2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
37 #include <linux/sysdev.h>
38 #include <linux/cpu.h>
40 #include <linux/mount.h>
42 #include "x86_emulate.h"
43 #include "segment_descriptor.h"
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
48 static DEFINE_SPINLOCK(kvm_lock);
49 static LIST_HEAD(vm_list);
51 struct kvm_arch_ops *kvm_arch_ops;
52 struct kvm_stat kvm_stat;
53 EXPORT_SYMBOL_GPL(kvm_stat);
55 static struct kvm_stats_debugfs_item {
58 struct dentry *dentry;
59 } debugfs_entries[] = {
60 { "pf_fixed", &kvm_stat.pf_fixed },
61 { "pf_guest", &kvm_stat.pf_guest },
62 { "tlb_flush", &kvm_stat.tlb_flush },
63 { "invlpg", &kvm_stat.invlpg },
64 { "exits", &kvm_stat.exits },
65 { "io_exits", &kvm_stat.io_exits },
66 { "mmio_exits", &kvm_stat.mmio_exits },
67 { "signal_exits", &kvm_stat.signal_exits },
68 { "irq_window", &kvm_stat.irq_window_exits },
69 { "halt_exits", &kvm_stat.halt_exits },
70 { "request_irq", &kvm_stat.request_irq_exits },
71 { "irq_exits", &kvm_stat.irq_exits },
75 static struct dentry *debugfs_dir;
77 #define KVMFS_MAGIC 0x19700426
78 struct vfsmount *kvmfs_mnt;
80 #define MAX_IO_MSRS 256
82 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
83 #define LMSW_GUEST_MASK 0x0eULL
84 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
85 #define CR8_RESEVED_BITS (~0x0fULL)
86 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
89 // LDT or TSS descriptor in the GDT. 16 bytes.
90 struct segment_descriptor_64 {
91 struct segment_descriptor s;
98 unsigned long segment_base(u16 selector)
100 struct descriptor_table gdt;
101 struct segment_descriptor *d;
102 unsigned long table_base;
103 typedef unsigned long ul;
109 asm ("sgdt %0" : "=m"(gdt));
110 table_base = gdt.base;
112 if (selector & 4) { /* from ldt */
115 asm ("sldt %0" : "=g"(ldt_selector));
116 table_base = segment_base(ldt_selector);
118 d = (struct segment_descriptor *)(table_base + (selector & ~7));
119 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
122 && (d->type == 2 || d->type == 9 || d->type == 11))
123 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
127 EXPORT_SYMBOL_GPL(segment_base);
129 static inline int valid_vcpu(int n)
131 return likely(n >= 0 && n < KVM_MAX_VCPUS);
134 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
137 unsigned char *host_buf = dest;
138 unsigned long req_size = size;
146 paddr = gva_to_hpa(vcpu, addr);
148 if (is_error_hpa(paddr))
151 guest_buf = (hva_t)kmap_atomic(
152 pfn_to_page(paddr >> PAGE_SHIFT),
154 offset = addr & ~PAGE_MASK;
156 now = min(size, PAGE_SIZE - offset);
157 memcpy(host_buf, (void*)guest_buf, now);
161 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
163 return req_size - size;
165 EXPORT_SYMBOL_GPL(kvm_read_guest);
167 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
170 unsigned char *host_buf = data;
171 unsigned long req_size = size;
179 paddr = gva_to_hpa(vcpu, addr);
181 if (is_error_hpa(paddr))
184 guest_buf = (hva_t)kmap_atomic(
185 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
186 offset = addr & ~PAGE_MASK;
188 now = min(size, PAGE_SIZE - offset);
189 memcpy((void*)guest_buf, host_buf, now);
193 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
195 return req_size - size;
197 EXPORT_SYMBOL_GPL(kvm_write_guest);
199 static int vcpu_slot(struct kvm_vcpu *vcpu)
201 return vcpu - vcpu->kvm->vcpus;
205 * Switches to specified vcpu, until a matching vcpu_put()
207 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
209 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
211 mutex_lock(&vcpu->mutex);
212 if (unlikely(!vcpu->vmcs)) {
213 mutex_unlock(&vcpu->mutex);
216 return kvm_arch_ops->vcpu_load(vcpu);
219 static void vcpu_put(struct kvm_vcpu *vcpu)
221 kvm_arch_ops->vcpu_put(vcpu);
222 mutex_unlock(&vcpu->mutex);
225 static int kvm_dev_open(struct inode *inode, struct file *filp)
227 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
233 spin_lock_init(&kvm->lock);
234 INIT_LIST_HEAD(&kvm->active_mmu_pages);
235 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
236 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
238 mutex_init(&vcpu->mutex);
241 vcpu->mmu.root_hpa = INVALID_PAGE;
242 INIT_LIST_HEAD(&vcpu->free_pages);
243 spin_lock(&kvm_lock);
244 list_add(&kvm->vm_list, &vm_list);
245 spin_unlock(&kvm_lock);
247 filp->private_data = kvm;
252 * Free any memory in @free but not in @dont.
