1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 struct ocfs2_extent_block *eb);
57 * Structures which describe a path through a btree, and functions to
60 * The idea here is to be as generic as possible with the tree
63 struct ocfs2_path_item {
64 struct buffer_head *bh;
65 struct ocfs2_extent_list *el;
68 #define OCFS2_MAX_PATH_DEPTH 5
72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
88 int i, start = 0, depth = 0;
89 struct ocfs2_path_item *node;
94 for(i = start; i < path_num_items(path); i++) {
95 node = &path->p_node[i];
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
110 path->p_tree_depth = depth;
113 static void ocfs2_free_path(struct ocfs2_path *path)
116 ocfs2_reinit_path(path, 0);
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
125 * Both paths should have the same root. Any non-root elements of dest
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
132 BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 BUG_ON(path_root_el(dest) != path_root_el(src));
135 ocfs2_reinit_path(dest, 1);
137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 dest->p_node[i].bh = src->p_node[i].bh;
139 dest->p_node[i].el = src->p_node[i].el;
141 if (dest->p_node[i].bh)
142 get_bh(dest->p_node[i].bh);
147 * Make the *dest path the same as src and re-initialize src path to
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
154 BUG_ON(path_root_bh(dest) != path_root_bh(src));
156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 brelse(dest->p_node[i].bh);
159 dest->p_node[i].bh = src->p_node[i].bh;
160 dest->p_node[i].el = src->p_node[i].el;
162 src->p_node[i].bh = NULL;
163 src->p_node[i].el = NULL;
168 * Insert an extent block at given index.
170 * This will not take an additional reference on eb_bh.
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 struct buffer_head *eb_bh)
175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
185 path->p_node[index].bh = eb_bh;
186 path->p_node[index].el = &eb->h_list;
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 struct ocfs2_extent_list *root_el)
192 struct ocfs2_path *path;
194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
196 path = kzalloc(sizeof(*path), GFP_NOFS);
198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
200 path_root_bh(path) = root_bh;
201 path_root_el(path) = root_el;
208 * Allocate and initialize a new path based on a disk inode tree.
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 struct ocfs2_extent_list *el = &di->id2.i_list;
215 return ocfs2_new_path(di_bh, el);
219 * Convenience function to journal all components in a path.
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 struct ocfs2_path *path)
229 for(i = 0; i < path_num_items(path); i++) {
230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 OCFS2_JOURNAL_ACCESS_WRITE);
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
246 * Should work fine on interior and exterior nodes.
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
252 struct ocfs2_extent_rec *rec;
253 u32 rec_end, rec_start, clusters;
255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 rec = &el->l_recs[i];
258 rec_start = le32_to_cpu(rec->e_cpos);
259 clusters = ocfs2_rec_clusters(el, rec);
261 rec_end = rec_start + clusters;
263 if (v_cluster >= rec_start && v_cluster < rec_end) {
272 enum ocfs2_contig_type {
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 struct ocfs2_extent_rec *ext,
288 u64 blk_end = le64_to_cpu(ext->e_blkno);
290 blk_end += ocfs2_clusters_to_blocks(sb,
291 le16_to_cpu(ext->e_leaf_clusters));
293 return blkno == blk_end;
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 struct ocfs2_extent_rec *right)
301 left_range = le32_to_cpu(left->e_cpos) +
302 le16_to_cpu(left->e_leaf_clusters);
304 return (left_range == le32_to_cpu(right->e_cpos));
307 static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode *inode,
309 struct ocfs2_extent_rec *ext,
310 struct ocfs2_extent_rec *insert_rec)
312 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
319 if (ext->e_flags != insert_rec->e_flags)
322 if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
326 blkno = le64_to_cpu(ext->e_blkno);
327 if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
335 * NOTE: We can have pretty much any combination of contiguousness and
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
341 enum ocfs2_append_type {
346 enum ocfs2_split_type {
352 struct ocfs2_insert_type {
353 enum ocfs2_split_type ins_split;
354 enum ocfs2_append_type ins_appending;
355 enum ocfs2_contig_type ins_contig;
356 int ins_contig_index;
357 int ins_free_records;
361 struct ocfs2_merge_ctxt {
362 enum ocfs2_contig_type c_contig_type;
363 int c_has_empty_extent;
364 int c_split_covers_rec;
365 int c_used_tail_recs;
369 * How many free extents have we got before we need more meta data?
