2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
158 #define tty_compat_ioctl NULL
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
215 strcpy(buf, tty->name);
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
224 #ifdef TTY_PARANOIA_CHECK
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
231 if (tty->magic != TTY_MAGIC) {
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
248 list_for_each(p, &tty->tty_files) {
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
287 while((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
366 b->next = tty->buf.free;
372 * __tty_buffer_flush - flush full tty buffers
375 * flush all the buffers containing receive data. Caller must
376 * hold the buffer lock and must have ensured no parallel flush to
379 * Locking: Caller must hold tty->buf.lock
382 static void __tty_buffer_flush(struct tty_struct *tty)
384 struct tty_buffer *thead;
386 while((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
394 * tty_buffer_flush - flush full tty buffers
397 * flush all the buffers containing receive data. If the buffer is
398 * being processed by flush_to_ldisc then we defer the processing
404 static void tty_buffer_flush(struct tty_struct *tty)
407 spin_lock_irqsave(&tty->buf.lock, flags);
409 /* If the data is being pushed to the tty layer then we can't
410 process it here. Instead set a flag and the flush_to_ldisc
411 path will process the flush request before it exits */
412 if (test_bit(TTY_FLUSHING, &tty->flags)) {
413 set_bit(TTY_FLUSHPENDING, &tty->flags);
414 spin_unlock_irqrestore(&tty->buf.lock, flags);
415 wait_event(tty->read_wait,
416 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
419 __tty_buffer_flush(tty);
420 spin_unlock_irqrestore(&tty->buf.lock, flags);
424 * tty_buffer_find - find a free tty buffer
425 * @tty: tty owning the buffer
426 * @size: characters wanted
428 * Locate an existing suitable tty buffer or if we are lacking one then
429 * allocate a new one. We round our buffers off in 256 character chunks
430 * to get better allocation behaviour.
432 * Locking: Caller must hold tty->buf.lock
435 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
437 struct tty_buffer **tbh = &tty->buf.free;
438 while((*tbh) != NULL) {
439 struct tty_buffer *t = *tbh;
440 if(t->size >= size) {
446 tty->buf.memory_used += t->size;
449 tbh = &((*tbh)->next);
451 /* Round the buffer size out */
452 size = (size + 0xFF) & ~ 0xFF;
453 return tty_buffer_alloc(tty, size);
454 /* Should possibly check if this fails for the largest buffer we
455 have queued and recycle that ? */
459 * tty_buffer_request_room - grow tty buffer if needed
460 * @tty: tty structure
461 * @size: size desired
463 * Make at least size bytes of linear space available for the tty
464 * buffer. If we fail return the size we managed to find.
466 * Locking: Takes tty->buf.lock
468 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
470 struct tty_buffer *b, *n;
474 spin_lock_irqsave(&tty->buf.lock, flags);
476 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
477 remove this conditional if its worth it. This would be invisible
479 if ((b = tty->buf.tail) != NULL)
480 left = b->size - b->used;
485 /* This is the slow path - looking for new buffers to use */
486 if ((n = tty_buffer_find(tty, size)) != NULL) {
497 spin_unlock_irqrestore(&tty->buf.lock, flags);
500 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
503 * tty_insert_flip_string - Add characters to the tty buffer
504 * @tty: tty structure
508 * Queue a series of bytes to the tty buffering. All the characters
509 * passed are marked as without error. Returns the number added.
511 * Locking: Called functions may take tty->buf.lock
514 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
519 int space = tty_buffer_request_room(tty, size - copied);
520 struct tty_buffer *tb = tty->buf.tail;
521 /* If there is no space then tb may be NULL */
522 if(unlikely(space == 0))
524 memcpy(tb->char_buf_ptr + tb->used, chars, space);
525 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
529 /* There is a small chance that we need to split the data over
530 several buffers. If this is the case we must loop */
531 } while (unlikely(size > copied));
534 EXPORT_SYMBOL(tty_insert_flip_string);
537 * tty_insert_flip_string_flags - Add characters to the tty buffer
538 * @tty: tty structure
543 * Queue a series of bytes to the tty buffering. For each character
544 * the flags array indicates the status of the character. Returns the
547 * Locking: Called functions may take tty->buf.lock
550 int tty_insert_flip_string_flags(struct tty_struct *tty,
551 const unsigned char *chars, const char *flags, size_t size)
555 int space = tty_buffer_request_room(tty, size - copied);
556 struct tty_buffer *tb = tty->buf.tail;
557 /* If there is no space then tb may be NULL */
558 if(unlikely(space == 0))
560 memcpy(tb->char_buf_ptr + tb->used, chars, space);
561 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
566 /* There is a small chance that we need to split the data over
567 several buffers. If this is the case we must loop */
568 } while (unlikely(size > copied));
571 EXPORT_SYMBOL(tty_insert_flip_string_flags);
574 * tty_schedule_flip - push characters to ldisc
575 * @tty: tty to push from
577 * Takes any pending buffers and transfers their ownership to the
578 * ldisc side of the queue. It then schedules those characters for
579 * processing by the line discipline.
581 * Locking: Takes tty->buf.lock
584 void tty_schedule_flip(struct tty_struct *tty)
587 spin_lock_irqsave(&tty->buf.lock, flags);
588 if (tty->buf.tail != NULL)
589 tty->buf.tail->commit = tty->buf.tail->used;
590 spin_unlock_irqrestore(&tty->buf.lock, flags);
591 schedule_delayed_work(&tty->buf.work, 1);
593 EXPORT_SYMBOL(tty_schedule_flip);
596 * tty_prepare_flip_string - make room for characters
598 * @chars: return pointer for character write area
599 * @size: desired size
601 * Prepare a block of space in the buffer for data. Returns the length
602 * available and buffer pointer to the space which is now allocated and
603 * accounted for as ready for normal characters. This is used for drivers
604 * that need their own block copy routines into the buffer. There is no
605 * guarantee the buffer is a DMA target!
607 * Locking: May call functions taking tty->buf.lock
610 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
612 int space = tty_buffer_request_room(tty, size);
614 struct tty_buffer *tb = tty->buf.tail;
615 *chars = tb->char_buf_ptr + tb->used;
616 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
622 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
625 * tty_prepare_flip_string_flags - make room for characters
627 * @chars: return pointer for character write area
628 * @flags: return pointer for status flag write area
629 * @size: desired size
631 * Prepare a block of space in the buffer for data. Returns the length
632 * available and buffer pointer to the space which is now allocated and
633 * accounted for as ready for characters. This is used for drivers
634 * that need their own block copy routines into the buffer. There is no
635 * guarantee the buffer is a DMA target!
637 * Locking: May call functions taking tty->buf.lock
640 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
642 int space = tty_buffer_request_room(tty, size);
644 struct tty_buffer *tb = tty->buf.tail;
645 *chars = tb->char_buf_ptr + tb->used;
646 *flags = tb->flag_buf_ptr + tb->used;
652 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
657 * tty_set_termios_ldisc - set ldisc field
658 * @tty: tty structure
659 * @num: line discipline number
661 * This is probably overkill for real world processors but
662 * they are not on hot paths so a little discipline won't do
665 * Locking: takes termios_mutex
668 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
670 mutex_lock(&tty->termios_mutex);
671 tty->termios->c_line = num;
672 mutex_unlock(&tty->termios_mutex);
676 * This guards the refcounted line discipline lists. The lock
677 * must be taken with irqs off because there are hangup path
678 * callers who will do ldisc lookups and cannot sleep.
681 static DEFINE_SPINLOCK(tty_ldisc_lock);
682 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
683 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
686 * tty_register_ldisc - install a line discipline
687 * @disc: ldisc number
688 * @new_ldisc: pointer to the ldisc object
690 * Installs a new line discipline into the kernel. The discipline
691 * is set up as unreferenced and then made available to the kernel
692 * from this point onwards.
695 * takes tty_ldisc_lock to guard against ldisc races
698 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
703 if (disc < N_TTY || disc >= NR_LDISCS)
706 spin_lock_irqsave(&tty_ldisc_lock, flags);
707 tty_ldiscs[disc] = *new_ldisc;
708 tty_ldiscs[disc].num = disc;
709 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
710 tty_ldiscs[disc].refcount = 0;
711 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
715 EXPORT_SYMBOL(tty_register_ldisc);
718 * tty_unregister_ldisc - unload a line discipline
719 * @disc: ldisc number
720 * @new_ldisc: pointer to the ldisc object
722 * Remove a line discipline from the kernel providing it is not
726 * takes tty_ldisc_lock to guard against ldisc races
729 int tty_unregister_ldisc(int disc)
734 if (disc < N_TTY || disc >= NR_LDISCS)
737 spin_lock_irqsave(&tty_ldisc_lock, flags);
738 if (tty_ldiscs[disc].refcount)
741 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
742 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
746 EXPORT_SYMBOL(tty_unregister_ldisc);
749 * tty_ldisc_get - take a reference to an ldisc
750 * @disc: ldisc number
752 * Takes a reference to a line discipline. Deals with refcounts and
753 * module locking counts. Returns NULL if the discipline is not available.
754 * Returns a pointer to the discipline and bumps the ref count if it is
758 * takes tty_ldisc_lock to guard against ldisc races
761 struct tty_ldisc *tty_ldisc_get(int disc)
764 struct tty_ldisc *ld;
766 if (disc < N_TTY || disc >= NR_LDISCS)
769 spin_lock_irqsave(&tty_ldisc_lock, flags);
771 ld = &tty_ldiscs[disc];
772 /* Check the entry is defined */
773 if(ld->flags & LDISC_FLAG_DEFINED)
775 /* If the module is being unloaded we can't use it */
776 if (!try_module_get(ld->owner))
783 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
787 EXPORT_SYMBOL_GPL(tty_ldisc_get);
790 * tty_ldisc_put - drop ldisc reference
791 * @disc: ldisc number
793 * Drop a reference to a line discipline. Manage refcounts and
794 * module usage counts
797 * takes tty_ldisc_lock to guard against ldisc races
800 void tty_ldisc_put(int disc)
802 struct tty_ldisc *ld;
805 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
807 spin_lock_irqsave(&tty_ldisc_lock, flags);
808 ld = &tty_ldiscs[disc];
809 BUG_ON(ld->refcount == 0);
811 module_put(ld->owner);
812 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
815 EXPORT_SYMBOL_GPL(tty_ldisc_put);
818 * tty_ldisc_assign - set ldisc on a tty
819 * @tty: tty to assign
820 * @ld: line discipline
822 * Install an instance of a line discipline into a tty structure. The
823 * ldisc must have a reference count above zero to ensure it remains/
824 * The tty instance refcount starts at zero.
