[S390] Fix smp_call_function_mask semantics.
[linux-2.6] / arch / powerpc / math-emu / op-2.h
1 /*
2  * Basic two-word fraction declaration and manipulation.
3  */
4
5 #define _FP_FRAC_DECL_2(X)      _FP_W_TYPE X##_f0, X##_f1
6 #define _FP_FRAC_COPY_2(D,S)    (D##_f0 = S##_f0, D##_f1 = S##_f1)
7 #define _FP_FRAC_SET_2(X,I)     __FP_FRAC_SET_2(X, I)
8 #define _FP_FRAC_HIGH_2(X)      (X##_f1)
9 #define _FP_FRAC_LOW_2(X)       (X##_f0)
10 #define _FP_FRAC_WORD_2(X,w)    (X##_f##w)
11
12 #define _FP_FRAC_SLL_2(X,N)                                             \
13   do {                                                                  \
14     if ((N) < _FP_W_TYPE_SIZE)                                          \
15       {                                                                 \
16         if (__builtin_constant_p(N) && (N) == 1)                        \
17           {                                                             \
18             X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);   \
19             X##_f0 += X##_f0;                                           \
20           }                                                             \
21         else                                                            \
22           {                                                             \
23             X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \
24             X##_f0 <<= (N);                                             \
25           }                                                             \
26       }                                                                 \
27     else                                                                \
28       {                                                                 \
29         X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);                     \
30         X##_f0 = 0;                                                     \
31       }                                                                 \
32   } while (0)
33
34 #define _FP_FRAC_SRL_2(X,N)                                             \
35   do {                                                                  \
36     if ((N) < _FP_W_TYPE_SIZE)                                          \
37       {                                                                 \
38         X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));     \
39         X##_f1 >>= (N);                                                 \
40       }                                                                 \
41     else                                                                \
42       {                                                                 \
43         X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);                     \
44         X##_f1 = 0;                                                     \
45       }                                                                 \
46   } while (0)
47
48 /* Right shift with sticky-lsb.  */
49 #define _FP_FRAC_SRS_2(X,N,sz)                                          \
50   do {                                                                  \
51     if ((N) < _FP_W_TYPE_SIZE)                                          \
52       {                                                                 \
53         X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |   \
54                   (__builtin_constant_p(N) && (N) == 1                  \
55                    ? X##_f0 & 1                                         \
56                    : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));        \
57         X##_f1 >>= (N);                                                 \
58       }                                                                 \
59     else                                                                \
60       {                                                                 \
61         X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |                   \
62                   (((X##_f1 << (2 * _FP_W_TYPE_SIZE - (N))) |           \
63                    X##_f0) != 0));                                      \
64         X##_f1 = 0;                                                     \
65       }                                                                 \
66   } while (0)
67
68 #define _FP_FRAC_ADDI_2(X,I) \
69   __FP_FRAC_ADDI_2(X##_f1, X##_f0, I)
70
71 #define _FP_FRAC_ADD_2(R,X,Y) \
72   __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
73
74 #define _FP_FRAC_SUB_2(R,X,Y) \
75   __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
76
77 #define _FP_FRAC_CLZ_2(R,X)     \
78   do {                          \
79     if (X##_f1)                 \
80       __FP_CLZ(R,X##_f1);       \
81     else                        \
82     {                           \
83       __FP_CLZ(R,X##_f0);       \
84       R += _FP_W_TYPE_SIZE;     \
85     }                           \
86   } while(0)
87
88 /* Predicates */
89 #define _FP_FRAC_NEGP_2(X)      ((_FP_WS_TYPE)X##_f1 < 0)
90 #define _FP_FRAC_ZEROP_2(X)     ((X##_f1 | X##_f0) == 0)
91 #define _FP_FRAC_OVERP_2(fs,X)  (X##_f1 & _FP_OVERFLOW_##fs)
92 #define _FP_FRAC_EQ_2(X, Y)     (X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
93 #define _FP_FRAC_GT_2(X, Y)     \
94   ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
95 #define _FP_FRAC_GE_2(X, Y)     \
96   ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
97
98 #define _FP_ZEROFRAC_2          0, 0
99 #define _FP_MINFRAC_2           0, 1
100
101 /*
102  * Internals
103  */
104
105 #define __FP_FRAC_SET_2(X,I1,I0)        (X##_f0 = I0, X##_f1 = I1)
106
107 #define __FP_CLZ_2(R, xh, xl)   \
108   do {                          \
109     if (xh)                     \
110       __FP_CLZ(R,xl);           \
111     else                        \
112     {                           \
113       __FP_CLZ(R,xl);           \
114       R += _FP_W_TYPE_SIZE;     \
115     }                           \
116   } while(0)
117
118 #if 0
119
120 #ifndef __FP_FRAC_ADDI_2
121 #define __FP_FRAC_ADDI_2(xh, xl, i) \
122   (xh += ((xl += i) < i))
123 #endif
124 #ifndef __FP_FRAC_ADD_2
125 #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \
126   (rh = xh + yh + ((rl = xl + yl) < xl))
127 #endif
128 #ifndef __FP_FRAC_SUB_2
129 #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \
130   (rh = xh - yh - ((rl = xl - yl) > xl))
131 #endif
132
133 #else
134
135 #undef __FP_FRAC_ADDI_2
136 #define __FP_FRAC_ADDI_2(xh, xl, i)     add_ssaaaa(xh, xl, xh, xl, 0, i)
137 #undef __FP_FRAC_ADD_2
138 #define __FP_FRAC_ADD_2                 add_ssaaaa
139 #undef __FP_FRAC_SUB_2
140 #define __FP_FRAC_SUB_2                 sub_ddmmss
141
142 #endif
143
144 /*
145  * Unpack the raw bits of a native fp value.  Do not classify or
146  * normalize the data.