371 int ocfs2_num_free_extents(struct ocfs2_super *osb,
373 struct ocfs2_dinode *fe)
376 struct ocfs2_extent_list *el;
377 struct ocfs2_extent_block *eb;
378 struct buffer_head *eb_bh = NULL;
382 if (!OCFS2_IS_VALID_DINODE(fe)) {
383 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
388 if (fe->i_last_eb_blk) {
389 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
390 &eb_bh, OCFS2_BH_CACHED, inode);
395 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
398 el = &fe->id2.i_list;
400 BUG_ON(el->l_tree_depth != 0);
402 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
411 /* expects array to already be allocated
413 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
416 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
420 struct ocfs2_alloc_context *meta_ac,
421 struct buffer_head *bhs[])
423 int count, status, i;
424 u16 suballoc_bit_start;
427 struct ocfs2_extent_block *eb;
432 while (count < wanted) {
433 status = ocfs2_claim_metadata(osb,
445 for(i = count; i < (num_got + count); i++) {
446 bhs[i] = sb_getblk(osb->sb, first_blkno);
447 if (bhs[i] == NULL) {
452 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
454 status = ocfs2_journal_access(handle, inode, bhs[i],
455 OCFS2_JOURNAL_ACCESS_CREATE);
461 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
462 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
463 /* Ok, setup the minimal stuff here. */
464 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
465 eb->h_blkno = cpu_to_le64(first_blkno);
466 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
467 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
468 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
470 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
472 suballoc_bit_start++;
475 /* We'll also be dirtied by the caller, so
476 * this isn't absolutely necessary. */
477 status = ocfs2_journal_dirty(handle, bhs[i]);
490 for(i = 0; i < wanted; i++) {
501 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
503 * Returns the sum of the rightmost extent rec logical offset and
506 * ocfs2_add_branch() uses this to determine what logical cluster
507 * value should be populated into the leftmost new branch records.
509 * ocfs2_shift_tree_depth() uses this to determine the # clusters
510 * value for the new topmost tree record.
512 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
516 i = le16_to_cpu(el->l_next_free_rec) - 1;
518 return le32_to_cpu(el->l_recs[i].e_cpos) +
519 ocfs2_rec_clusters(el, &el->l_recs[i]);
523 * Add an entire tree branch to our inode. eb_bh is the extent block
524 * to start at, if we don't want to start the branch at the dinode
527 * last_eb_bh is required as we have to update it's next_leaf pointer
528 * for the new last extent block.
530 * the new branch will be 'empty' in the sense that every block will
531 * contain a single record with cluster count == 0.
533 static int ocfs2_add_branch(struct ocfs2_super *osb,
536 struct buffer_head *fe_bh,
537 struct buffer_head *eb_bh,
538 struct buffer_head **last_eb_bh,
539 struct ocfs2_alloc_context *meta_ac)
541 int status, new_blocks, i;
542 u64 next_blkno, new_last_eb_blk;
543 struct buffer_head *bh;
544 struct buffer_head **new_eb_bhs = NULL;
545 struct ocfs2_dinode *fe;
546 struct ocfs2_extent_block *eb;
547 struct ocfs2_extent_list *eb_el;
548 struct ocfs2_extent_list *el;
553 BUG_ON(!last_eb_bh || !*last_eb_bh);
555 fe = (struct ocfs2_dinode *) fe_bh->b_data;
558 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
561 el = &fe->id2.i_list;
563 /* we never add a branch to a leaf. */
564 BUG_ON(!el->l_tree_depth);
566 new_blocks = le16_to_cpu(el->l_tree_depth);
568 /* allocate the number of new eb blocks we need */
569 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
577 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
578 meta_ac, new_eb_bhs);
584 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
585 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
587 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
588 * linked with the rest of the tree.
589 * conversly, new_eb_bhs[0] is the new bottommost leaf.
591 * when we leave the loop, new_last_eb_blk will point to the
592 * newest leaf, and next_blkno will point to the topmost extent
594 next_blkno = new_last_eb_blk = 0;
595 for(i = 0; i < new_blocks; i++) {
597 eb = (struct ocfs2_extent_block *) bh->b_data;
598 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
599 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
605 status = ocfs2_journal_access(handle, inode, bh,
606 OCFS2_JOURNAL_ACCESS_CREATE);
612 eb->h_next_leaf_blk = 0;
613 eb_el->l_tree_depth = cpu_to_le16(i);
614 eb_el->l_next_free_rec = cpu_to_le16(1);
616 * This actually counts as an empty extent as
619 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
620 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
622 * eb_el isn't always an interior node, but even leaf
623 * nodes want a zero'd flags and reserved field so
624 * this gets the whole 32 bits regardless of use.