827 * Caller must hold references
830 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
833 tty->ldisc.refcount = 0;
837 * tty_ldisc_try - internal helper
840 * Make a single attempt to grab and bump the refcount on
841 * the tty ldisc. Return 0 on failure or 1 on success. This is
842 * used to implement both the waiting and non waiting versions
845 * Locking: takes tty_ldisc_lock
848 static int tty_ldisc_try(struct tty_struct *tty)
851 struct tty_ldisc *ld;
854 spin_lock_irqsave(&tty_ldisc_lock, flags);
856 if(test_bit(TTY_LDISC, &tty->flags))
861 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
866 * tty_ldisc_ref_wait - wait for the tty ldisc
869 * Dereference the line discipline for the terminal and take a
870 * reference to it. If the line discipline is in flux then
871 * wait patiently until it changes.
873 * Note: Must not be called from an IRQ/timer context. The caller
874 * must also be careful not to hold other locks that will deadlock
875 * against a discipline change, such as an existing ldisc reference
876 * (which we check for)
878 * Locking: call functions take tty_ldisc_lock
881 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
883 /* wait_event is a macro */
884 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
885 if(tty->ldisc.refcount == 0)
886 printk(KERN_ERR "tty_ldisc_ref_wait\n");
890 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
893 * tty_ldisc_ref - get the tty ldisc
896 * Dereference the line discipline for the terminal and take a
897 * reference to it. If the line discipline is in flux then
898 * return NULL. Can be called from IRQ and timer functions.
900 * Locking: called functions take tty_ldisc_lock
903 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
905 if(tty_ldisc_try(tty))
910 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
913 * tty_ldisc_deref - free a tty ldisc reference
914 * @ld: reference to free up
916 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
917 * be called in IRQ context.
919 * Locking: takes tty_ldisc_lock
922 void tty_ldisc_deref(struct tty_ldisc *ld)
928 spin_lock_irqsave(&tty_ldisc_lock, flags);
929 if(ld->refcount == 0)
930 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
933 if(ld->refcount == 0)
934 wake_up(&tty_ldisc_wait);
935 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
938 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
941 * tty_ldisc_enable - allow ldisc use
942 * @tty: terminal to activate ldisc on
944 * Set the TTY_LDISC flag when the line discipline can be called
945 * again. Do neccessary wakeups for existing sleepers.
947 * Note: nobody should set this bit except via this function. Clearing
948 * directly is allowed.
951 static void tty_ldisc_enable(struct tty_struct *tty)
953 set_bit(TTY_LDISC, &tty->flags);
954 wake_up(&tty_ldisc_wait);
958 * tty_set_ldisc - set line discipline
959 * @tty: the terminal to set
960 * @ldisc: the line discipline
962 * Set the discipline of a tty line. Must be called from a process
965 * Locking: takes tty_ldisc_lock.
966 * called functions take termios_mutex
969 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
972 struct tty_ldisc o_ldisc;
976 struct tty_ldisc *ld;
977 struct tty_struct *o_tty;
979 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
984 ld = tty_ldisc_get(ldisc);
985 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
986 /* Cyrus Durgin <cider@speakeasy.org> */
988 request_module("tty-ldisc-%d", ldisc);
989 ld = tty_ldisc_get(ldisc);
995 * Problem: What do we do if this blocks ?
998 tty_wait_until_sent(tty, 0);
1000 if (tty->ldisc.num == ldisc) {
1001 tty_ldisc_put(ldisc);
1006 * No more input please, we are switching. The new ldisc
1007 * will update this value in the ldisc open function
1010 tty->receive_room = 0;
1012 o_ldisc = tty->ldisc;
1016 * Make sure we don't change while someone holds a
1017 * reference to the line discipline. The TTY_LDISC bit
1018 * prevents anyone taking a reference once it is clear.
1019 * We need the lock to avoid racing reference takers.
1022 spin_lock_irqsave(&tty_ldisc_lock, flags);
1023 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1024 if(tty->ldisc.refcount) {
1025 /* Free the new ldisc we grabbed. Must drop the lock
1027 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1028 tty_ldisc_put(ldisc);
1030 * There are several reasons we may be busy, including
1031 * random momentary I/O traffic. We must therefore
1032 * retry. We could distinguish between blocking ops
1033 * and retries if we made tty_ldisc_wait() smarter. That
1034 * is up for discussion.
1036 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1037 return -ERESTARTSYS;
1040 if(o_tty && o_tty->ldisc.refcount) {
1041 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1042 tty_ldisc_put(ldisc);
1043 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1044 return -ERESTARTSYS;
1049 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1051 if (!test_bit(TTY_LDISC, &tty->flags)) {
1052 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1053 tty_ldisc_put(ldisc);
1054 ld = tty_ldisc_ref_wait(tty);
1055 tty_ldisc_deref(ld);
1059 clear_bit(TTY_LDISC, &tty->flags);
1061 clear_bit(TTY_LDISC, &o_tty->flags);
1062 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1065 * From this point on we know nobody has an ldisc
1066 * usage reference, nor can they obtain one until
1067 * we say so later on.
1070 work = cancel_delayed_work(&tty->buf.work);
1072 * Wait for ->hangup_work and ->buf.work handlers to terminate
1075 flush_scheduled_work();
1076 /* Shutdown the current discipline. */
1077 if (tty->ldisc.close)
1078 (tty->ldisc.close)(tty);
1080 /* Now set up the new line discipline. */
1081 tty_ldisc_assign(tty, ld);
1082 tty_set_termios_ldisc(tty, ldisc);
1083 if (tty->ldisc.open)
1084 retval = (tty->ldisc.open)(tty);
1086 tty_ldisc_put(ldisc);
1087 /* There is an outstanding reference here so this is safe */
1088 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1089 tty_set_termios_ldisc(tty, tty->ldisc.num);
1090 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1091 tty_ldisc_put(o_ldisc.num);
1092 /* This driver is always present */
1093 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1094 tty_set_termios_ldisc(tty, N_TTY);
1095 if (tty->ldisc.open) {
1096 int r = tty->ldisc.open(tty);
1099 panic("Couldn't open N_TTY ldisc for "
1101 tty_name(tty, buf), r);
1105 /* At this point we hold a reference to the new ldisc and a
1106 a reference to the old ldisc. If we ended up flipping back
1107 to the existing ldisc we have two references to it */
1109 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1110 tty->driver->set_ldisc(tty);
1112 tty_ldisc_put(o_ldisc.num);
1115 * Allow ldisc referencing to occur as soon as the driver
1116 * ldisc callback completes.
1119 tty_ldisc_enable(tty);
1121 tty_ldisc_enable(o_tty);
1123 /* Restart it in case no characters kick it off. Safe if
1126 schedule_delayed_work(&tty->buf.work, 1);
1131 * get_tty_driver - find device of a tty
1132 * @dev_t: device identifier
1133 * @index: returns the index of the tty
1135 * This routine returns a tty driver structure, given a device number
1136 * and also passes back the index number.
1138 * Locking: caller must hold tty_mutex
1141 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1143 struct tty_driver *p;
1145 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1146 dev_t base = MKDEV(p->major, p->minor_start);
1147 if (device < base || device >= base + p->num)
1149 *index = device - base;
1156 * tty_check_change - check for POSIX terminal changes
1157 * @tty: tty to check
1159 * If we try to write to, or set the state of, a terminal and we're
1160 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1161 * ignored, go ahead and perform the operation. (POSIX 7.2)
1166 int tty_check_change(struct tty_struct * tty)
1168 if (current->signal->tty != tty)
1171 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1174 if (task_pgrp(current) == tty->pgrp)
1176 if (is_ignored(SIGTTOU))
1178 if (is_current_pgrp_orphaned())
1180 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1181 set_thread_flag(TIF_SIGPENDING);
1182 return -ERESTARTSYS;
1185 EXPORT_SYMBOL(tty_check_change);
1187 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1188 size_t count, loff_t *ppos)
1193 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1194 size_t count, loff_t *ppos)
1199 /* No kernel lock held - none needed ;) */
1200 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1202 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1205 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1206 unsigned int cmd, unsigned long arg)
1208 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1211 static long hung_up_tty_compat_ioctl(struct file * file,
1212 unsigned int cmd, unsigned long arg)
1214 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1217 static const struct file_operations tty_fops = {
1218 .llseek = no_llseek,
1223 .compat_ioctl = tty_compat_ioctl,
1225 .release = tty_release,
1226 .fasync = tty_fasync,
1229 #ifdef CONFIG_UNIX98_PTYS
1230 static const struct file_operations ptmx_fops = {
1231 .llseek = no_llseek,
1236 .compat_ioctl = tty_compat_ioctl,
1238 .release = tty_release,
1239 .fasync = tty_fasync,
1243 static const struct file_operations console_fops = {
1244 .llseek = no_llseek,
1246 .write = redirected_tty_write,
1249 .compat_ioctl = tty_compat_ioctl,
1251 .release = tty_release,
1252 .fasync = tty_fasync,
1255 static const struct file_operations hung_up_tty_fops = {
1256 .llseek = no_llseek,
1257 .read = hung_up_tty_read,
1258 .write = hung_up_tty_write,
1259 .poll = hung_up_tty_poll,
1260 .ioctl = hung_up_tty_ioctl,
1261 .compat_ioctl = hung_up_tty_compat_ioctl,
1262 .release = tty_release,
1265 static DEFINE_SPINLOCK(redirect_lock);
1266 static struct file *redirect;
1269 * tty_wakeup - request more data
1272 * Internal and external helper for wakeups of tty. This function
1273 * informs the line discipline if present that the driver is ready
1274 * to receive more output data.
1277 void tty_wakeup(struct tty_struct *tty)
1279 struct tty_ldisc *ld;
1281 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1282 ld = tty_ldisc_ref(tty);
1284 if(ld->write_wakeup)
1285 ld->write_wakeup(tty);
1286 tty_ldisc_deref(ld);
1289 wake_up_interruptible(&tty->write_wait);
1292 EXPORT_SYMBOL_GPL(tty_wakeup);
1295 * tty_ldisc_flush - flush line discipline queue
1298 * Flush the line discipline queue (if any) for this tty. If there
1299 * is no line discipline active this is a no-op.