147  */
148
149 #define _FP_UNPACK_RAW_2(fs, X, val)                    \
150   do {                                                  \
151     union _FP_UNION_##fs _flo; _flo.flt = (val);        \
152                                                         \
153     X##_f0 = _flo.bits.frac0;                           \
154     X##_f1 = _flo.bits.frac1;                           \
155     X##_e  = _flo.bits.exp;                             \
156     X##_s  = _flo.bits.sign;                            \
157   } while (0)
158
159
160 /*
161  * Repack the raw bits of a native fp value.
162  */
163
164 #define _FP_PACK_RAW_2(fs, val, X)                      \
165   do {                                                  \
166     union _FP_UNION_##fs _flo;                          \
167                                                         \
168     _flo.bits.frac0 = X##_f0;                           \
169     _flo.bits.frac1 = X##_f1;                           \
170     _flo.bits.exp   = X##_e;                            \
171     _flo.bits.sign  = X##_s;                            \
172                                                         \
173     (val) = _flo.flt;                                   \
174   } while (0)
175
176
177 /*
178  * Multiplication algorithms:
179  */
180
181 /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
182
183 #define _FP_MUL_MEAT_2_wide(fs, R, X, Y, doit)                          \
184   do {                                                                  \
185     _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);      \
186                                                                         \
187     doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \
188     doit(_b_f1, _b_f0, X##_f0, Y##_f1);                                 \
189     doit(_c_f1, _c_f0, X##_f1, Y##_f0);                                 \
190     doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \
191                                                                         \
192     __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
193                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),        \
194                     0, _b_f1, _b_f0, 0,                                 \
195                     _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
196                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));       \
197     __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
198                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),        \
199                     0, _c_f1, _c_f0, 0,                                 \
200                     _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),        \
201                     _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));       \
202                                                                         \
203     /* Normalize since we know where the msb of the multiplicands       \
204        were (bit B), we know that the msb of the of the product is      \
205        at either 2B or 2B-1.  */                                        \
206     _FP_FRAC_SRS_4(_z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);     \
207     R##_f0 = _FP_FRAC_WORD_4(_z,0);                                     \
208     R##_f1 = _FP_FRAC_WORD_4(_z,1);                                     \
209   } while (0)
210
211 /* This next macro appears to be totally broken. Fortunately nowhere
212  * seems to use it :-> The problem is that we define _z[4] but
213  * then use it in _FP_FRAC_SRS_4, which will attempt to access
214  * _z_f[n] which will cause an error. The fix probably involves
215  * declaring it with _FP_FRAC_DECL_4, see previous macro. -- PMM 02/1998
216  */
217 #define _FP_MUL_MEAT_2_gmp(fs, R, X, Y)                                 \
218   do {                                                                  \
219     _FP_W_TYPE _x[2], _y[2], _z[4];                                     \
220     _x[0] = X##_f0; _x[1] = X##_f1;                                     \
221     _y[0] = Y##_f0; _y[1] = Y##_f1;                                     \
222                                                                         \
223     mpn_mul_n(_z, _x, _y, 2);                                           \
224                                                                         \
225     /* Normalize since we know where the msb of the multiplicands       \
226        were (bit B), we know that the msb of the of the product is      \
227        at either 2B or 2B-1.  */                                        \
228     _FP_FRAC_SRS_4(_z, _FP_WFRACBITS##_fs-1, 2*_FP_WFRACBITS_##fs);     \
229     R##_f0 = _z[0];                                                     \
230     R##_f1 = _z[1];                                                     \
231   } while (0)
232
233
234 /*
235  * Division algorithms:
236  * This seems to be giving me difficulties -- PMM
237  * Look, NetBSD seems to be able to comment algorithms. Can't you?