254 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
255 struct kvm_memory_slot *dont)
259 if (!dont || free->phys_mem != dont->phys_mem)
260 if (free->phys_mem) {
261 for (i = 0; i < free->npages; ++i)
262 if (free->phys_mem[i])
263 __free_page(free->phys_mem[i]);
264 vfree(free->phys_mem);
267 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
268 vfree(free->dirty_bitmap);
270 free->phys_mem = NULL;
272 free->dirty_bitmap = NULL;
275 static void kvm_free_physmem(struct kvm *kvm)
279 for (i = 0; i < kvm->nmemslots; ++i)
280 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
283 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
285 if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
288 kvm_mmu_destroy(vcpu);
290 kvm_arch_ops->vcpu_free(vcpu);
293 static void kvm_free_vcpus(struct kvm *kvm)
297 for (i = 0; i < KVM_MAX_VCPUS; ++i)
298 kvm_free_vcpu(&kvm->vcpus[i]);
301 static int kvm_dev_release(struct inode *inode, struct file *filp)
303 struct kvm *kvm = filp->private_data;
305 spin_lock(&kvm_lock);
306 list_del(&kvm->vm_list);
307 spin_unlock(&kvm_lock);
309 kvm_free_physmem(kvm);
314 static void inject_gp(struct kvm_vcpu *vcpu)
316 kvm_arch_ops->inject_gp(vcpu, 0);
320 * Load the pae pdptrs. Return true is they are all valid.
322 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
324 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
325 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
330 struct kvm_memory_slot *memslot;
332 spin_lock(&vcpu->kvm->lock);
333 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
334 /* FIXME: !memslot - emulate? 0xff? */
335 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
338 for (i = 0; i < 4; ++i) {
339 pdpte = pdpt[offset + i];
340 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
346 for (i = 0; i < 4; ++i)
347 vcpu->pdptrs[i] = pdpt[offset + i];
350 kunmap_atomic(pdpt, KM_USER0);
351 spin_unlock(&vcpu->kvm->lock);
356 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
358 if (cr0 & CR0_RESEVED_BITS) {
359 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
365 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
366 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
371 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
372 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
373 "and a clear PE flag\n");
378 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
380 if ((vcpu->shadow_efer & EFER_LME)) {
384 printk(KERN_DEBUG "set_cr0: #GP, start paging "
385 "in long mode while PAE is disabled\n");
389 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
391 printk(KERN_DEBUG "set_cr0: #GP, start paging "
392 "in long mode while CS.L == 1\n");
399 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
400 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
408 kvm_arch_ops->set_cr0(vcpu, cr0);
411 spin_lock(&vcpu->kvm->lock);
412 kvm_mmu_reset_context(vcpu);
413 spin_unlock(&vcpu->kvm->lock);
416 EXPORT_SYMBOL_GPL(set_cr0);
418 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
420 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
421 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
423 EXPORT_SYMBOL_GPL(lmsw);
425 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
427 if (cr4 & CR4_RESEVED_BITS) {
428 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
433 if (is_long_mode(vcpu)) {
434 if (!(cr4 & CR4_PAE_MASK)) {
435 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
440 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
441 && !load_pdptrs(vcpu, vcpu->cr3)) {
442 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
446 if (cr4 & CR4_VMXE_MASK) {
447 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
451 kvm_arch_ops->set_cr4(vcpu, cr4);
452 spin_lock(&vcpu->kvm->lock);
453 kvm_mmu_reset_context(vcpu);
454 spin_unlock(&vcpu->kvm->lock);
456 EXPORT_SYMBOL_GPL(set_cr4);
458 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
460 if (is_long_mode(vcpu)) {
461 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
462 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
467 if (cr3 & CR3_RESEVED_BITS) {
468 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
472 if (is_paging(vcpu) && is_pae(vcpu) &&
473 !load_pdptrs(vcpu, cr3)) {
474 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
482 spin_lock(&vcpu->kvm->lock);
484 * Does the new cr3 value map to physical memory? (Note, we
485 * catch an invalid cr3 even in real-mode, because it would
486 * cause trouble later on when we turn on paging anyway.)
488 * A real CPU would silently accept an invalid cr3 and would
489 * attempt to use it - with largely undefined (and often hard
490 * to debug) behavior on the guest side.
492 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
495 vcpu->mmu.new_cr3(vcpu);
496 spin_unlock(&vcpu->kvm->lock);
498 EXPORT_SYMBOL_GPL(set_cr3);
500 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
502 if ( cr8 & CR8_RESEVED_BITS) {
503 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
509 EXPORT_SYMBOL_GPL(set_cr8);
511 void fx_init(struct kvm_vcpu *vcpu)
513 struct __attribute__ ((__packed__)) fx_image_s {
519 u64 operand;// fpu dp
525 fx_save(vcpu->host_fx_image);
527 fx_save(vcpu->guest_fx_image);
528 fx_restore(vcpu->host_fx_image);
530 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
531 fx_image->mxcsr = 0x1f80;
532 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
533 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
535 EXPORT_SYMBOL_GPL(fx_init);
538 * Creates some virtual cpus. Good luck creating more than one.
540 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
543 struct kvm_vcpu *vcpu;
549 vcpu = &kvm->vcpus[n];
551 mutex_lock(&vcpu->mutex);
554 mutex_unlock(&vcpu->mutex);
558 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
560 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
562 r = kvm_arch_ops->vcpu_create(vcpu);
566 r = kvm_mmu_create(vcpu);
570 kvm_arch_ops->vcpu_load(vcpu);
571 r = kvm_mmu_setup(vcpu);
573 r = kvm_arch_ops->vcpu_setup(vcpu);
583 mutex_unlock(&vcpu->mutex);
589 * Allocate some memory and give it an address in the guest physical address
592 * Discontiguous memory is allowed, mostly for framebuffers.