1302 void tty_ldisc_flush(struct tty_struct *tty)
1304 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1306 if(ld->flush_buffer)
1307 ld->flush_buffer(tty);
1308 tty_ldisc_deref(ld);
1310 tty_buffer_flush(tty);
1313 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1316 * tty_reset_termios - reset terminal state
1317 * @tty: tty to reset
1319 * Restore a terminal to the driver default state
1322 static void tty_reset_termios(struct tty_struct *tty)
1324 mutex_lock(&tty->termios_mutex);
1325 *tty->termios = tty->driver->init_termios;
1326 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1327 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1328 mutex_unlock(&tty->termios_mutex);
1332 * do_tty_hangup - actual handler for hangup events
1335 * This can be called by the "eventd" kernel thread. That is process
1336 * synchronous but doesn't hold any locks, so we need to make sure we
1337 * have the appropriate locks for what we're doing.
1339 * The hangup event clears any pending redirections onto the hung up
1340 * device. It ensures future writes will error and it does the needed
1341 * line discipline hangup and signal delivery. The tty object itself
1346 * redirect lock for undoing redirection
1347 * file list lock for manipulating list of ttys
1348 * tty_ldisc_lock from called functions
1349 * termios_mutex resetting termios data
1350 * tasklist_lock to walk task list for hangup event
1351 * ->siglock to protect ->signal/->sighand
1353 static void do_tty_hangup(struct work_struct *work)
1355 struct tty_struct *tty =
1356 container_of(work, struct tty_struct, hangup_work);
1357 struct file * cons_filp = NULL;
1358 struct file *filp, *f = NULL;
1359 struct task_struct *p;
1360 struct tty_ldisc *ld;
1361 int closecount = 0, n;
1366 /* inuse_filps is protected by the single kernel lock */
1369 spin_lock(&redirect_lock);
1370 if (redirect && redirect->private_data == tty) {
1374 spin_unlock(&redirect_lock);
1376 check_tty_count(tty, "do_tty_hangup");
1378 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1379 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1380 if (filp->f_op->write == redirected_tty_write)
1382 if (filp->f_op->write != tty_write)
1385 tty_fasync(-1, filp, 0); /* can't block */
1386 filp->f_op = &hung_up_tty_fops;
1390 /* FIXME! What are the locking issues here? This may me overdoing things..
1391 * this question is especially important now that we've removed the irqlock. */
1393 ld = tty_ldisc_ref(tty);
1394 if(ld != NULL) /* We may have no line discipline at this point */
1396 if (ld->flush_buffer)
1397 ld->flush_buffer(tty);
1398 if (tty->driver->flush_buffer)
1399 tty->driver->flush_buffer(tty);
1400 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1402 ld->write_wakeup(tty);
1407 /* FIXME: Once we trust the LDISC code better we can wait here for
1408 ldisc completion and fix the driver call race */
1410 wake_up_interruptible(&tty->write_wait);
1411 wake_up_interruptible(&tty->read_wait);
1414 * Shutdown the current line discipline, and reset it to
1417 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1418 tty_reset_termios(tty);
1420 /* Defer ldisc switch */
1421 /* tty_deferred_ldisc_switch(N_TTY);
1423 This should get done automatically when the port closes and
1424 tty_release is called */
1426 read_lock(&tasklist_lock);
1428 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1429 spin_lock_irq(&p->sighand->siglock);
1430 if (p->signal->tty == tty)
1431 p->signal->tty = NULL;
1432 if (!p->signal->leader) {
1433 spin_unlock_irq(&p->sighand->siglock);
1436 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1437 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1438 put_pid(p->signal->tty_old_pgrp); /* A noop */
1440 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1441 spin_unlock_irq(&p->sighand->siglock);
1442 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1444 read_unlock(&tasklist_lock);
1447 put_pid(tty->session);
1449 tty->session = NULL;
1451 tty->ctrl_status = 0;
1453 * If one of the devices matches a console pointer, we
1454 * cannot just call hangup() because that will cause
1455 * tty->count and state->count to go out of sync.
1456 * So we just call close() the right number of times.
1459 if (tty->driver->close)
1460 for (n = 0; n < closecount; n++)
1461 tty->driver->close(tty, cons_filp);
1462 } else if (tty->driver->hangup)
1463 (tty->driver->hangup)(tty);
1465 /* We don't want to have driver/ldisc interactions beyond
1466 the ones we did here. The driver layer expects no
1467 calls after ->hangup() from the ldisc side. However we
1468 can't yet guarantee all that */
1470 set_bit(TTY_HUPPED, &tty->flags);
1472 tty_ldisc_enable(tty);
1473 tty_ldisc_deref(ld);
1481 * tty_hangup - trigger a hangup event
1482 * @tty: tty to hangup
1484 * A carrier loss (virtual or otherwise) has occurred on this like
1485 * schedule a hangup sequence to run after this event.
1488 void tty_hangup(struct tty_struct * tty)
1490 #ifdef TTY_DEBUG_HANGUP
1493 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1495 schedule_work(&tty->hangup_work);
1498 EXPORT_SYMBOL(tty_hangup);
1501 * tty_vhangup - process vhangup
1502 * @tty: tty to hangup
1504 * The user has asked via system call for the terminal to be hung up.
1505 * We do this synchronously so that when the syscall returns the process
1506 * is complete. That guarantee is neccessary for security reasons.
1509 void tty_vhangup(struct tty_struct * tty)
1511 #ifdef TTY_DEBUG_HANGUP
1514 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1516 do_tty_hangup(&tty->hangup_work);
1518 EXPORT_SYMBOL(tty_vhangup);
1521 * tty_hung_up_p - was tty hung up
1522 * @filp: file pointer of tty
1524 * Return true if the tty has been subject to a vhangup or a carrier
1528 int tty_hung_up_p(struct file * filp)
1530 return (filp->f_op == &hung_up_tty_fops);
1533 EXPORT_SYMBOL(tty_hung_up_p);
1536 * is_tty - checker whether file is a TTY
1538 int is_tty(struct file *filp)
1540 return filp->f_op->read == tty_read
1541 || filp->f_op->read == hung_up_tty_read;
1544 static void session_clear_tty(struct pid *session)
1546 struct task_struct *p;
1547 do_each_pid_task(session, PIDTYPE_SID, p) {
1549 } while_each_pid_task(session, PIDTYPE_SID, p);
1553 * disassociate_ctty - disconnect controlling tty
1554 * @on_exit: true if exiting so need to "hang up" the session
1556 * This function is typically called only by the session leader, when
1557 * it wants to disassociate itself from its controlling tty.
1559 * It performs the following functions:
1560 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1561 * (2) Clears the tty from being controlling the session
1562 * (3) Clears the controlling tty for all processes in the
1565 * The argument on_exit is set to 1 if called when a process is
1566 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1569 * BKL is taken for hysterical raisins
1570 * tty_mutex is taken to protect tty
1571 * ->siglock is taken to protect ->signal/->sighand
1572 * tasklist_lock is taken to walk process list for sessions
1573 * ->siglock is taken to protect ->signal/->sighand
1576 void disassociate_ctty(int on_exit)
1578 struct tty_struct *tty;
1579 struct pid *tty_pgrp = NULL;
1583 mutex_lock(&tty_mutex);
1584 tty = get_current_tty();
1586 tty_pgrp = get_pid(tty->pgrp);
1587 mutex_unlock(&tty_mutex);
1588 /* XXX: here we race, there is nothing protecting tty */
1589 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1591 } else if (on_exit) {
1592 struct pid *old_pgrp;
1593 spin_lock_irq(¤t->sighand->siglock);
1594 old_pgrp = current->signal->tty_old_pgrp;
1595 current->signal->tty_old_pgrp = NULL;
1596 spin_unlock_irq(¤t->sighand->siglock);
1598 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1599 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1602 mutex_unlock(&tty_mutex);
1607 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1609 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1613 spin_lock_irq(¤t->sighand->siglock);
1614 put_pid(current->signal->tty_old_pgrp);
1615 current->signal->tty_old_pgrp = NULL;
1616 spin_unlock_irq(¤t->sighand->siglock);
1618 mutex_lock(&tty_mutex);
1619 /* It is possible that do_tty_hangup has free'd this tty */
1620 tty = get_current_tty();
1622 put_pid(tty->session);
1624 tty->session = NULL;
1627 #ifdef TTY_DEBUG_HANGUP
1628 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1632 mutex_unlock(&tty_mutex);
1634 /* Now clear signal->tty under the lock */
1635 read_lock(&tasklist_lock);
1636 session_clear_tty(task_session(current));
1637 read_unlock(&tasklist_lock);
1643 * no_tty - Ensure the current process does not have a controlling tty
1647 struct task_struct *tsk = current;
1648 if (tsk->signal->leader)
1649 disassociate_ctty(0);
1650 proc_clear_tty(tsk);
1655 * stop_tty - propagate flow control
1658 * Perform flow control to the driver. For PTY/TTY pairs we
1659 * must also propagate the TIOCKPKT status. May be called
1660 * on an already stopped device and will not re-call the driver
1663 * This functionality is used by both the line disciplines for
1664 * halting incoming flow and by the driver. It may therefore be
1665 * called from any context, may be under the tty atomic_write_lock
1669 * Broken. Relies on BKL which is unsafe here.
1672 void stop_tty(struct tty_struct *tty)
1677 if (tty->link && tty->link->packet) {
1678 tty->ctrl_status &= ~TIOCPKT_START;
1679 tty->ctrl_status |= TIOCPKT_STOP;
1680 wake_up_interruptible(&tty->link->read_wait);
1682 if (tty->driver->stop)
1683 (tty->driver->stop)(tty);
1686 EXPORT_SYMBOL(stop_tty);
1689 * start_tty - propagate flow control
1690 * @tty: tty to start
1692 * Start a tty that has been stopped if at all possible. Perform
1693 * any neccessary wakeups and propagate the TIOCPKT status. If this
1694 * is the tty was previous stopped and is being started then the
1695 * driver start method is invoked and the line discipline woken.
1698 * Broken. Relies on BKL which is unsafe here.
1701 void start_tty(struct tty_struct *tty)
1703 if (!tty->stopped || tty->flow_stopped)
1706 if (tty->link && tty->link->packet) {
1707 tty->ctrl_status &= ~TIOCPKT_STOP;
1708 tty->ctrl_status |= TIOCPKT_START;
1709 wake_up_interruptible(&tty->link->read_wait);
1711 if (tty->driver->start)
1712 (tty->driver->start)(tty);
1714 /* If we have a running line discipline it may need kicking */
1718 EXPORT_SYMBOL(start_tty);
1721 * tty_read - read method for tty device files
1722 * @file: pointer to tty file
1724 * @count: size of user buffer
1727 * Perform the read system call function on this terminal device. Checks
1728 * for hung up devices before calling the line discipline method.