626 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
627 if (!eb_el->l_tree_depth)
628 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
630 status = ocfs2_journal_dirty(handle, bh);
636 next_blkno = le64_to_cpu(eb->h_blkno);
639 /* This is a bit hairy. We want to update up to three blocks
640 * here without leaving any of them in an inconsistent state
641 * in case of error. We don't have to worry about
642 * journal_dirty erroring as it won't unless we've aborted the
643 * handle (in which case we would never be here) so reserving
644 * the write with journal_access is all we need to do. */
645 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
646 OCFS2_JOURNAL_ACCESS_WRITE);
651 status = ocfs2_journal_access(handle, inode, fe_bh,
652 OCFS2_JOURNAL_ACCESS_WRITE);
658 status = ocfs2_journal_access(handle, inode, eb_bh,
659 OCFS2_JOURNAL_ACCESS_WRITE);
666 /* Link the new branch into the rest of the tree (el will
667 * either be on the fe, or the extent block passed in. */
668 i = le16_to_cpu(el->l_next_free_rec);
669 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
670 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
671 el->l_recs[i].e_int_clusters = 0;
672 le16_add_cpu(&el->l_next_free_rec, 1);
674 /* fe needs a new last extent block pointer, as does the
675 * next_leaf on the previously last-extent-block. */
676 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
678 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
679 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
681 status = ocfs2_journal_dirty(handle, *last_eb_bh);
684 status = ocfs2_journal_dirty(handle, fe_bh);
688 status = ocfs2_journal_dirty(handle, eb_bh);
694 * Some callers want to track the rightmost leaf so pass it
698 get_bh(new_eb_bhs[0]);
699 *last_eb_bh = new_eb_bhs[0];
704 for (i = 0; i < new_blocks; i++)
706 brelse(new_eb_bhs[i]);
715 * adds another level to the allocation tree.
716 * returns back the new extent block so you can add a branch to it
719 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
722 struct buffer_head *fe_bh,
723 struct ocfs2_alloc_context *meta_ac,
724 struct buffer_head **ret_new_eb_bh)
728 struct buffer_head *new_eb_bh = NULL;
729 struct ocfs2_dinode *fe;
730 struct ocfs2_extent_block *eb;
731 struct ocfs2_extent_list *fe_el;
732 struct ocfs2_extent_list *eb_el;
736 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
743 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
744 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
745 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
751 fe = (struct ocfs2_dinode *) fe_bh->b_data;
752 fe_el = &fe->id2.i_list;
754 status = ocfs2_journal_access(handle, inode, new_eb_bh,
755 OCFS2_JOURNAL_ACCESS_CREATE);
761 /* copy the fe data into the new extent block */
762 eb_el->l_tree_depth = fe_el->l_tree_depth;
763 eb_el->l_next_free_rec = fe_el->l_next_free_rec;
764 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
765 eb_el->l_recs[i] = fe_el->l_recs[i];
767 status = ocfs2_journal_dirty(handle, new_eb_bh);
773 status = ocfs2_journal_access(handle, inode, fe_bh,
774 OCFS2_JOURNAL_ACCESS_WRITE);
780 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
783 le16_add_cpu(&fe_el->l_tree_depth, 1);
784 fe_el->l_recs[0].e_cpos = 0;
785 fe_el->l_recs[0].e_blkno = eb->h_blkno;
786 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
787 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
788 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
789 fe_el->l_next_free_rec = cpu_to_le16(1);
791 /* If this is our 1st tree depth shift, then last_eb_blk
792 * becomes the allocated extent block */
793 if (fe_el->l_tree_depth == cpu_to_le16(1))
794 fe->i_last_eb_blk = eb->h_blkno;
796 status = ocfs2_journal_dirty(handle, fe_bh);
802 *ret_new_eb_bh = new_eb_bh;
814 * Should only be called when there is no space left in any of the
815 * leaf nodes. What we want to do is find the lowest tree depth
816 * non-leaf extent block with room for new records. There are three
817 * valid results of this search:
819 * 1) a lowest extent block is found, then we pass it back in
820 * *lowest_eb_bh and return '0'
822 * 2) the search fails to find anything, but the dinode has room. We
823 * pass NULL back in *lowest_eb_bh, but still return '0'
825 * 3) the search fails to find anything AND the dinode is full, in
826 * which case we return > 0
828 * return status < 0 indicates an error.