594 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
595 struct kvm_memory_region *mem)
599 unsigned long npages;
601 struct kvm_memory_slot *memslot;
602 struct kvm_memory_slot old, new;
603 int memory_config_version;
606 /* General sanity checks */
607 if (mem->memory_size & (PAGE_SIZE - 1))
609 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
611 if (mem->slot >= KVM_MEMORY_SLOTS)
613 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
616 memslot = &kvm->memslots[mem->slot];
617 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
618 npages = mem->memory_size >> PAGE_SHIFT;
621 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
624 spin_lock(&kvm->lock);
626 memory_config_version = kvm->memory_config_version;
627 new = old = *memslot;
629 new.base_gfn = base_gfn;
631 new.flags = mem->flags;
633 /* Disallow changing a memory slot's size. */
635 if (npages && old.npages && npages != old.npages)
638 /* Check for overlaps */
640 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
641 struct kvm_memory_slot *s = &kvm->memslots[i];
645 if (!((base_gfn + npages <= s->base_gfn) ||
646 (base_gfn >= s->base_gfn + s->npages)))
650 * Do memory allocations outside lock. memory_config_version will
653 spin_unlock(&kvm->lock);
655 /* Deallocate if slot is being removed */
659 /* Free page dirty bitmap if unneeded */
660 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
661 new.dirty_bitmap = NULL;
665 /* Allocate if a slot is being created */
666 if (npages && !new.phys_mem) {
667 new.phys_mem = vmalloc(npages * sizeof(struct page *));
672 memset(new.phys_mem, 0, npages * sizeof(struct page *));
673 for (i = 0; i < npages; ++i) {
674 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
676 if (!new.phys_mem[i])
678 set_page_private(new.phys_mem[i],0);
682 /* Allocate page dirty bitmap if needed */
683 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
684 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
686 new.dirty_bitmap = vmalloc(dirty_bytes);
687 if (!new.dirty_bitmap)
689 memset(new.dirty_bitmap, 0, dirty_bytes);
692 spin_lock(&kvm->lock);
694 if (memory_config_version != kvm->memory_config_version) {
695 spin_unlock(&kvm->lock);
696 kvm_free_physmem_slot(&new, &old);
704 if (mem->slot >= kvm->nmemslots)
705 kvm->nmemslots = mem->slot + 1;
708 ++kvm->memory_config_version;
710 spin_unlock(&kvm->lock);
712 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
713 struct kvm_vcpu *vcpu;
715 vcpu = vcpu_load(kvm, i);
718 kvm_mmu_reset_context(vcpu);
722 kvm_free_physmem_slot(&old, &new);
726 spin_unlock(&kvm->lock);
728 kvm_free_physmem_slot(&new, &old);
733 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
735 spin_lock(&vcpu->kvm->lock);
736 kvm_mmu_slot_remove_write_access(vcpu, slot);
737 spin_unlock(&vcpu->kvm->lock);
741 * Get (and clear) the dirty memory log for a memory slot.
743 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
744 struct kvm_dirty_log *log)
746 struct kvm_memory_slot *memslot;
750 unsigned long any = 0;
752 spin_lock(&kvm->lock);
755 * Prevent changes to guest memory configuration even while the lock
759 spin_unlock(&kvm->lock);
761 if (log->slot >= KVM_MEMORY_SLOTS)
764 memslot = &kvm->memslots[log->slot];
766 if (!memslot->dirty_bitmap)
769 n = ALIGN(memslot->npages, 8) / 8;
771 for (i = 0; !any && i < n; ++i)
772 any = memslot->dirty_bitmap[i];
775 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
780 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
781 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
786 do_remove_write_access(vcpu, log->slot);
787 memset(memslot->dirty_bitmap, 0, n);
790 kvm_arch_ops->tlb_flush(vcpu);
798 spin_lock(&kvm->lock);
800 spin_unlock(&kvm->lock);
804 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
808 for (i = 0; i < kvm->nmemslots; ++i) {
809 struct kvm_memory_slot *memslot = &kvm->memslots[i];
811 if (gfn >= memslot->base_gfn
812 && gfn < memslot->base_gfn + memslot->npages)
817 EXPORT_SYMBOL_GPL(gfn_to_memslot);
819 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
822 struct kvm_memory_slot *memslot = NULL;
823 unsigned long rel_gfn;
825 for (i = 0; i < kvm->nmemslots; ++i) {
826 memslot = &kvm->memslots[i];
828 if (gfn >= memslot->base_gfn
829 && gfn < memslot->base_gfn + memslot->npages) {
831 if (!memslot || !memslot->dirty_bitmap)
834 rel_gfn = gfn - memslot->base_gfn;
837 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
838 set_bit(rel_gfn, memslot->dirty_bitmap);
844 static int emulator_read_std(unsigned long addr,
847 struct x86_emulate_ctxt *ctxt)
849 struct kvm_vcpu *vcpu = ctxt->vcpu;
853 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
854 unsigned offset = addr & (PAGE_SIZE-1);
855 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
857 struct kvm_memory_slot *memslot;
860 if (gpa == UNMAPPED_GVA)
861 return X86EMUL_PROPAGATE_FAULT;
862 pfn = gpa >> PAGE_SHIFT;
863 memslot = gfn_to_memslot(vcpu->kvm, pfn);
865 return X86EMUL_UNHANDLEABLE;
866 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
868 memcpy(data, page + offset, tocopy);
870 kunmap_atomic(page, KM_USER0);
877 return X86EMUL_CONTINUE;
880 static int emulator_write_std(unsigned long addr,
883 struct x86_emulate_ctxt *ctxt)
885 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
887 return X86EMUL_UNHANDLEABLE;
890 static int emulator_read_emulated(unsigned long addr,
893 struct x86_emulate_ctxt *ctxt)
895 struct kvm_vcpu *vcpu = ctxt->vcpu;
897 if (vcpu->mmio_read_completed) {
898 memcpy(val, vcpu->mmio_data, bytes);
899 vcpu->mmio_read_completed = 0;
900 return X86EMUL_CONTINUE;
901 } else if (emulator_read_std(addr, val, bytes, ctxt)
903 return X86EMUL_CONTINUE;
905 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
907 if (gpa == UNMAPPED_GVA)
908 return X86EMUL_PROPAGATE_FAULT;
909 vcpu->mmio_needed = 1;
910 vcpu->mmio_phys_addr = gpa;