1731 * Locks the line discipline internally while needed
1732 * For historical reasons the line discipline read method is
1733 * invoked under the BKL. This will go away in time so do not rely on it
1734 * in new code. Multiple read calls may be outstanding in parallel.
1737 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1741 struct tty_struct * tty;
1742 struct inode *inode;
1743 struct tty_ldisc *ld;
1745 tty = (struct tty_struct *)file->private_data;
1746 inode = file->f_path.dentry->d_inode;
1747 if (tty_paranoia_check(tty, inode, "tty_read"))
1749 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1752 /* We want to wait for the line discipline to sort out in this
1754 ld = tty_ldisc_ref_wait(tty);
1757 i = (ld->read)(tty,file,buf,count);
1760 tty_ldisc_deref(ld);
1763 inode->i_atime = current_fs_time(inode->i_sb);
1767 void tty_write_unlock(struct tty_struct *tty)
1769 mutex_unlock(&tty->atomic_write_lock);
1770 wake_up_interruptible(&tty->write_wait);
1773 int tty_write_lock(struct tty_struct *tty, int ndelay)
1775 if (!mutex_trylock(&tty->atomic_write_lock)) {
1778 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1779 return -ERESTARTSYS;
1785 * Split writes up in sane blocksizes to avoid
1786 * denial-of-service type attacks
1788 static inline ssize_t do_tty_write(
1789 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1790 struct tty_struct *tty,
1792 const char __user *buf,
1795 ssize_t ret, written = 0;
1798 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1803 * We chunk up writes into a temporary buffer. This
1804 * simplifies low-level drivers immensely, since they
1805 * don't have locking issues and user mode accesses.
1807 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1810 * The default chunk-size is 2kB, because the NTTY
1811 * layer has problems with bigger chunks. It will
1812 * claim to be able to handle more characters than
1815 * FIXME: This can probably go away now except that 64K chunks
1816 * are too likely to fail unless switched to vmalloc...
1819 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1824 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1825 if (tty->write_cnt < chunk) {
1831 buf = kmalloc(chunk, GFP_KERNEL);
1836 kfree(tty->write_buf);
1837 tty->write_cnt = chunk;
1838 tty->write_buf = buf;
1841 /* Do the write .. */
1843 size_t size = count;
1847 if (copy_from_user(tty->write_buf, buf, size))
1850 ret = write(tty, file, tty->write_buf, size);
1860 if (signal_pending(current))
1865 struct inode *inode = file->f_path.dentry->d_inode;
1866 inode->i_mtime = current_fs_time(inode->i_sb);
1870 tty_write_unlock(tty);
1876 * tty_write - write method for tty device file
1877 * @file: tty file pointer
1878 * @buf: user data to write
1879 * @count: bytes to write
1882 * Write data to a tty device via the line discipline.
1885 * Locks the line discipline as required
1886 * Writes to the tty driver are serialized by the atomic_write_lock
1887 * and are then processed in chunks to the device. The line discipline
1888 * write method will not be involked in parallel for each device
1889 * The line discipline write method is called under the big
1890 * kernel lock for historical reasons. New code should not rely on this.
1893 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1896 struct tty_struct * tty;
1897 struct inode *inode = file->f_path.dentry->d_inode;
1899 struct tty_ldisc *ld;
1901 tty = (struct tty_struct *)file->private_data;
1902 if (tty_paranoia_check(tty, inode, "tty_write"))
1904 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1907 ld = tty_ldisc_ref_wait(tty);
1911 ret = do_tty_write(ld->write, tty, file, buf, count);
1912 tty_ldisc_deref(ld);
1916 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1919 struct file *p = NULL;
1921 spin_lock(&redirect_lock);
1926 spin_unlock(&redirect_lock);
1930 res = vfs_write(p, buf, count, &p->f_pos);
1935 return tty_write(file, buf, count, ppos);
1938 static char ptychar[] = "pqrstuvwxyzabcde";
1941 * pty_line_name - generate name for a pty
1942 * @driver: the tty driver in use
1943 * @index: the minor number
1944 * @p: output buffer of at least 6 bytes
1946 * Generate a name from a driver reference and write it to the output
1951 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1953 int i = index + driver->name_base;
1954 /* ->name is initialized to "ttyp", but "tty" is expected */
1955 sprintf(p, "%s%c%x",
1956 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1957 ptychar[i >> 4 & 0xf], i & 0xf);
1961 * pty_line_name - generate name for a tty
1962 * @driver: the tty driver in use
1963 * @index: the minor number
1964 * @p: output buffer of at least 7 bytes
1966 * Generate a name from a driver reference and write it to the output
1971 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1973 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1977 * init_dev - initialise a tty device
1978 * @driver: tty driver we are opening a device on
1979 * @idx: device index
1980 * @tty: returned tty structure
1982 * Prepare a tty device. This may not be a "new" clean device but
1983 * could also be an active device. The pty drivers require special
1984 * handling because of this.
1987 * The function is called under the tty_mutex, which
1988 * protects us from the tty struct or driver itself going away.
1990 * On exit the tty device has the line discipline attached and
1991 * a reference count of 1. If a pair was created for pty/tty use
1992 * and the other was a pty master then it too has a reference count of 1.
1994 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1995 * failed open. The new code protects the open with a mutex, so it's
1996 * really quite straightforward. The mutex locking can probably be
1997 * relaxed for the (most common) case of reopening a tty.
2000 static int init_dev(struct tty_driver *driver, int idx,
2001 struct tty_struct **ret_tty)
2003 struct tty_struct *tty, *o_tty;
2004 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2005 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2008 /* check whether we're reopening an existing tty */
2009 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2010 tty = devpts_get_tty(idx);
2012 * If we don't have a tty here on a slave open, it's because
2013 * the master already started the close process and there's
2014 * no relation between devpts file and tty anymore.
2016 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2021 * It's safe from now on because init_dev() is called with
2022 * tty_mutex held and release_dev() won't change tty->count
2023 * or tty->flags without having to grab tty_mutex
2025 if (tty && driver->subtype == PTY_TYPE_MASTER)
2028 tty = driver->ttys[idx];
2030 if (tty) goto fast_track;
2033 * First time open is complex, especially for PTY devices.
2034 * This code guarantees that either everything succeeds and the
2035 * TTY is ready for operation, or else the table slots are vacated
2036 * and the allocated memory released. (Except that the termios
2037 * and locked termios may be retained.)
2040 if (!try_module_get(driver->owner)) {
2049 tty = alloc_tty_struct();
2052 initialize_tty_struct(tty);
2053 tty->driver = driver;
2055 tty_line_name(driver, idx, tty->name);
2057 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2058 tp_loc = &tty->termios;
2059 ltp_loc = &tty->termios_locked;
2061 tp_loc = &driver->termios[idx];
2062 ltp_loc = &driver->termios_locked[idx];
2066 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2070 *tp = driver->init_termios;
2074 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2079 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2080 o_tty = alloc_tty_struct();
2083 initialize_tty_struct(o_tty);
2084 o_tty->driver = driver->other;
2086 tty_line_name(driver->other, idx, o_tty->name);
2088 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2089 o_tp_loc = &o_tty->termios;
2090 o_ltp_loc = &o_tty->termios_locked;
2092 o_tp_loc = &driver->other->termios[idx];
2093 o_ltp_loc = &driver->other->termios_locked[idx];
2097 o_tp = (struct ktermios *)
2098 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2101 *o_tp = driver->other->init_termios;
2105 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2111 * Everything allocated ... set up the o_tty structure.
2113 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2114 driver->other->ttys[idx] = o_tty;
2120 o_tty->termios = *o_tp_loc;
2121 o_tty->termios_locked = *o_ltp_loc;
2122 driver->other->refcount++;
2123 if (driver->subtype == PTY_TYPE_MASTER)
2126 /* Establish the links in both directions */
2132 * All structures have been allocated, so now we install them.
2133 * Failures after this point use release_tty to clean up, so
2134 * there's no need to null out the local pointers.
2136 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2137 driver->ttys[idx] = tty;
2144 tty->termios = *tp_loc;
2145 tty->termios_locked = *ltp_loc;
2146 /* Compatibility until drivers always set this */
2147 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2148 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2153 * Structures all installed ... call the ldisc open routines.
2154 * If we fail here just call release_tty to clean up. No need
2155 * to decrement the use counts, as release_tty doesn't care.
2158 if (tty->ldisc.open) {
2159 retval = (tty->ldisc.open)(tty);
2161 goto release_mem_out;
2163 if (o_tty && o_tty->ldisc.open) {
2164 retval = (o_tty->ldisc.open)(o_tty);
2166 if (tty->ldisc.close)
2167 (tty->ldisc.close)(tty);
2168 goto release_mem_out;
2170 tty_ldisc_enable(o_tty);
2172 tty_ldisc_enable(tty);
2176 * This fast open can be used if the tty is already open.
2177 * No memory is allocated, and the only failures are from
2178 * attempting to open a closing tty or attempting multiple
2179 * opens on a pty master.
2182 if (test_bit(TTY_CLOSING, &tty->flags)) {
2186 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2187 driver->subtype == PTY_TYPE_MASTER) {
2189 * special case for PTY masters: only one open permitted,
2190 * and the slave side open count is incremented as well.
2199 tty->driver = driver; /* N.B. why do this every time?? */
2202 if(!test_bit(TTY_LDISC, &tty->flags))
2203 printk(KERN_ERR "init_dev but no ldisc\n");
2207 /* All paths come through here to release the mutex */
2211 /* Release locally allocated memory ... nothing placed in slots */
2215 free_tty_struct(o_tty);
2218 free_tty_struct(tty);
2221 module_put(driver->owner);
2225 /* call the tty release_tty routine to clean out this slot */
2227 if (printk_ratelimit())
2228 printk(KERN_INFO "init_dev: ldisc open failed, "
2229 "clearing slot %d\n", idx);
2230 release_tty(tty, idx);
2235 * release_one_tty - release tty structure memory
2237 * Releases memory associated with a tty structure, and clears out the
2238 * driver table slots. This function is called when a device is no longer
2239 * in use. It also gets called when setup of a device fails.
2242 * tty_mutex - sometimes only
2243 * takes the file list lock internally when working on the list
2244 * of ttys that the driver keeps.
2245 * FIXME: should we require tty_mutex is held here ??