830 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
832 struct buffer_head *fe_bh,
833 struct buffer_head **target_bh)
837 struct ocfs2_dinode *fe;
838 struct ocfs2_extent_block *eb;
839 struct ocfs2_extent_list *el;
840 struct buffer_head *bh = NULL;
841 struct buffer_head *lowest_bh = NULL;
847 fe = (struct ocfs2_dinode *) fe_bh->b_data;
848 el = &fe->id2.i_list;
850 while(le16_to_cpu(el->l_tree_depth) > 1) {
851 if (le16_to_cpu(el->l_next_free_rec) == 0) {
852 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
853 "extent list (next_free_rec == 0)",
854 (unsigned long long)OCFS2_I(inode)->ip_blkno);
858 i = le16_to_cpu(el->l_next_free_rec) - 1;
859 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
861 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
862 "list where extent # %d has no physical "
864 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
874 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
881 eb = (struct ocfs2_extent_block *) bh->b_data;
882 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
883 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
889 if (le16_to_cpu(el->l_next_free_rec) <
890 le16_to_cpu(el->l_count)) {
898 /* If we didn't find one and the fe doesn't have any room,
901 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
904 *target_bh = lowest_bh;
914 * Grow a b-tree so that it has more records.
916 * We might shift the tree depth in which case existing paths should
917 * be considered invalid.
919 * Tree depth after the grow is returned via *final_depth.
921 * *last_eb_bh will be updated by ocfs2_add_branch().
923 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
924 struct buffer_head *di_bh, int *final_depth,
925 struct buffer_head **last_eb_bh,
926 struct ocfs2_alloc_context *meta_ac)
929 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
930 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
931 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
932 struct buffer_head *bh = NULL;
934 BUG_ON(meta_ac == NULL);
936 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
943 /* We traveled all the way to the bottom of the allocation tree
944 * and didn't find room for any more extents - we need to add
945 * another tree level */
948 mlog(0, "need to shift tree depth (current = %d)\n", depth);
950 /* ocfs2_shift_tree_depth will return us a buffer with
951 * the new extent block (so we can pass that to
952 * ocfs2_add_branch). */
953 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
962 * Special case: we have room now if we shifted from
963 * tree_depth 0, so no more work needs to be done.
965 * We won't be calling add_branch, so pass
966 * back *last_eb_bh as the new leaf. At depth
967 * zero, it should always be null so there's
968 * no reason to brelse.
977 /* call ocfs2_add_branch to add the final part of the tree with
979 mlog(0, "add branch. bh = %p\n", bh);
980 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
989 *final_depth = depth;
995 * This is only valid for leaf nodes, which are the only ones that can
996 * have empty extents anyway.
998 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
1000 return !rec->e_leaf_clusters;
1004 * This function will discard the rightmost extent record.
1006 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1008 int next_free = le16_to_cpu(el->l_next_free_rec);
1009 int count = le16_to_cpu(el->l_count);
1010 unsigned int num_bytes;
1013 /* This will cause us to go off the end of our extent list. */
1014 BUG_ON(next_free >= count);
1016 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1018 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1021 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1022 struct ocfs2_extent_rec *insert_rec)
1024 int i, insert_index, next_free, has_empty, num_bytes;
1025 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1026 struct ocfs2_extent_rec *rec;
1028 next_free = le16_to_cpu(el->l_next_free_rec);
1029 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1033 /* The tree code before us didn't allow enough room in the leaf. */
1034 if (el->l_next_free_rec == el->l_count && !has_empty)
1038 * The easiest way to approach this is to just remove the
1039 * empty extent and temporarily decrement next_free.
1043 * If next_free was 1 (only an empty extent), this
1044 * loop won't execute, which is fine. We still want
1045 * the decrement above to happen.
1047 for(i = 0; i < (next_free - 1); i++)
1048 el->l_recs[i] = el->l_recs[i+1];
1054 * Figure out what the new record index should be.
1056 for(i = 0; i < next_free; i++) {
1057 rec = &el->l_recs[i];
1059 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1064 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1065 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1067 BUG_ON(insert_index < 0);
1068 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1069 BUG_ON(insert_index > next_free);
1072 * No need to memmove if we're just adding to the tail.
1074 if (insert_index != next_free) {
1075 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1077 num_bytes = next_free - insert_index;
1078 num_bytes *= sizeof(struct ocfs2_extent_rec);
1079 memmove(&el->l_recs[insert_index + 1],
1080 &el->l_recs[insert_index],
1085 * Either we had an empty extent, and need to re-increment or
1086 * there was no empty extent on a non full rightmost leaf node,
1087 * in which case we still need to increment.