911 vcpu->mmio_size = bytes;
912 vcpu->mmio_is_write = 0;
914 return X86EMUL_UNHANDLEABLE;
918 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
919 unsigned long val, int bytes)
921 struct kvm_memory_slot *m;
925 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
927 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
930 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
931 kvm_mmu_pre_write(vcpu, gpa, bytes);
932 virt = kmap_atomic(page, KM_USER0);
933 memcpy(virt + offset_in_page(gpa), &val, bytes);
934 kunmap_atomic(virt, KM_USER0);
935 kvm_mmu_post_write(vcpu, gpa, bytes);
939 static int emulator_write_emulated(unsigned long addr,
942 struct x86_emulate_ctxt *ctxt)
944 struct kvm_vcpu *vcpu = ctxt->vcpu;
945 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
947 if (gpa == UNMAPPED_GVA)
948 return X86EMUL_PROPAGATE_FAULT;
950 if (emulator_write_phys(vcpu, gpa, val, bytes))
951 return X86EMUL_CONTINUE;
953 vcpu->mmio_needed = 1;
954 vcpu->mmio_phys_addr = gpa;
955 vcpu->mmio_size = bytes;
956 vcpu->mmio_is_write = 1;
957 memcpy(vcpu->mmio_data, &val, bytes);
959 return X86EMUL_CONTINUE;
962 static int emulator_cmpxchg_emulated(unsigned long addr,
966 struct x86_emulate_ctxt *ctxt)
972 printk(KERN_WARNING "kvm: emulating exchange as write\n");
974 return emulator_write_emulated(addr, new, bytes, ctxt);
979 static int emulator_cmpxchg8b_emulated(unsigned long addr,
980 unsigned long old_lo,
981 unsigned long old_hi,
982 unsigned long new_lo,
983 unsigned long new_hi,
984 struct x86_emulate_ctxt *ctxt)
991 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
993 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
994 if (r != X86EMUL_CONTINUE)
996 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1001 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1003 return kvm_arch_ops->get_segment_base(vcpu, seg);
1006 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1008 return X86EMUL_CONTINUE;
1011 int emulate_clts(struct kvm_vcpu *vcpu)
1015 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1016 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1017 kvm_arch_ops->set_cr0(vcpu, cr0);
1018 return X86EMUL_CONTINUE;
1021 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1023 struct kvm_vcpu *vcpu = ctxt->vcpu;
1027 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1028 return X86EMUL_CONTINUE;
1030 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1032 return X86EMUL_UNHANDLEABLE;
1036 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1038 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1041 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1043 /* FIXME: better handling */
1044 return X86EMUL_UNHANDLEABLE;
1046 return X86EMUL_CONTINUE;
1049 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1051 static int reported;
1053 unsigned long rip = ctxt->vcpu->rip;
1054 unsigned long rip_linear;
1056 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1061 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1063 printk(KERN_ERR "emulation failed but !mmio_needed?"
1064 " rip %lx %02x %02x %02x %02x\n",
1065 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1069 struct x86_emulate_ops emulate_ops = {
1070 .read_std = emulator_read_std,
1071 .write_std = emulator_write_std,
1072 .read_emulated = emulator_read_emulated,
1073 .write_emulated = emulator_write_emulated,
1074 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1075 #ifdef CONFIG_X86_32
1076 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1080 int emulate_instruction(struct kvm_vcpu *vcpu,
1081 struct kvm_run *run,
1085 struct x86_emulate_ctxt emulate_ctxt;
1089 kvm_arch_ops->cache_regs(vcpu);
1091 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1093 emulate_ctxt.vcpu = vcpu;
1094 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1095 emulate_ctxt.cr2 = cr2;
1096 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1097 ? X86EMUL_MODE_REAL : cs_l
1098 ? X86EMUL_MODE_PROT64 : cs_db
1099 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1101 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1102 emulate_ctxt.cs_base = 0;
1103 emulate_ctxt.ds_base = 0;
1104 emulate_ctxt.es_base = 0;
1105 emulate_ctxt.ss_base = 0;
1107 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1108 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1109 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1110 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1113 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1114 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1116 vcpu->mmio_is_write = 0;
1117 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1119 if ((r || vcpu->mmio_is_write) && run) {
1120 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1121 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1122 run->mmio.len = vcpu->mmio_size;
1123 run->mmio.is_write = vcpu->mmio_is_write;
1127 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1128 return EMULATE_DONE;
1129 if (!vcpu->mmio_needed) {
1130 report_emulation_failure(&emulate_ctxt);
1131 return EMULATE_FAIL;
1133 return EMULATE_DO_MMIO;
1136 kvm_arch_ops->decache_regs(vcpu);
1137 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1139 if (vcpu->mmio_is_write)
1140 return EMULATE_DO_MMIO;
1142 return EMULATE_DONE;
1144 EXPORT_SYMBOL_GPL(emulate_instruction);
1146 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1148 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1150 kvm_arch_ops->decache_regs(vcpu);
1152 #ifdef CONFIG_X86_64
1153 if (is_long_mode(vcpu)) {
1154 nr = vcpu->regs[VCPU_REGS_RAX];
1155 a0 = vcpu->regs[VCPU_REGS_RDI];
1156 a1 = vcpu->regs[VCPU_REGS_RSI];
1157 a2 = vcpu->regs[VCPU_REGS_RDX];
1158 a3 = vcpu->regs[VCPU_REGS_RCX];
1159 a4 = vcpu->regs[VCPU_REGS_R8];
1160 a5 = vcpu->regs[VCPU_REGS_R9];