2247 static void release_one_tty(struct tty_struct *tty, int idx)
2249 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2250 struct ktermios *tp;
2253 tty->driver->ttys[idx] = NULL;
2255 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2258 tty->driver->termios[idx] = NULL;
2261 tp = tty->termios_locked;
2263 tty->driver->termios_locked[idx] = NULL;
2269 tty->driver->refcount--;
2272 list_del_init(&tty->tty_files);
2275 free_tty_struct(tty);
2279 * release_tty - release tty structure memory
2281 * Release both @tty and a possible linked partner (think pty pair),
2282 * and decrement the refcount of the backing module.
2285 * tty_mutex - sometimes only
2286 * takes the file list lock internally when working on the list
2287 * of ttys that the driver keeps.
2288 * FIXME: should we require tty_mutex is held here ??
2290 static void release_tty(struct tty_struct *tty, int idx)
2292 struct tty_driver *driver = tty->driver;
2295 release_one_tty(tty->link, idx);
2296 release_one_tty(tty, idx);
2297 module_put(driver->owner);
2301 * Even releasing the tty structures is a tricky business.. We have
2302 * to be very careful that the structures are all released at the
2303 * same time, as interrupts might otherwise get the wrong pointers.
2305 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2306 * lead to double frees or releasing memory still in use.
2308 static void release_dev(struct file * filp)
2310 struct tty_struct *tty, *o_tty;
2311 int pty_master, tty_closing, o_tty_closing, do_sleep;
2315 unsigned long flags;
2317 tty = (struct tty_struct *)filp->private_data;
2318 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2321 check_tty_count(tty, "release_dev");
2323 tty_fasync(-1, filp, 0);
2326 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2327 tty->driver->subtype == PTY_TYPE_MASTER);
2328 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2331 #ifdef TTY_PARANOIA_CHECK
2332 if (idx < 0 || idx >= tty->driver->num) {
2333 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2334 "free (%s)\n", tty->name);
2337 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2338 if (tty != tty->driver->ttys[idx]) {
2339 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2340 "for (%s)\n", idx, tty->name);
2343 if (tty->termios != tty->driver->termios[idx]) {
2344 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2349 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2350 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2351 "termios_locked for (%s)\n",
2358 #ifdef TTY_DEBUG_HANGUP
2359 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2360 tty_name(tty, buf), tty->count);
2363 #ifdef TTY_PARANOIA_CHECK
2364 if (tty->driver->other &&
2365 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2366 if (o_tty != tty->driver->other->ttys[idx]) {
2367 printk(KERN_DEBUG "release_dev: other->table[%d] "
2368 "not o_tty for (%s)\n",
2372 if (o_tty->termios != tty->driver->other->termios[idx]) {
2373 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2374 "not o_termios for (%s)\n",
2378 if (o_tty->termios_locked !=
2379 tty->driver->other->termios_locked[idx]) {
2380 printk(KERN_DEBUG "release_dev: other->termios_locked["
2381 "%d] not o_termios_locked for (%s)\n",
2385 if (o_tty->link != tty) {
2386 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2391 if (tty->driver->close)
2392 tty->driver->close(tty, filp);
2395 * Sanity check: if tty->count is going to zero, there shouldn't be
2396 * any waiters on tty->read_wait or tty->write_wait. We test the
2397 * wait queues and kick everyone out _before_ actually starting to
2398 * close. This ensures that we won't block while releasing the tty
2401 * The test for the o_tty closing is necessary, since the master and
2402 * slave sides may close in any order. If the slave side closes out
2403 * first, its count will be one, since the master side holds an open.
2404 * Thus this test wouldn't be triggered at the time the slave closes,
2407 * Note that it's possible for the tty to be opened again while we're
2408 * flushing out waiters. By recalculating the closing flags before
2409 * each iteration we avoid any problems.
2412 /* Guard against races with tty->count changes elsewhere and
2413 opens on /dev/tty */
2415 mutex_lock(&tty_mutex);
2416 tty_closing = tty->count <= 1;
2417 o_tty_closing = o_tty &&
2418 (o_tty->count <= (pty_master ? 1 : 0));
2422 if (waitqueue_active(&tty->read_wait)) {
2423 wake_up(&tty->read_wait);
2426 if (waitqueue_active(&tty->write_wait)) {
2427 wake_up(&tty->write_wait);
2431 if (o_tty_closing) {
2432 if (waitqueue_active(&o_tty->read_wait)) {
2433 wake_up(&o_tty->read_wait);
2436 if (waitqueue_active(&o_tty->write_wait)) {
2437 wake_up(&o_tty->write_wait);
2444 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2445 "active!\n", tty_name(tty, buf));
2446 mutex_unlock(&tty_mutex);
2451 * The closing flags are now consistent with the open counts on
2452 * both sides, and we've completed the last operation that could
2453 * block, so it's safe to proceed with closing.
2456 if (--o_tty->count < 0) {
2457 printk(KERN_WARNING "release_dev: bad pty slave count "
2459 o_tty->count, tty_name(o_tty, buf));
2463 if (--tty->count < 0) {
2464 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2465 tty->count, tty_name(tty, buf));
2470 * We've decremented tty->count, so we need to remove this file
2471 * descriptor off the tty->tty_files list; this serves two
2473 * - check_tty_count sees the correct number of file descriptors
2474 * associated with this tty.
2475 * - do_tty_hangup no longer sees this file descriptor as
2476 * something that needs to be handled for hangups.
2479 filp->private_data = NULL;
2482 * Perform some housekeeping before deciding whether to return.
2484 * Set the TTY_CLOSING flag if this was the last open. In the
2485 * case of a pty we may have to wait around for the other side
2486 * to close, and TTY_CLOSING makes sure we can't be reopened.
2489 set_bit(TTY_CLOSING, &tty->flags);
2491 set_bit(TTY_CLOSING, &o_tty->flags);
2494 * If _either_ side is closing, make sure there aren't any
2495 * processes that still think tty or o_tty is their controlling
2498 if (tty_closing || o_tty_closing) {
2499 read_lock(&tasklist_lock);
2500 session_clear_tty(tty->session);
2502 session_clear_tty(o_tty->session);
2503 read_unlock(&tasklist_lock);
2506 mutex_unlock(&tty_mutex);
2508 /* check whether both sides are closing ... */
2509 if (!tty_closing || (o_tty && !o_tty_closing))
2512 #ifdef TTY_DEBUG_HANGUP
2513 printk(KERN_DEBUG "freeing tty structure...");
2516 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2517 * kill any delayed work. As this is the final close it does not
2518 * race with the set_ldisc code path.
2520 clear_bit(TTY_LDISC, &tty->flags);
2521 cancel_delayed_work(&tty->buf.work);
2524 * Wait for ->hangup_work and ->buf.work handlers to terminate
2527 flush_scheduled_work();
2530 * Wait for any short term users (we know they are just driver
2531 * side waiters as the file is closing so user count on the file
2534 spin_lock_irqsave(&tty_ldisc_lock, flags);
2535 while(tty->ldisc.refcount)
2537 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2538 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2539 spin_lock_irqsave(&tty_ldisc_lock, flags);
2541 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2543 * Shutdown the current line discipline, and reset it to N_TTY.
2544 * N.B. why reset ldisc when we're releasing the memory??
2546 * FIXME: this MUST get fixed for the new reflocking
2548 if (tty->ldisc.close)
2549 (tty->ldisc.close)(tty);
2550 tty_ldisc_put(tty->ldisc.num);
2553 * Switch the line discipline back
2555 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2556 tty_set_termios_ldisc(tty,N_TTY);
2558 /* FIXME: could o_tty be in setldisc here ? */
2559 clear_bit(TTY_LDISC, &o_tty->flags);
2560 if (o_tty->ldisc.close)
2561 (o_tty->ldisc.close)(o_tty);
2562 tty_ldisc_put(o_tty->ldisc.num);
2563 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2564 tty_set_termios_ldisc(o_tty,N_TTY);
2567 * The release_tty function takes care of the details of clearing
2568 * the slots and preserving the termios structure.
2570 release_tty(tty, idx);
2572 #ifdef CONFIG_UNIX98_PTYS
2573 /* Make this pty number available for reallocation */
2575 down(&allocated_ptys_lock);
2576 idr_remove(&allocated_ptys, idx);
2577 up(&allocated_ptys_lock);
2584 * tty_open - open a tty device
2585 * @inode: inode of device file
2586 * @filp: file pointer to tty
2588 * tty_open and tty_release keep up the tty count that contains the
2589 * number of opens done on a tty. We cannot use the inode-count, as
2590 * different inodes might point to the same tty.
2592 * Open-counting is needed for pty masters, as well as for keeping
2593 * track of serial lines: DTR is dropped when the last close happens.
2594 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2596 * The termios state of a pty is reset on first open so that
2597 * settings don't persist across reuse.
2599 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2600 * tty->count should protect the rest.
2601 * ->siglock protects ->signal/->sighand
2604 static int tty_open(struct inode * inode, struct file * filp)
2606 struct tty_struct *tty;
2608 struct tty_driver *driver;
2610 dev_t device = inode->i_rdev;
2611 unsigned short saved_flags = filp->f_flags;
2613 nonseekable_open(inode, filp);
2616 noctty = filp->f_flags & O_NOCTTY;
2620 mutex_lock(&tty_mutex);
2622 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2623 tty = get_current_tty();
2625 mutex_unlock(&tty_mutex);
2628 driver = tty->driver;
2630 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2635 if (device == MKDEV(TTY_MAJOR,0)) {
2636 extern struct tty_driver *console_driver;
2637 driver = console_driver;
2643 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2644 driver = console_device(&index);
2646 /* Don't let /dev/console block */
2647 filp->f_flags |= O_NONBLOCK;
2651 mutex_unlock(&tty_mutex);
2655 driver = get_tty_driver(device, &index);
2657 mutex_unlock(&tty_mutex);
2661 retval = init_dev(driver, index, &tty);
2662 mutex_unlock(&tty_mutex);
2666 filp->private_data = tty;
2667 file_move(filp, &tty->tty_files);
2668 check_tty_count(tty, "tty_open");
2669 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2670 tty->driver->subtype == PTY_TYPE_MASTER)
2672 #ifdef TTY_DEBUG_HANGUP
2673 printk(KERN_DEBUG "opening %s...", tty->name);
2676 if (tty->driver->open)
2677 retval = tty->driver->open(tty, filp);
2681 filp->f_flags = saved_flags;
2683 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2687 #ifdef TTY_DEBUG_HANGUP
2688 printk(KERN_DEBUG "error %d in opening %s...", retval,
2692 if (retval != -ERESTARTSYS)
2694 if (signal_pending(current))
2698 * Need to reset f_op in case a hangup happened.