238  * I've thrown printks at the problem.
239  * This now appears to work, but I still don't really know why.
240  * Also, I don't think the result is properly normalised...
241  */
242
243 #define _FP_DIV_MEAT_2_udiv_64(fs, R, X, Y)                             \
244   do {                                                                  \
245     extern void _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2],        \
246                                _FP_W_TYPE n1, _FP_W_TYPE n0,            \
247                                _FP_W_TYPE d1, _FP_W_TYPE d0);           \
248     _FP_W_TYPE _n_f3, _n_f2, _n_f1, _n_f0, _r_f1, _r_f0;                \
249     _FP_W_TYPE _q_f1, _q_f0, _m_f1, _m_f0;                              \
250     _FP_W_TYPE _rmem[2], _qmem[2];                                      \
251     /* I think this check is to ensure that the result is normalised.   \
252      * Assuming X,Y normalised (ie in [1.0,2.0)) X/Y will be in         \
253      * [0.5,2.0). Furthermore, it will be less than 1.0 iff X < Y.      \
254      * In this case we tweak things. (this is based on comments in      \
255      * the NetBSD FPU emulation code. )                                 \
256      * We know X,Y are normalised because we ensure this as part of     \
257      * the unpacking process. -- PMM                                    \
258      */                                                                 \
259     if (_FP_FRAC_GT_2(X, Y))                                            \
260       {                                                                 \
261 /*      R##_e++; */                                                     \
262         _n_f3 = X##_f1 >> 1;                                            \
263         _n_f2 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;          \
264         _n_f1 = X##_f0 << (_FP_W_TYPE_SIZE - 1);                        \
265         _n_f0 = 0;                                                      \
266       }                                                                 \
267     else                                                                \
268       {                                                                 \
269         R##_e--;                                                        \
270         _n_f3 = X##_f1;                                                 \
271         _n_f2 = X##_f0;                                                 \
272         _n_f1 = _n_f0 = 0;                                              \
273       }                                                                 \
274                                                                         \
275     /* Normalize, i.e. make the most significant bit of the             \
276        denominator set.  CHANGED: - 1 to nothing -- PMM */              \
277     _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs /* -1 */);                    \
278                                                                         \
279     /* Do the 256/128 bit division given the 128-bit _fp_udivmodtf4     \
280        primitive snagged from libgcc2.c.  */                            \
281                                                                         \
282     _fp_udivmodti4(_qmem, _rmem, _n_f3, _n_f2, 0, Y##_f1);              \
283     _q_f1 = _qmem[0];                                                   \
284     umul_ppmm(_m_f1, _m_f0, _q_f1, Y##_f0);                             \
285     _r_f1 = _rmem[0];                                                   \
286     _r_f0 = _n_f1;                                                      \
287     if (_FP_FRAC_GT_2(_m, _r))                                          \
288       {                                                                 \
289         _q_f1--;                                                        \
290         _FP_FRAC_ADD_2(_r, _r, Y);                                      \
291         if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))              \
292           {                                                             \
293             _q_f1--;                                                    \
294             _FP_FRAC_ADD_2(_r, _r, Y);                                  \
295           }                                                             \
296       }                                                                 \
297     _FP_FRAC_SUB_2(_r, _r, _m);                                         \
298                                                                         \
299     _fp_udivmodti4(_qmem, _rmem, _r_f1, _r_f0, 0, Y##_f1);              \
300     _q_f0 = _qmem[0];                                                   \
301     umul_ppmm(_m_f1, _m_f0, _q_f0, Y##_f0);                             \
302     _r_f1 = _rmem[0];                                                   \
303     _r_f0 = _n_f0;                                                      \
304     if (_FP_FRAC_GT_2(_m, _r))                                          \
305       {                                                                 \
306         _q_f0--;                                                        \
307         _FP_FRAC_ADD_2(_r, _r, Y);                                      \
308         if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))              \
309           {                                                             \
310             _q_f0--;                                                    \
311             _FP_FRAC_ADD_2(_r, _r, Y);                                  \
312           }                                                             \
313       }                                                                 \
314     _FP_FRAC_SUB_2(_r, _r, _m);                                         \
315                                                                         \
316     R##_f1 = _q_f1;                                                     \
317     R##_f0 = _q_f0 | ((_r_f1 | _r_f0) != 0);                            \
318     /* adjust so answer is normalized again. I'm not sure what the      \
319      * final sz param should be. In practice it's never used since      \
320      * N is 1 which is always going to be < _FP_W_TYPE_SIZE...          \