1164 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1165 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1166 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1167 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1168 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1169 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1170 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1176 vcpu->regs[VCPU_REGS_RAX] = ret;
1177 kvm_arch_ops->cache_regs(vcpu);
1180 EXPORT_SYMBOL_GPL(kvm_hypercall);
1182 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1184 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1187 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1189 struct descriptor_table dt = { limit, base };
1191 kvm_arch_ops->set_gdt(vcpu, &dt);
1194 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1196 struct descriptor_table dt = { limit, base };
1198 kvm_arch_ops->set_idt(vcpu, &dt);
1201 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1202 unsigned long *rflags)
1205 *rflags = kvm_arch_ops->get_rflags(vcpu);
1208 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1210 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1221 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1226 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1227 unsigned long *rflags)
1231 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1232 *rflags = kvm_arch_ops->get_rflags(vcpu);
1241 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1244 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1249 * Register the para guest with the host:
1251 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1253 struct kvm_vcpu_para_state *para_state;
1254 hpa_t para_state_hpa, hypercall_hpa;
1255 struct page *para_state_page;
1256 unsigned char *hypercall;
1257 gpa_t hypercall_gpa;
1259 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1260 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1263 * Needs to be page aligned:
1265 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1268 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1269 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1270 if (is_error_hpa(para_state_hpa))
1273 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1274 para_state = kmap_atomic(para_state_page, KM_USER0);
1276 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1277 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1279 para_state->host_version = KVM_PARA_API_VERSION;
1281 * We cannot support guests that try to register themselves
1282 * with a newer API version than the host supports:
1284 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1285 para_state->ret = -KVM_EINVAL;
1286 goto err_kunmap_skip;
1289 hypercall_gpa = para_state->hypercall_gpa;
1290 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1291 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1292 if (is_error_hpa(hypercall_hpa)) {
1293 para_state->ret = -KVM_EINVAL;
1294 goto err_kunmap_skip;
1297 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1298 vcpu->para_state_page = para_state_page;
1299 vcpu->para_state_gpa = para_state_gpa;
1300 vcpu->hypercall_gpa = hypercall_gpa;
1302 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1303 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1304 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1305 kunmap_atomic(hypercall, KM_USER1);
1307 para_state->ret = 0;
1309 kunmap_atomic(para_state, KM_USER0);
1315 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1320 case 0xc0010010: /* SYSCFG */
1321 case 0xc0010015: /* HWCR */
1322 case MSR_IA32_PLATFORM_ID:
1323 case MSR_IA32_P5_MC_ADDR:
1324 case MSR_IA32_P5_MC_TYPE:
1325 case MSR_IA32_MC0_CTL:
1326 case MSR_IA32_MCG_STATUS:
1327 case MSR_IA32_MCG_CAP:
1328 case MSR_IA32_MC0_MISC:
1329 case MSR_IA32_MC0_MISC+4:
1330 case MSR_IA32_MC0_MISC+8:
1331 case MSR_IA32_MC0_MISC+12:
1332 case MSR_IA32_MC0_MISC+16:
1333 case MSR_IA32_UCODE_REV:
1334 case MSR_IA32_PERF_STATUS:
1335 /* MTRR registers */
1337 case 0x200 ... 0x2ff:
1340 case 0xcd: /* fsb frequency */
1343 case MSR_IA32_APICBASE:
1344 data = vcpu->apic_base;
1346 case MSR_IA32_MISC_ENABLE:
1347 data = vcpu->ia32_misc_enable_msr;
1349 #ifdef CONFIG_X86_64
1351 data = vcpu->shadow_efer;
1355 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1361 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1364 * Reads an msr value (of 'msr_index') into 'pdata'.
1365 * Returns 0 on success, non-0 otherwise.
1366 * Assumes vcpu_load() was already called.
1368 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1370 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1373 #ifdef CONFIG_X86_64
1375 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1377 if (efer & EFER_RESERVED_BITS) {
1378 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1385 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1386 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1391 kvm_arch_ops->set_efer(vcpu, efer);
1394 efer |= vcpu->shadow_efer & EFER_LMA;
1396 vcpu->shadow_efer = efer;
1401 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1404 #ifdef CONFIG_X86_64
1406 set_efer(vcpu, data);
1409 case MSR_IA32_MC0_STATUS:
1410 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1411 __FUNCTION__, data);
1413 case MSR_IA32_UCODE_REV:
1414 case MSR_IA32_UCODE_WRITE:
1415 case 0x200 ... 0x2ff: /* MTRRs */
1417 case MSR_IA32_APICBASE:
1418 vcpu->apic_base = data;
1420 case MSR_IA32_MISC_ENABLE:
1421 vcpu->ia32_misc_enable_msr = data;
1424 * This is the 'probe whether the host is KVM' logic:
1426 case MSR_KVM_API_MAGIC:
1427 return vcpu_register_para(vcpu, data);
1430 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1435 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1438 * Writes msr value into into the appropriate "register".
1439 * Returns 0 on success, non-0 otherwise.
1440 * Assumes vcpu_load() was already called.