2700 if (filp->f_op == &hung_up_tty_fops)
2701 filp->f_op = &tty_fops;
2705 mutex_lock(&tty_mutex);
2706 spin_lock_irq(¤t->sighand->siglock);
2708 current->signal->leader &&
2709 !current->signal->tty &&
2710 tty->session == NULL)
2711 __proc_set_tty(current, tty);
2712 spin_unlock_irq(¤t->sighand->siglock);
2713 mutex_unlock(&tty_mutex);
2714 tty_audit_opening();
2718 #ifdef CONFIG_UNIX98_PTYS
2720 * ptmx_open - open a unix 98 pty master
2721 * @inode: inode of device file
2722 * @filp: file pointer to tty
2724 * Allocate a unix98 pty master device from the ptmx driver.
2726 * Locking: tty_mutex protects theinit_dev work. tty->count should
2728 * allocated_ptys_lock handles the list of free pty numbers
2731 static int ptmx_open(struct inode * inode, struct file * filp)
2733 struct tty_struct *tty;
2738 nonseekable_open(inode, filp);
2740 /* find a device that is not in use. */
2741 down(&allocated_ptys_lock);
2742 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2743 up(&allocated_ptys_lock);
2746 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2748 up(&allocated_ptys_lock);
2749 if (idr_ret == -EAGAIN)
2753 if (index >= pty_limit) {
2754 idr_remove(&allocated_ptys, index);
2755 up(&allocated_ptys_lock);
2758 up(&allocated_ptys_lock);
2760 mutex_lock(&tty_mutex);
2761 retval = init_dev(ptm_driver, index, &tty);
2762 mutex_unlock(&tty_mutex);
2767 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2768 filp->private_data = tty;
2769 file_move(filp, &tty->tty_files);
2772 if (devpts_pty_new(tty->link))
2775 check_tty_count(tty, "tty_open");
2776 retval = ptm_driver->open(tty, filp);
2778 tty_audit_opening();
2785 down(&allocated_ptys_lock);
2786 idr_remove(&allocated_ptys, index);
2787 up(&allocated_ptys_lock);
2793 * tty_release - vfs callback for close
2794 * @inode: inode of tty
2795 * @filp: file pointer for handle to tty
2797 * Called the last time each file handle is closed that references
2798 * this tty. There may however be several such references.
2801 * Takes bkl. See release_dev
2804 static int tty_release(struct inode * inode, struct file * filp)
2813 * tty_poll - check tty status
2814 * @filp: file being polled
2815 * @wait: poll wait structures to update
2817 * Call the line discipline polling method to obtain the poll
2818 * status of the device.
2820 * Locking: locks called line discipline but ldisc poll method
2821 * may be re-entered freely by other callers.
2824 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2826 struct tty_struct * tty;
2827 struct tty_ldisc *ld;
2830 tty = (struct tty_struct *)filp->private_data;
2831 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2834 ld = tty_ldisc_ref_wait(tty);
2836 ret = (ld->poll)(tty, filp, wait);
2837 tty_ldisc_deref(ld);
2841 static int tty_fasync(int fd, struct file * filp, int on)
2843 struct tty_struct * tty;
2846 tty = (struct tty_struct *)filp->private_data;
2847 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2850 retval = fasync_helper(fd, filp, on, &tty->fasync);
2857 if (!waitqueue_active(&tty->read_wait))
2858 tty->minimum_to_wake = 1;
2861 type = PIDTYPE_PGID;
2863 pid = task_pid(current);
2866 retval = __f_setown(filp, pid, type, 0);
2870 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2871 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2877 * tiocsti - fake input character
2878 * @tty: tty to fake input into
2879 * @p: pointer to character
2881 * Fake input to a tty device. Does the neccessary locking and
2884 * FIXME: does not honour flow control ??
2887 * Called functions take tty_ldisc_lock
2888 * current->signal->tty check is safe without locks
2890 * FIXME: may race normal receive processing
2893 static int tiocsti(struct tty_struct *tty, char __user *p)
2896 struct tty_ldisc *ld;
2898 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2900 if (get_user(ch, p))
2902 ld = tty_ldisc_ref_wait(tty);
2903 ld->receive_buf(tty, &ch, &mbz, 1);
2904 tty_ldisc_deref(ld);
2909 * tiocgwinsz - implement window query ioctl
2911 * @arg: user buffer for result
2913 * Copies the kernel idea of the window size into the user buffer.
2915 * Locking: tty->termios_mutex is taken to ensure the winsize data
2919 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2923 mutex_lock(&tty->termios_mutex);
2924 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2925 mutex_unlock(&tty->termios_mutex);
2927 return err ? -EFAULT: 0;
2931 * tiocswinsz - implement window size set ioctl
2933 * @arg: user buffer for result
2935 * Copies the user idea of the window size to the kernel. Traditionally
2936 * this is just advisory information but for the Linux console it
2937 * actually has driver level meaning and triggers a VC resize.
2940 * Called function use the console_sem is used to ensure we do
2941 * not try and resize the console twice at once.
2942 * The tty->termios_mutex is used to ensure we don't double
2943 * resize and get confused. Lock order - tty->termios_mutex before
2947 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2948 struct winsize __user * arg)
2950 struct winsize tmp_ws;
2952 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2955 mutex_lock(&tty->termios_mutex);
2956 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2960 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2961 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2963 mutex_unlock(&tty->termios_mutex);
2969 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2970 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2971 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2972 tty->winsize = tmp_ws;
2973 real_tty->winsize = tmp_ws;
2975 mutex_unlock(&tty->termios_mutex);
2980 * tioccons - allow admin to move logical console
2981 * @file: the file to become console
2983 * Allow the adminstrator to move the redirected console device
2985 * Locking: uses redirect_lock to guard the redirect information
2988 static int tioccons(struct file *file)
2990 if (!capable(CAP_SYS_ADMIN))
2992 if (file->f_op->write == redirected_tty_write) {
2994 spin_lock(&redirect_lock);
2997 spin_unlock(&redirect_lock);
3002 spin_lock(&redirect_lock);
3004 spin_unlock(&redirect_lock);
3009 spin_unlock(&redirect_lock);
3014 * fionbio - non blocking ioctl
3015 * @file: file to set blocking value
3016 * @p: user parameter
3018 * Historical tty interfaces had a blocking control ioctl before
3019 * the generic functionality existed. This piece of history is preserved
3020 * in the expected tty API of posix OS's.
3022 * Locking: none, the open fle handle ensures it won't go away.
3025 static int fionbio(struct file *file, int __user *p)
3029 if (get_user(nonblock, p))
3033 file->f_flags |= O_NONBLOCK;
3035 file->f_flags &= ~O_NONBLOCK;
3040 * tiocsctty - set controlling tty
3041 * @tty: tty structure
3042 * @arg: user argument
3044 * This ioctl is used to manage job control. It permits a session
3045 * leader to set this tty as the controlling tty for the session.
3048 * Takes tty_mutex() to protect tty instance
3049 * Takes tasklist_lock internally to walk sessions
3050 * Takes ->siglock() when updating signal->tty
3053 static int tiocsctty(struct tty_struct *tty, int arg)
3056 if (current->signal->leader && (task_session(current) == tty->session))
3059 mutex_lock(&tty_mutex);
3061 * The process must be a session leader and
3062 * not have a controlling tty already.
3064 if (!current->signal->leader || current->signal->tty) {
3071 * This tty is already the controlling
3072 * tty for another session group!
3074 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3078 read_lock(&tasklist_lock);
3079 session_clear_tty(tty->session);
3080 read_unlock(&tasklist_lock);
3086 proc_set_tty(current, tty);
3088 mutex_unlock(&tty_mutex);
3093 * tiocgpgrp - get process group
3094 * @tty: tty passed by user
3095 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3098 * Obtain the process group of the tty. If there is no process group
3101 * Locking: none. Reference to current->signal->tty is safe.
3104 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3107 * (tty == real_tty) is a cheap way of
3108 * testing if the tty is NOT a master pty.
3110 if (tty == real_tty && current->signal->tty != real_tty)
3112 return put_user(pid_nr(real_tty->pgrp), p);
3116 * tiocspgrp - attempt to set process group
3117 * @tty: tty passed by user
3118 * @real_tty: tty side device matching tty passed by user
3121 * Set the process group of the tty to the session passed. Only
3122 * permitted where the tty session is our session.
3127 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3131 int retval = tty_check_change(real_tty);
3137 if (!current->signal->tty ||
3138 (current->signal->tty != real_tty) ||
3139 (real_tty->session != task_session(current)))
3141 if (get_user(pgrp_nr, p))
3146 pgrp = find_pid(pgrp_nr);
3151 if (session_of_pgrp(pgrp) != task_session(current))
3154 put_pid(real_tty->pgrp);
3155 real_tty->pgrp = get_pid(pgrp);
3162 * tiocgsid - get session id
3163 * @tty: tty passed by user
3164 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3165 * @p: pointer to returned session id
3167 * Obtain the session id of the tty. If there is no session
3170 * Locking: none. Reference to current->signal->tty is safe.
3173 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3176 * (tty == real_tty) is a cheap way of
3177 * testing if the tty is NOT a master pty.
3179 if (tty == real_tty && current->signal->tty != real_tty)
3181 if (!real_tty->session)
3183 return put_user(pid_nr(real_tty->session), p);
3187 * tiocsetd - set line discipline
3189 * @p: pointer to user data
3191 * Set the line discipline according to user request.
3193 * Locking: see tty_set_ldisc, this function is just a helper
3196 static int tiocsetd(struct tty_struct *tty, int __user *p)
3200 if (get_user(ldisc, p))
3202 return tty_set_ldisc(tty, ldisc);
3206 * send_break - performed time break
3207 * @tty: device to break on
3208 * @duration: timeout in mS
3210 * Perform a timed break on hardware that lacks its own driver level
3211 * timed break functionality.
3214 * atomic_write_lock serializes
3218 static int send_break(struct tty_struct *tty, unsigned int duration)
3220 if (tty_write_lock(tty, 0) < 0)
3222 tty->driver->break_ctl(tty, -1);
3223 if (!signal_pending(current))
3224 msleep_interruptible(duration);
3225 tty->driver->break_ctl(tty, 0);
3226 tty_write_unlock(tty);
3227 if (signal_pending(current))
3233 * tiocmget - get modem status
3235 * @file: user file pointer
3236 * @p: pointer to result
3238 * Obtain the modem status bits from the tty driver if the feature
3239 * is supported. Return -EINVAL if it is not available.
