589                 "raid1: raid set %s active with %d out of %d mirrors\n",
1590                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1591                 mddev->raid_disks);
1592         /*
1593          * Ok, everything is just fine now
1594          */
1595         mddev->array_size = mddev->size;
1596
1597         mddev->queue->unplug_fn = raid1_unplug;
1598         mddev->queue->issue_flush_fn = raid1_issue_flush;
1599
1600         return 0;
1601
1602 out_no_mem:
1603         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1604                mdname(mddev));
1605
1606 out_free_conf:
1607         if (conf) {
1608                 if (conf->r1bio_pool)
1609                         mempool_destroy(conf->r1bio_pool);
1610                 kfree(conf->mirrors);
1611                 kfree(conf->poolinfo);
1612                 kfree(conf);
1613                 mddev->private = NULL;
1614         }
1615 out:
1616         return -EIO;
1617 }
1618
1619 static int stop(mddev_t *mddev)
1620 {
1621         conf_t *conf = mddev_to_conf(mddev);
1622         struct bitmap *bitmap = mddev->bitmap;
1623         int behind_wait = 0;
1624
1625         /* wait for behind writes to complete */
1626         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1627                 behind_wait++;
1628                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1629                 set_current_state(TASK_UNINTERRUPTIBLE);
1630                 schedule_timeout(HZ); /* wait a second */
1631                 /* need to kick something here to make sure I/O goes? */
1632         }
1633
1634         md_unregister_thread(mddev->thread);
1635         mddev->thread = NULL;
1636         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1637         if (conf->r1bio_pool)
1638                 mempool_destroy(conf->r1bio_pool);
1639         kfree(conf->mirrors);
1640         kfree(conf->poolinfo);
1641         kfree(conf);
1642         mddev->private = NULL;
1643         return 0;
1644 }
1645
1646 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1647 {
1648         /* no resync is happening, and there is enough space
1649          * on all devices, so we can resize.
1650          * We need to make sure resync covers any new space.
1651          * If the array is shrinking we should possibly wait until
1652          * any io in the removed space completes, but it hardly seems
1653          * worth it.
1654          */
1655         mddev->array_size = sectors>>1;
1656         set_capacity(mddev->gendisk, mddev->array_size << 1);
1657         mddev->changed = 1;
1658         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1659                 mddev->recovery_cp = mddev->size << 1;
1660                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1661         }
1662         mddev->size = mddev->array_size;
1663         mddev->resync_max_sectors = sectors;
1664         return 0;
1665 }
1666
1667 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1668 {
1669         /* We need to:
1670          * 1/ resize the r1bio_pool
1671          * 2/ resize conf->mirrors
1672          *
1673          * We allocate a new r1bio_pool if we can.
1674          * Then raise a device barrier and wait until all IO stops.
1675          * Then resize conf->mirrors and swap in the new r1bio pool.
1676          *
1677          * At the same time, we "pack" the devices so that all the missing
1678          * devices have the higher raid_disk numbers.
1679          */
1680         mempool_t *newpool, *oldpool;
1681         struct pool_info *newpoolinfo;
1682         mirror_info_t *newmirrors;
1683         conf_t *conf = mddev_to_conf(mddev);
1684         int cnt;
1685
1686         int d, d2;
1687
1688         if (raid_disks < conf->raid_disks) {
1689                 cnt=0;
1690                 for (d= 0; d < conf->raid_disks; d++)
1691                         if (conf->mirrors[d].rdev)
1692                                 cnt++;
1693                 if (cnt > raid_disks)
1694                         return -EBUSY;
1695         }
1696
1697         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1698         if (!newpoolinfo)
1699                 return -ENOMEM;
1700         newpoolinfo->mddev = mddev;
1701         newpoolinfo->raid_disks = raid_disks;
1702
1703         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1704                                  r1bio_pool_free, newpoolinfo);
1705         if (!newpool) {
1706                 kfree(newpoolinfo);
1707                 return -ENOMEM;
1708         }
1709         newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1710         if (!newmirrors) {
1711                 kfree(newpoolinfo);
1712                 mempool_destroy(newpool);
1713                 return -ENOMEM;
1714         }
1715         memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1716
1717         spin_lock_irq(&conf->resync_lock);
1718         conf->barrier++;
1719         wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1720                             conf->resync_lock, raid1_unplug(mddev->queue));
1721         spin_unlock_irq(&conf->resync_lock);
1722
1723         /* ok, everything is stopped */
1724         oldpool = conf->r1bio_pool;
1725         conf->r1bio_pool = newpool;
1726
1727         for (d=d2=0; d < conf->raid_disks; d++)
1728                 if (conf->mirrors[d].rdev) {
1729                         conf->mirrors[d].rdev->raid_disk = d2;
1730                         newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1731                 }
1732         kfree(conf->mirrors);
1733         conf->mirrors = newmirrors;
1734         kfree(conf->poolinfo);
1735         conf->poolinfo = newpoolinfo;
1736
1737         mddev->degraded += (raid_disks - conf->raid_disks);
1738         conf->raid_disks = mddev->raid_disks = raid_disks;
1739
1740         conf->last_used = 0; /* just make sure it is in-range */
1741         spin_lock_irq(&conf->resync_lock);
1742         conf->barrier--;
1743         spin_unlock_irq(&conf->resync_lock);
1744         wake_up(&conf->wait_resume);
1745         wake_up(&conf->wait_idle);
1746
1747
1748         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1749         md_wakeup_thread(mddev->thread);
1750
1751         mempool_destroy(oldpool);
1752         return 0;
1753 }
1754
1755 static void raid1_quiesce(mddev_t *mddev, int state)
1756 {
1757         conf_t *conf = mddev_to_conf(mddev);
1758
1759         switch(state) {
1760         case 1:
1761                 spin_lock_irq(&conf->resync_lock);
1762                 conf->barrier++;
1763                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1764                                     conf->resync_lock, raid1_unplug(mddev->queue));
1765                 spin_unlock_irq(&conf->resync_lock);
1766                 break;
1767         case 0:
1768                 spin_lock_irq(&conf->resync_lock);
1769                 conf->barrier--;
1770                 spin_unlock_irq(&conf->resync_lock);
1771                 wake_up(&conf->wait_resume);
1772                 wake_up(&conf->wait_idle);
1773                 break;
1774         }
1775         if (mddev->thread) {
1776                 if (mddev->bitmap)
1777                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1778                 else
1779                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1780                 md_wakeup_thread(mddev->thread);
1781         }
1782 }
1783
1784
1785 static mdk_personality_t raid1_personality =
1786 {
1787         .name           = "raid1",
1788         .owner          = THIS_MODULE,
1789         .make_request   = make_request,
1790         .run            = run,
1791         .stop           = stop,
1792         .status         = status,
1793         .error_handler  = error,
1794         .hot_add_disk   = raid1_add_disk,
1795         .hot_remove_disk= raid1_remove_disk,
1796         .spare_active   = raid1_spare_active,
1797         .sync_request   = sync_request,
1798         .resize         = raid1_resize,
1799         .reshape        = raid1_reshape,
1800         .quiesce        = raid1_quiesce,
1801 };
1802
1803 static int __init raid_init(void)
1804 {
1805         return register_md_personality(RAID1, &raid1_personality);
1806 }
1807
1808 static void raid_exit(void)
1809 {
1810         unregister_md_personality(RAID1);
1811 }
1812
1813 module_init(raid_init);
1814 module_exit(raid_exit);
1815 MODULE_LICENSE("GPL");
1816 MODULE_ALIAS("md-personality-3"); /* RAID1 */