1442 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1444 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1447 void kvm_resched(struct kvm_vcpu *vcpu)
1451 /* Cannot fail - no vcpu unplug yet. */
1452 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1454 EXPORT_SYMBOL_GPL(kvm_resched);
1456 void load_msrs(struct vmx_msr_entry *e, int n)
1460 for (i = 0; i < n; ++i)
1461 wrmsrl(e[i].index, e[i].data);
1463 EXPORT_SYMBOL_GPL(load_msrs);
1465 void save_msrs(struct vmx_msr_entry *e, int n)
1469 for (i = 0; i < n; ++i)
1470 rdmsrl(e[i].index, e[i].data);
1472 EXPORT_SYMBOL_GPL(save_msrs);
1474 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1476 struct kvm_vcpu *vcpu;
1479 if (!valid_vcpu(kvm_run->vcpu))
1482 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1486 /* re-sync apic's tpr */
1487 vcpu->cr8 = kvm_run->cr8;
1489 if (kvm_run->emulated) {
1490 kvm_arch_ops->skip_emulated_instruction(vcpu);
1491 kvm_run->emulated = 0;
1494 if (kvm_run->mmio_completed) {
1495 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1496 vcpu->mmio_read_completed = 1;
1499 vcpu->mmio_needed = 0;
1501 r = kvm_arch_ops->run(vcpu, kvm_run);
1507 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1509 struct kvm_vcpu *vcpu;
1511 if (!valid_vcpu(regs->vcpu))
1514 vcpu = vcpu_load(kvm, regs->vcpu);
1518 kvm_arch_ops->cache_regs(vcpu);
1520 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1521 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1522 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1523 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1524 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1525 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1526 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1527 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1528 #ifdef CONFIG_X86_64
1529 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1530 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1531 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1532 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1533 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1534 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1535 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1536 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1539 regs->rip = vcpu->rip;
1540 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1543 * Don't leak debug flags in case they were set for guest debugging
1545 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1546 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1553 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1555 struct kvm_vcpu *vcpu;
1557 if (!valid_vcpu(regs->vcpu))
1560 vcpu = vcpu_load(kvm, regs->vcpu);
1564 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1565 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1566 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1567 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1568 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1569 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1570 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1571 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1572 #ifdef CONFIG_X86_64
1573 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1574 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1575 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1576 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1577 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1578 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1579 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1580 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1583 vcpu->rip = regs->rip;
1584 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1586 kvm_arch_ops->decache_regs(vcpu);
1593 static void get_segment(struct kvm_vcpu *vcpu,
1594 struct kvm_segment *var, int seg)
1596 return kvm_arch_ops->get_segment(vcpu, var, seg);
1599 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1601 struct kvm_vcpu *vcpu;
1602 struct descriptor_table dt;
1604 if (!valid_vcpu(sregs->vcpu))
1606 vcpu = vcpu_load(kvm, sregs->vcpu);
1610 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1611 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1612 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1613 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1614 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1615 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1617 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1618 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1620 kvm_arch_ops->get_idt(vcpu, &dt);
1621 sregs->idt.limit = dt.limit;
1622 sregs->idt.base = dt.base;
1623 kvm_arch_ops->get_gdt(vcpu, &dt);
1624 sregs->gdt.limit = dt.limit;
1625 sregs->gdt.base = dt.base;
1627 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1628 sregs->cr0 = vcpu->cr0;
1629 sregs->cr2 = vcpu->cr2;
1630 sregs->cr3 = vcpu->cr3;
1631 sregs->cr4 = vcpu->cr4;
1632 sregs->cr8 = vcpu->cr8;
1633 sregs->efer = vcpu->shadow_efer;
1634 sregs->apic_base = vcpu->apic_base;
1636 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1637 sizeof sregs->interrupt_bitmap);
1644 static void set_segment(struct kvm_vcpu *vcpu,
1645 struct kvm_segment *var, int seg)
1647 return kvm_arch_ops->set_segment(vcpu, var, seg);
1650 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1652 struct kvm_vcpu *vcpu;
1653 int mmu_reset_needed = 0;
1655 struct descriptor_table dt;
1657 if (!valid_vcpu(sregs->vcpu))
1659 vcpu = vcpu_load(kvm, sregs->vcpu);
1663 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1664 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1665 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1666 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1667 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1668 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1670 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1671 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1673 dt.limit = sregs->idt.limit;
1674 dt.base = sregs->idt.base;
1675 kvm_arch_ops->set_idt(vcpu, &dt);
1676 dt.limit = sregs->gdt.limit;
1677 dt.base = sregs->gdt.base;
1678 kvm_arch_ops->set_gdt(vcpu, &dt);
1680 vcpu->cr2 = sregs->cr2;
1681 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1682 vcpu->cr3 = sregs->cr3;
1684 vcpu->cr8 = sregs->cr8;
1686 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1687 #ifdef CONFIG_X86_64
1688 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1690 vcpu->apic_base = sregs->apic_base;
1692 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1694 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1695 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1697 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1698 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1699 if (!is_long_mode(vcpu) && is_pae(vcpu))
1700 load_pdptrs(vcpu, vcpu->cr3);
1702 if (mmu_reset_needed)
1703 kvm_mmu_reset_context(vcpu);
1705 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1706 sizeof vcpu->irq_pending);
1707 vcpu->irq_summary = 0;
1708 for (i = 0; i < NR_IRQ_WORDS; ++i)
1709 if (vcpu->irq_pending[i])
1710 __set_bit(i, &vcpu->irq_summary);
1718 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1719 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1721 * This list is modified at module load time to reflect the
1722 * capabilities of the host cpu.