3241 * Locking: none (up to the driver)
3244 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3246 int retval = -EINVAL;
3248 if (tty->driver->tiocmget) {
3249 retval = tty->driver->tiocmget(tty, file);
3252 retval = put_user(retval, p);
3258 * tiocmset - set modem status
3260 * @file: user file pointer
3261 * @cmd: command - clear bits, set bits or set all
3262 * @p: pointer to desired bits
3264 * Set the modem status bits from the tty driver if the feature
3265 * is supported. Return -EINVAL if it is not available.
3267 * Locking: none (up to the driver)
3270 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3273 int retval = -EINVAL;
3275 if (tty->driver->tiocmset) {
3276 unsigned int set, clear, val;
3278 retval = get_user(val, p);
3296 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3297 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3299 retval = tty->driver->tiocmset(tty, file, set, clear);
3305 * Split this up, as gcc can choke on it otherwise..
3307 int tty_ioctl(struct inode * inode, struct file * file,
3308 unsigned int cmd, unsigned long arg)
3310 struct tty_struct *tty, *real_tty;
3311 void __user *p = (void __user *)arg;
3313 struct tty_ldisc *ld;
3315 tty = (struct tty_struct *)file->private_data;
3316 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3319 /* CHECKME: is this safe as one end closes ? */
3322 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3323 tty->driver->subtype == PTY_TYPE_MASTER)
3324 real_tty = tty->link;
3327 * Break handling by driver
3329 if (!tty->driver->break_ctl) {
3333 if (tty->driver->ioctl)
3334 return tty->driver->ioctl(tty, file, cmd, arg);
3337 /* These two ioctl's always return success; even if */
3338 /* the driver doesn't support them. */
3341 if (!tty->driver->ioctl)
3343 retval = tty->driver->ioctl(tty, file, cmd, arg);
3344 if (retval == -ENOIOCTLCMD)
3351 * Factor out some common prep work
3359 retval = tty_check_change(tty);
3362 if (cmd != TIOCCBRK) {
3363 tty_wait_until_sent(tty, 0);
3364 if (signal_pending(current))
3372 return tiocsti(tty, p);
3374 return tiocgwinsz(tty, p);
3376 return tiocswinsz(tty, real_tty, p);
3378 return real_tty!=tty ? -EINVAL : tioccons(file);
3380 return fionbio(file, p);
3382 set_bit(TTY_EXCLUSIVE, &tty->flags);
3385 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3388 if (current->signal->tty != tty)
3393 return tiocsctty(tty, arg);
3395 return tiocgpgrp(tty, real_tty, p);
3397 return tiocspgrp(tty, real_tty, p);
3399 return tiocgsid(tty, real_tty, p);
3401 /* FIXME: check this is ok */
3402 return put_user(tty->ldisc.num, (int __user *)p);
3404 return tiocsetd(tty, p);
3407 return tioclinux(tty, arg);
3412 case TIOCSBRK: /* Turn break on, unconditionally */
3413 tty->driver->break_ctl(tty, -1);
3416 case TIOCCBRK: /* Turn break off, unconditionally */
3417 tty->driver->break_ctl(tty, 0);
3419 case TCSBRK: /* SVID version: non-zero arg --> no break */
3420 /* non-zero arg means wait for all output data
3421 * to be sent (performed above) but don't send break.
3422 * This is used by the tcdrain() termios function.
3425 return send_break(tty, 250);
3427 case TCSBRKP: /* support for POSIX tcsendbreak() */
3428 return send_break(tty, arg ? arg*100 : 250);
3431 return tty_tiocmget(tty, file, p);
3436 return tty_tiocmset(tty, file, cmd, p);
3441 /* flush tty buffer and allow ldisc to process ioctl */
3442 tty_buffer_flush(tty);
3447 if (tty->driver->ioctl) {
3448 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3449 if (retval != -ENOIOCTLCMD)
3452 ld = tty_ldisc_ref_wait(tty);
3455 retval = ld->ioctl(tty, file, cmd, arg);
3456 if (retval == -ENOIOCTLCMD)
3459 tty_ldisc_deref(ld);
3463 #ifdef CONFIG_COMPAT
3464 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3467 struct inode *inode = file->f_dentry->d_inode;
3468 struct tty_struct *tty = file->private_data;
3469 struct tty_ldisc *ld;
3470 int retval = -ENOIOCTLCMD;
3472 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3475 if (tty->driver->compat_ioctl) {
3476 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3477 if (retval != -ENOIOCTLCMD)
3481 ld = tty_ldisc_ref_wait(tty);
3482 if (ld->compat_ioctl)
3483 retval = ld->compat_ioctl(tty, file, cmd, arg);
3484 tty_ldisc_deref(ld);
3491 * This implements the "Secure Attention Key" --- the idea is to
3492 * prevent trojan horses by killing all processes associated with this
3493 * tty when the user hits the "Secure Attention Key". Required for
3494 * super-paranoid applications --- see the Orange Book for more details.
3496 * This code could be nicer; ideally it should send a HUP, wait a few
3497 * seconds, then send a INT, and then a KILL signal. But you then
3498 * have to coordinate with the init process, since all processes associated
3499 * with the current tty must be dead before the new getty is allowed
3502 * Now, if it would be correct ;-/ The current code has a nasty hole -
3503 * it doesn't catch files in flight. We may send the descriptor to ourselves
3504 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3506 * Nasty bug: do_SAK is being called in interrupt context. This can
3507 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3509 void __do_SAK(struct tty_struct *tty)
3514 struct task_struct *g, *p;
3515 struct pid *session;
3518 struct fdtable *fdt;
3522 session = tty->session;
3524 tty_ldisc_flush(tty);
3526 if (tty->driver->flush_buffer)
3527 tty->driver->flush_buffer(tty);
3529 read_lock(&tasklist_lock);
3530 /* Kill the entire session */
3531 do_each_pid_task(session, PIDTYPE_SID, p) {
3532 printk(KERN_NOTICE "SAK: killed process %d"
3533 " (%s): process_session(p)==tty->session\n",
3535 send_sig(SIGKILL, p, 1);
3536 } while_each_pid_task(session, PIDTYPE_SID, p);
3537 /* Now kill any processes that happen to have the
3540 do_each_thread(g, p) {
3541 if (p->signal->tty == tty) {
3542 printk(KERN_NOTICE "SAK: killed process %d"
3543 " (%s): process_session(p)==tty->session\n",
3545 send_sig(SIGKILL, p, 1);
3551 * We don't take a ref to the file, so we must
3552 * hold ->file_lock instead.
3554 spin_lock(&p->files->file_lock);
3555 fdt = files_fdtable(p->files);
3556 for (i=0; i < fdt->max_fds; i++) {
3557 filp = fcheck_files(p->files, i);
3560 if (filp->f_op->read == tty_read &&
3561 filp->private_data == tty) {
3562 printk(KERN_NOTICE "SAK: killed process %d"
3563 " (%s): fd#%d opened to the tty\n",
3564 p->pid, p->comm, i);
3565 force_sig(SIGKILL, p);
3569 spin_unlock(&p->files->file_lock);
3572 } while_each_thread(g, p);
3573 read_unlock(&tasklist_lock);
3577 static void do_SAK_work(struct work_struct *work)
3579 struct tty_struct *tty =
3580 container_of(work, struct tty_struct, SAK_work);
3585 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3586 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3587 * the values which we write to it will be identical to the values which it
3588 * already has. --akpm
3590 void do_SAK(struct tty_struct *tty)
3594 schedule_work(&tty->SAK_work);
3597 EXPORT_SYMBOL(do_SAK);
3601 * @work: tty structure passed from work queue.
3603 * This routine is called out of the software interrupt to flush data
3604 * from the buffer chain to the line discipline.
3606 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3607 * while invoking the line discipline receive_buf method. The
3608 * receive_buf method is single threaded for each tty instance.
3611 static void flush_to_ldisc(struct work_struct *work)
3613 struct tty_struct *tty =
3614 container_of(work, struct tty_struct, buf.work.work);
3615 unsigned long flags;
3616 struct tty_ldisc *disc;
3617 struct tty_buffer *tbuf, *head;
3619 unsigned char *flag_buf;
3621 disc = tty_ldisc_ref(tty);
3622 if (disc == NULL) /* !TTY_LDISC */
3625 spin_lock_irqsave(&tty->buf.lock, flags);
3626 set_bit(TTY_FLUSHING, &tty->flags); /* So we know a flush is running */
3627 head = tty->buf.head;
3629 tty->buf.head = NULL;
3631 int count = head->commit - head->read;
3633 if (head->next == NULL)
3637 tty_buffer_free(tty, tbuf);
3640 /* Ldisc or user is trying to flush the buffers
3641 we are feeding to the ldisc, stop feeding the
3642 line discipline as we want to empty the queue */
3643 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3645 if (!tty->receive_room) {
3646 schedule_delayed_work(&tty->buf.work, 1);
3649 if (count > tty->receive_room)
3650 count = tty->receive_room;
3651 char_buf = head->char_buf_ptr + head->read;
3652 flag_buf = head->flag_buf_ptr + head->read;
3653 head->read += count;
3654 spin_unlock_irqrestore(&tty->buf.lock, flags);
3655 disc->receive_buf(tty, char_buf, flag_buf, count);
3656 spin_lock_irqsave(&tty->buf.lock, flags);
3658 /* Restore the queue head */
3659 tty->buf.head = head;
3661 /* We may have a deferred request to flush the input buffer,
3662 if so pull the chain under the lock and empty the queue */
3663 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3664 __tty_buffer_flush(tty);
3665 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3666 wake_up(&tty->read_wait);
3668 clear_bit(TTY_FLUSHING, &tty->flags);
3669 spin_unlock_irqrestore(&tty->buf.lock, flags);
3671 tty_ldisc_deref(disc);
3675 * tty_flip_buffer_push - terminal
3678 * Queue a push of the terminal flip buffers to the line discipline. This
3679 * function must not be called from IRQ context if tty->low_latency is set.
3681 * In the event of the queue being busy for flipping the work will be
3682 * held off and retried later.
3684 * Locking: tty buffer lock. Driver locks in low latency mode.