321      */                                                                 \
322     /* _FP_FRAC_SRS_2(R,1,_FP_WFRACBITS_##fs);  */                      \
323   } while (0)
324
325
326 #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)                                 \
327   do {                                                                  \
328     _FP_W_TYPE _x[4], _y[2], _z[4];                                     \
329     _y[0] = Y##_f0; _y[1] = Y##_f1;                                     \
330     _x[0] = _x[3] = 0;                                                  \
331     if (_FP_FRAC_GT_2(X, Y))                                            \
332       {                                                                 \
333         R##_e++;                                                        \
334         _x[1] = (X##_f0 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE) |        \
335                  X##_f1 >> (_FP_W_TYPE_SIZE -                           \
336                             (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE)));      \
337         _x[2] = X##_f1 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE);          \
338       }                                                                 \
339     else                                                                \
340       {                                                                 \
341         _x[1] = (X##_f0 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE) |          \
342                  X##_f1 >> (_FP_W_TYPE_SIZE -                           \
343                             (_FP_WFRACBITS - _FP_W_TYPE_SIZE)));        \
344         _x[2] = X##_f1 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE);            \
345       }                                                                 \
346                                                                         \
347     (void) mpn_divrem (_z, 0, _x, 4, _y, 2);                            \
348     R##_f1 = _z[1];                                                     \
349     R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);                            \
350   } while (0)
351
352
353 /*
354  * Square root algorithms:
355  * We have just one right now, maybe Newton approximation
356  * should be added for those machines where division is fast.
357  */
358
359 #define _FP_SQRT_MEAT_2(R, S, T, X, q)                  \
360   do {                                                  \
361     while (q)                                           \
362       {                                                 \
363         T##_f1 = S##_f1 + q;                            \
364         if (T##_f1 <= X##_f1)                           \
365           {                                             \
366             S##_f1 = T##_f1 + q;                        \
367             X##_f1 -= T##_f1;                           \
368             R##_f1 += q;                                \
369           }                                             \
370         _FP_FRAC_SLL_2(X, 1);                           \
371         q >>= 1;                                        \
372       }                                                 \
373     q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);         \
374     while (q)                                           \
375       {                                                 \
376         T##_f0 = S##_f0 + q;                            \
377         T##_f1 = S##_f1;                                \
378         if (T##_f1 < X##_f1 ||                          \
379             (T##_f1 == X##_f1 && T##_f0 < X##_f0))      \
380           {                                             \
381             S##_f0 = T##_f0 + q;                        \
382             if (((_FP_WS_TYPE)T##_f0) < 0 &&            \
383                 ((_FP_WS_TYPE)S##_f0) >= 0)             \
384               S##_f1++;                                 \
385             _FP_FRAC_SUB_2(X, X, T);                    \
386             R##_f0 += q;                                \
387           }                                             \
388         _FP_FRAC_SLL_2(X, 1);                           \
389         q >>= 1;                                        \
390       }                                                 \
391   } while (0)
392
393
394 /*
395  * Assembly/disassembly for converting to/from integral types.
396  * No shifting or overflow handled here.
397  */
398
399 #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)        \
400   do {                                          \
401     if (rsize <= _FP_W_TYPE_SIZE)               \
402       r = X##_f0;                               \
403     else                                        \
404       {                                         \
405         r = X##_f1;                             \
406         r <<= _FP_W_TYPE_SIZE;                  \
407         r += X##_f0;                            \
408       }                                         \
409   } while (0)
410
411 #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)                             \
412   do {                                                                  \
413     X##_f0 = r;                                                         \
414     X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);     \
415   } while (0)
416
417 /*
418  * Convert FP values between word sizes
419  */
420
421 #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)                               \
422   do {                                                                  \
423     _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),      \
424                    _FP_WFRACBITS_##sfs);                                \
425     D##_f = S##_f0;                                                     \
426   } while (0)
427
428 #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)                               \
429   do {                                                                  \
430     D##_f0 = S##_f;                                                     \
431     D##_f1 = 0;                                                         \
432     _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));     \
433   } while (0)
434