1724 static u32 msrs_to_save[] = {
1725 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1727 #ifdef CONFIG_X86_64
1728 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1730 MSR_IA32_TIME_STAMP_COUNTER,
1733 static unsigned num_msrs_to_save;
1735 static u32 emulated_msrs[] = {
1736 MSR_IA32_MISC_ENABLE,
1739 static __init void kvm_init_msr_list(void)
1744 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1745 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1748 msrs_to_save[j] = msrs_to_save[i];
1751 num_msrs_to_save = j;
1755 * Adapt set_msr() to msr_io()'s calling convention
1757 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1759 return set_msr(vcpu, index, *data);
1763 * Read or write a bunch of msrs. All parameters are kernel addresses.
1765 * @return number of msrs set successfully.
1767 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1768 struct kvm_msr_entry *entries,
1769 int (*do_msr)(struct kvm_vcpu *vcpu,
1770 unsigned index, u64 *data))
1772 struct kvm_vcpu *vcpu;
1775 if (!valid_vcpu(msrs->vcpu))
1778 vcpu = vcpu_load(kvm, msrs->vcpu);
1782 for (i = 0; i < msrs->nmsrs; ++i)
1783 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1792 * Read or write a bunch of msrs. Parameters are user addresses.
1794 * @return number of msrs set successfully.
1796 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1797 int (*do_msr)(struct kvm_vcpu *vcpu,
1798 unsigned index, u64 *data),
1801 struct kvm_msrs msrs;
1802 struct kvm_msr_entry *entries;
1807 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1811 if (msrs.nmsrs >= MAX_IO_MSRS)
1815 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1816 entries = vmalloc(size);
1821 if (copy_from_user(entries, user_msrs->entries, size))
1824 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1829 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1841 * Translate a guest virtual address to a guest physical address.
1843 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1845 unsigned long vaddr = tr->linear_address;
1846 struct kvm_vcpu *vcpu;
1849 vcpu = vcpu_load(kvm, tr->vcpu);
1852 spin_lock(&kvm->lock);
1853 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1854 tr->physical_address = gpa;
1855 tr->valid = gpa != UNMAPPED_GVA;
1858 spin_unlock(&kvm->lock);
1864 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1866 struct kvm_vcpu *vcpu;
1868 if (!valid_vcpu(irq->vcpu))
1870 if (irq->irq < 0 || irq->irq >= 256)
1872 vcpu = vcpu_load(kvm, irq->vcpu);
1876 set_bit(irq->irq, vcpu->irq_pending);
1877 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1884 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1885 struct kvm_debug_guest *dbg)
1887 struct kvm_vcpu *vcpu;
1890 if (!valid_vcpu(dbg->vcpu))
1892 vcpu = vcpu_load(kvm, dbg->vcpu);
1896 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1903 static long kvm_dev_ioctl(struct file *filp,
1904 unsigned int ioctl, unsigned long arg)
1906 struct kvm *kvm = filp->private_data;
1907 void __user *argp = (void __user *)arg;
1911 case KVM_GET_API_VERSION:
1912 r = KVM_API_VERSION;
1914 case KVM_CREATE_VCPU:
1915 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1920 struct kvm_run kvm_run;
1923 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1925 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1926 if (r < 0 && r != -EINTR)
1928 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1934 case KVM_GET_REGS: {
1935 struct kvm_regs kvm_regs;
1938 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1940 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1944 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1949 case KVM_SET_REGS: {
1950 struct kvm_regs kvm_regs;
1953 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1955 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1961 case KVM_GET_SREGS: {
1962 struct kvm_sregs kvm_sregs;
1965 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1967 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1971 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1976 case KVM_SET_SREGS: {
1977 struct kvm_sregs kvm_sregs;
1980 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1982 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1988 case KVM_TRANSLATE: {
1989 struct kvm_translation tr;
1992 if (copy_from_user(&tr, argp, sizeof tr))
1994 r = kvm_dev_ioctl_translate(kvm, &tr);
1998 if (copy_to_user(argp, &tr, sizeof tr))
2003 case KVM_INTERRUPT: {
2004 struct kvm_interrupt irq;
2007 if (copy_from_user(&irq, argp, sizeof irq))
2009 r = kvm_dev_ioctl_interrupt(kvm, &irq);
2015 case KVM_DEBUG_GUEST: {
2016 struct kvm_debug_guest dbg;
2019 if (copy_from_user(&dbg, argp, sizeof dbg))
2021 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
2027 case KVM_SET_MEMORY_REGION: {
2028 struct kvm_memory_region kvm_mem;
2031 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2033 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
2038 case KVM_GET_DIRTY_LOG: {
2039 struct kvm_dirty_log log;
2042 if (copy_from_user(&log, argp, sizeof log))
2044 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
2050 r = msr_io(kvm, argp, get_msr, 1);
2053 r = msr_io(kvm, argp, do_set_msr, 0);
2055 case KVM_GET_MSR_INDEX_LIST: {
2056 struct kvm_msr_list __user *user_msr_list = argp;
2057 struct kvm_msr_list msr_list;
2061 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2064 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2065 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2068 if (n < num_msrs_to_save)
2071 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2072 num_msrs_to_save * sizeof(u32)))
2074 if (copy_to_user(user_msr_list->indices
2075 + num_msrs_to_save * sizeof(u32),