3687 void tty_flip_buffer_push(struct tty_struct *tty)
3689 unsigned long flags;
3690 spin_lock_irqsave(&tty->buf.lock, flags);
3691 if (tty->buf.tail != NULL)
3692 tty->buf.tail->commit = tty->buf.tail->used;
3693 spin_unlock_irqrestore(&tty->buf.lock, flags);
3695 if (tty->low_latency)
3696 flush_to_ldisc(&tty->buf.work.work);
3698 schedule_delayed_work(&tty->buf.work, 1);
3701 EXPORT_SYMBOL(tty_flip_buffer_push);
3705 * initialize_tty_struct
3706 * @tty: tty to initialize
3708 * This subroutine initializes a tty structure that has been newly
3711 * Locking: none - tty in question must not be exposed at this point
3714 static void initialize_tty_struct(struct tty_struct *tty)
3716 memset(tty, 0, sizeof(struct tty_struct));
3717 tty->magic = TTY_MAGIC;
3718 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3719 tty->session = NULL;
3721 tty->overrun_time = jiffies;
3722 tty->buf.head = tty->buf.tail = NULL;
3723 tty_buffer_init(tty);
3724 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3725 init_MUTEX(&tty->buf.pty_sem);
3726 mutex_init(&tty->termios_mutex);
3727 init_waitqueue_head(&tty->write_wait);
3728 init_waitqueue_head(&tty->read_wait);
3729 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3730 mutex_init(&tty->atomic_read_lock);
3731 mutex_init(&tty->atomic_write_lock);
3732 spin_lock_init(&tty->read_lock);
3733 INIT_LIST_HEAD(&tty->tty_files);
3734 INIT_WORK(&tty->SAK_work, do_SAK_work);
3738 * The default put_char routine if the driver did not define one.
3741 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3743 tty->driver->write(tty, &ch, 1);
3746 static struct class *tty_class;
3749 * tty_register_device - register a tty device
3750 * @driver: the tty driver that describes the tty device
3751 * @index: the index in the tty driver for this tty device
3752 * @device: a struct device that is associated with this tty device.
3753 * This field is optional, if there is no known struct device
3754 * for this tty device it can be set to NULL safely.
3756 * Returns a pointer to the struct device for this tty device
3757 * (or ERR_PTR(-EFOO) on error).
3759 * This call is required to be made to register an individual tty device
3760 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3761 * that bit is not set, this function should not be called by a tty
3767 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3768 struct device *device)
3771 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3773 if (index >= driver->num) {
3774 printk(KERN_ERR "Attempt to register invalid tty line number "
3776 return ERR_PTR(-EINVAL);
3779 if (driver->type == TTY_DRIVER_TYPE_PTY)
3780 pty_line_name(driver, index, name);
3782 tty_line_name(driver, index, name);
3784 return device_create(tty_class, device, dev, name);
3788 * tty_unregister_device - unregister a tty device
3789 * @driver: the tty driver that describes the tty device
3790 * @index: the index in the tty driver for this tty device
3792 * If a tty device is registered with a call to tty_register_device() then
3793 * this function must be called when the tty device is gone.
3798 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3800 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3803 EXPORT_SYMBOL(tty_register_device);
3804 EXPORT_SYMBOL(tty_unregister_device);
3806 struct tty_driver *alloc_tty_driver(int lines)
3808 struct tty_driver *driver;
3810 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3812 driver->magic = TTY_DRIVER_MAGIC;
3813 driver->num = lines;
3814 /* later we'll move allocation of tables here */
3819 void put_tty_driver(struct tty_driver *driver)
3824 void tty_set_operations(struct tty_driver *driver,
3825 const struct tty_operations *op)
3827 driver->open = op->open;
3828 driver->close = op->close;
3829 driver->write = op->write;
3830 driver->put_char = op->put_char;
3831 driver->flush_chars = op->flush_chars;
3832 driver->write_room = op->write_room;
3833 driver->chars_in_buffer = op->chars_in_buffer;
3834 driver->ioctl = op->ioctl;
3835 driver->compat_ioctl = op->compat_ioctl;
3836 driver->set_termios = op->set_termios;
3837 driver->throttle = op->throttle;
3838 driver->unthrottle = op->unthrottle;
3839 driver->stop = op->stop;
3840 driver->start = op->start;
3841 driver->hangup = op->hangup;
3842 driver->break_ctl = op->break_ctl;
3843 driver->flush_buffer = op->flush_buffer;
3844 driver->set_ldisc = op->set_ldisc;
3845 driver->wait_until_sent = op->wait_until_sent;
3846 driver->send_xchar = op->send_xchar;
3847 driver->read_proc = op->read_proc;
3848 driver->write_proc = op->write_proc;
3849 driver->tiocmget = op->tiocmget;
3850 driver->tiocmset = op->tiocmset;
3854 EXPORT_SYMBOL(alloc_tty_driver);
3855 EXPORT_SYMBOL(put_tty_driver);
3856 EXPORT_SYMBOL(tty_set_operations);
3859 * Called by a tty driver to register itself.
3861 int tty_register_driver(struct tty_driver *driver)
3868 if (driver->flags & TTY_DRIVER_INSTALLED)
3871 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3872 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3877 if (!driver->major) {
3878 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3881 driver->major = MAJOR(dev);
3882 driver->minor_start = MINOR(dev);
3885 dev = MKDEV(driver->major, driver->minor_start);
3886 error = register_chrdev_region(dev, driver->num, driver->name);
3894 driver->ttys = (struct tty_struct **)p;
3895 driver->termios = (struct ktermios **)(p + driver->num);
3896 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3898 driver->ttys = NULL;
3899 driver->termios = NULL;
3900 driver->termios_locked = NULL;
3903 cdev_init(&driver->cdev, &tty_fops);
3904 driver->cdev.owner = driver->owner;
3905 error = cdev_add(&driver->cdev, dev, driver->num);
3907 unregister_chrdev_region(dev, driver->num);
3908 driver->ttys = NULL;
3909 driver->termios = driver->termios_locked = NULL;
3914 if (!driver->put_char)
3915 driver->put_char = tty_default_put_char;
3917 mutex_lock(&tty_mutex);
3918 list_add(&driver->tty_drivers, &tty_drivers);
3919 mutex_unlock(&tty_mutex);
3921 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3922 for(i = 0; i < driver->num; i++)
3923 tty_register_device(driver, i, NULL);
3925 proc_tty_register_driver(driver);
3929 EXPORT_SYMBOL(tty_register_driver);
3932 * Called by a tty driver to unregister itself.
3934 int tty_unregister_driver(struct tty_driver *driver)
3937 struct ktermios *tp;
3940 if (driver->refcount)
3943 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3945 mutex_lock(&tty_mutex);
3946 list_del(&driver->tty_drivers);
3947 mutex_unlock(&tty_mutex);
3950 * Free the termios and termios_locked structures because
3951 * we don't want to get memory leaks when modular tty
3952 * drivers are removed from the kernel.
3954 for (i = 0; i < driver->num; i++) {
3955 tp = driver->termios[i];
3957 driver->termios[i] = NULL;
3960 tp = driver->termios_locked[i];
3962 driver->termios_locked[i] = NULL;
3965 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3966 tty_unregister_device(driver, i);
3969 proc_tty_unregister_driver(driver);
3970 driver->ttys = NULL;
3971 driver->termios = driver->termios_locked = NULL;
3973 cdev_del(&driver->cdev);
3976 EXPORT_SYMBOL(tty_unregister_driver);
3978 dev_t tty_devnum(struct tty_struct *tty)
3980 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3982 EXPORT_SYMBOL(tty_devnum);
3984 void proc_clear_tty(struct task_struct *p)
3986 spin_lock_irq(&p->sighand->siglock);
3987 p->signal->tty = NULL;
3988 spin_unlock_irq(&p->sighand->siglock);
3990 EXPORT_SYMBOL(proc_clear_tty);
3992 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3995 /* We should not have a session or pgrp to here but.... */
3996 put_pid(tty->session);
3998 tty->session = get_pid(task_session(tsk));
3999 tty->pgrp = get_pid(task_pgrp(tsk));
4001 put_pid(tsk->signal->tty_old_pgrp);
4002 tsk->signal->tty = tty;
4003 tsk->signal->tty_old_pgrp = NULL;
4006 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4008 spin_lock_irq(&tsk->sighand->siglock);
4009 __proc_set_tty(tsk, tty);
4010 spin_unlock_irq(&tsk->sighand->siglock);
4013 struct tty_struct *get_current_tty(void)
4015 struct tty_struct *tty;
4016 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4017 tty = current->signal->tty;
4019 * session->tty can be changed/cleared from under us, make sure we
4020 * issue the load. The obtained pointer, when not NULL, is valid as
4021 * long as we hold tty_mutex.
4026 EXPORT_SYMBOL_GPL(get_current_tty);
4029 * Initialize the console device. This is called *early*, so
4030 * we can't necessarily depend on lots of kernel help here.
4031 * Just do some early initializations, and do the complex setup
4034 void __init console_init(void)
4038 /* Setup the default TTY line discipline. */
4039 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4042 * set up the console device so that later boot sequences can
4043 * inform about problems etc..
4045 call = __con_initcall_start;
4046 while (call < __con_initcall_end) {
4053 extern int vty_init(void);
4056 static int __init tty_class_init(void)
4058 tty_class = class_create(THIS_MODULE, "tty");
4059 if (IS_ERR(tty_class))
4060 return PTR_ERR(tty_class);
4064 postcore_initcall(tty_class_init);
4066 /* 3/2004 jmc: why do these devices exist? */
4068 static struct cdev tty_cdev, console_cdev;
4069 #ifdef CONFIG_UNIX98_PTYS
4070 static struct cdev ptmx_cdev;
4073 static struct cdev vc0_cdev;
4077 * Ok, now we can initialize the rest of the tty devices and can count
4078 * on memory allocations, interrupts etc..
4080 static int __init tty_init(void)
4082 cdev_init(&tty_cdev, &tty_fops);
4083 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4084 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4085 panic("Couldn't register /dev/tty driver\n");
4086 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4088 cdev_init(&console_cdev, &console_fops);
4089 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4090 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4091 panic("Couldn't register /dev/console driver\n");
4092 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4094 #ifdef CONFIG_UNIX98_PTYS
4095 cdev_init(&ptmx_cdev, &ptmx_fops);
4096 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4097 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4098 panic("Couldn't register /dev/ptmx driver\n");
4099 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4103 cdev_init(&vc0_cdev, &console_fops);
4104 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4105 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4106 panic("Couldn't register /dev/tty0 driver\n");
4107 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4113 module_init(tty_init);