2077 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2089 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
2090 unsigned long address,
2093 struct kvm *kvm = vma->vm_file->private_data;
2094 unsigned long pgoff;
2095 struct kvm_memory_slot *slot;
2098 *type = VM_FAULT_MINOR;
2099 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2100 slot = gfn_to_memslot(kvm, pgoff);
2102 return NOPAGE_SIGBUS;
2103 page = gfn_to_page(slot, pgoff);
2105 return NOPAGE_SIGBUS;
2110 static struct vm_operations_struct kvm_dev_vm_ops = {
2111 .nopage = kvm_dev_nopage,
2114 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
2116 vma->vm_ops = &kvm_dev_vm_ops;
2120 static struct file_operations kvm_chardev_ops = {
2121 .open = kvm_dev_open,
2122 .release = kvm_dev_release,
2123 .unlocked_ioctl = kvm_dev_ioctl,
2124 .compat_ioctl = kvm_dev_ioctl,
2125 .mmap = kvm_dev_mmap,
2128 static struct miscdevice kvm_dev = {
2134 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2137 if (val == SYS_RESTART) {
2139 * Some (well, at least mine) BIOSes hang on reboot if
2142 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2143 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2148 static struct notifier_block kvm_reboot_notifier = {
2149 .notifier_call = kvm_reboot,
2154 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2157 static void decache_vcpus_on_cpu(int cpu)
2160 struct kvm_vcpu *vcpu;
2163 spin_lock(&kvm_lock);
2164 list_for_each_entry(vm, &vm_list, vm_list)
2165 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2166 vcpu = &vm->vcpus[i];
2168 * If the vcpu is locked, then it is running on some
2169 * other cpu and therefore it is not cached on the
2172 * If it's not locked, check the last cpu it executed
2175 if (mutex_trylock(&vcpu->mutex)) {
2176 if (vcpu->cpu == cpu) {
2177 kvm_arch_ops->vcpu_decache(vcpu);
2180 mutex_unlock(&vcpu->mutex);
2183 spin_unlock(&kvm_lock);
2186 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2192 case CPU_DOWN_PREPARE:
2193 case CPU_UP_CANCELED:
2194 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2196 decache_vcpus_on_cpu(cpu);
2197 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2201 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2203 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2210 static struct notifier_block kvm_cpu_notifier = {
2211 .notifier_call = kvm_cpu_hotplug,
2212 .priority = 20, /* must be > scheduler priority */
2215 static __init void kvm_init_debug(void)
2217 struct kvm_stats_debugfs_item *p;
2219 debugfs_dir = debugfs_create_dir("kvm", NULL);
2220 for (p = debugfs_entries; p->name; ++p)
2221 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2225 static void kvm_exit_debug(void)
2227 struct kvm_stats_debugfs_item *p;
2229 for (p = debugfs_entries; p->name; ++p)
2230 debugfs_remove(p->dentry);
2231 debugfs_remove(debugfs_dir);
2234 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2236 decache_vcpus_on_cpu(raw_smp_processor_id());
2237 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2241 static int kvm_resume(struct sys_device *dev)
2243 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2247 static struct sysdev_class kvm_sysdev_class = {
2248 set_kset_name("kvm"),
2249 .suspend = kvm_suspend,
2250 .resume = kvm_resume,
2253 static struct sys_device kvm_sysdev = {
2255 .cls = &kvm_sysdev_class,
2258 hpa_t bad_page_address;
2260 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2261 const char *dev_name, void *data, struct vfsmount *mnt)
2263 return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_MAGIC, mnt);
2266 static struct file_system_type kvm_fs_type = {
2268 .get_sb = kvmfs_get_sb,
2269 .kill_sb = kill_anon_super,
2272 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2277 printk(KERN_ERR "kvm: already loaded the other module\n");
2281 if (!ops->cpu_has_kvm_support()) {
2282 printk(KERN_ERR "kvm: no hardware support\n");
2285 if (ops->disabled_by_bios()) {
2286 printk(KERN_ERR "kvm: disabled by bios\n");
2292 r = kvm_arch_ops->hardware_setup();
2296 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2297 r = register_cpu_notifier(&kvm_cpu_notifier);
2300 register_reboot_notifier(&kvm_reboot_notifier);
2302 r = sysdev_class_register(&kvm_sysdev_class);
2306 r = sysdev_register(&kvm_sysdev);
2310 kvm_chardev_ops.owner = module;
2312 r = misc_register(&kvm_dev);
2314 printk (KERN_ERR "kvm: misc device register failed\n");
2321 sysdev_unregister(&kvm_sysdev);
2323 sysdev_class_unregister(&kvm_sysdev_class);
2325 unregister_reboot_notifier(&kvm_reboot_notifier);
2326 unregister_cpu_notifier(&kvm_cpu_notifier);
2328 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2329 kvm_arch_ops->hardware_unsetup();
2333 void kvm_exit_arch(void)
2335 misc_deregister(&kvm_dev);
2336 sysdev_unregister(&kvm_sysdev);
2337 sysdev_class_unregister(&kvm_sysdev_class);
2338 unregister_reboot_notifier(&kvm_reboot_notifier);
2339 unregister_cpu_notifier(&kvm_cpu_notifier);
2340 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2341 kvm_arch_ops->hardware_unsetup();
2342 kvm_arch_ops = NULL;
2345 static __init int kvm_init(void)
2347 static struct page *bad_page;
2350 r = register_filesystem(&kvm_fs_type);
2354 kvmfs_mnt = kern_mount(&kvm_fs_type);
2355 r = PTR_ERR(kvmfs_mnt);
2356 if (IS_ERR(kvmfs_mnt))
2360 kvm_init_msr_list();
2362 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2367 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2368 memset(__va(bad_page_address), 0, PAGE_SIZE);
2376 unregister_filesystem(&kvm_fs_type);
2381 static __exit void kvm_exit(void)
2384 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2386 unregister_filesystem(&kvm_fs_type);
2389 module_init(kvm_init)
2390 module_exit(kvm_exit)
2392 EXPORT_SYMBOL_GPL(kvm_init_arch);
2393 EXPORT_SYMBOL_GPL(kvm_exit_arch);