1090 el->l_next_free_rec = cpu_to_le16(next_free);
1092 * Make sure none of the math above just messed up our tree.
1094 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1096 el->l_recs[insert_index] = *insert_rec;
1100 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1102 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1104 BUG_ON(num_recs == 0);
1106 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1108 size = num_recs * sizeof(struct ocfs2_extent_rec);
1109 memmove(&el->l_recs[0], &el->l_recs[1], size);
1110 memset(&el->l_recs[num_recs], 0,
1111 sizeof(struct ocfs2_extent_rec));
1112 el->l_next_free_rec = cpu_to_le16(num_recs);
1117 * Create an empty extent record .
1119 * l_next_free_rec may be updated.
1121 * If an empty extent already exists do nothing.
1123 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1125 int next_free = le16_to_cpu(el->l_next_free_rec);
1127 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1132 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1135 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1136 "Asked to create an empty extent in a full list:\n"
1137 "count = %u, tree depth = %u",
1138 le16_to_cpu(el->l_count),
1139 le16_to_cpu(el->l_tree_depth));
1141 ocfs2_shift_records_right(el);
1144 le16_add_cpu(&el->l_next_free_rec, 1);
1145 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1149 * For a rotation which involves two leaf nodes, the "root node" is
1150 * the lowest level tree node which contains a path to both leafs. This
1151 * resulting set of information can be used to form a complete "subtree"
1153 * This function is passed two full paths from the dinode down to a
1154 * pair of adjacent leaves. It's task is to figure out which path
1155 * index contains the subtree root - this can be the root index itself
1156 * in a worst-case rotation.
1158 * The array index of the subtree root is passed back.
1160 static int ocfs2_find_subtree_root(struct inode *inode,
1161 struct ocfs2_path *left,
1162 struct ocfs2_path *right)
1167 * Check that the caller passed in two paths from the same tree.
1169 BUG_ON(path_root_bh(left) != path_root_bh(right));
1175 * The caller didn't pass two adjacent paths.
1177 mlog_bug_on_msg(i > left->p_tree_depth,
1178 "Inode %lu, left depth %u, right depth %u\n"
1179 "left leaf blk %llu, right leaf blk %llu\n",
1180 inode->i_ino, left->p_tree_depth,
1181 right->p_tree_depth,
1182 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1183 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1184 } while (left->p_node[i].bh->b_blocknr ==
1185 right->p_node[i].bh->b_blocknr);
1190 typedef void (path_insert_t)(void *, struct buffer_head *);
1193 * Traverse a btree path in search of cpos, starting at root_el.
1195 * This code can be called with a cpos larger than the tree, in which
1196 * case it will return the rightmost path.
1198 static int __ocfs2_find_path(struct inode *inode,
1199 struct ocfs2_extent_list *root_el, u32 cpos,
1200 path_insert_t *func, void *data)
1205 struct buffer_head *bh = NULL;
1206 struct ocfs2_extent_block *eb;
1207 struct ocfs2_extent_list *el;
1208 struct ocfs2_extent_rec *rec;
1209 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1212 while (el->l_tree_depth) {
1213 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1214 ocfs2_error(inode->i_sb,
1215 "Inode %llu has empty extent list at "
1217 (unsigned long long)oi->ip_blkno,
1218 le16_to_cpu(el->l_tree_depth));
1224 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1225 rec = &el->l_recs[i];
1228 * In the case that cpos is off the allocation
1229 * tree, this should just wind up returning the
1232 range = le32_to_cpu(rec->e_cpos) +
1233 ocfs2_rec_clusters(el, rec);
1234 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1238 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1240 ocfs2_error(inode->i_sb,
1241 "Inode %llu has bad blkno in extent list "
1242 "at depth %u (index %d)\n",
1243 (unsigned long long)oi->ip_blkno,
1244 le16_to_cpu(el->l_tree_depth), i);
1251 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1252 &bh, OCFS2_BH_CACHED, inode);
1258 eb = (struct ocfs2_extent_block *) bh->b_data;
1260 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1261 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1266 if (le16_to_cpu(el->l_next_free_rec) >
1267 le16_to_cpu(el->l_count)) {
1268 ocfs2_error(inode->i_sb,
1269 "Inode %llu has bad count in extent list "
1270 "at block %llu (next free=%u, count=%u)\n",
1271 (unsigned long long)oi->ip_blkno,
1272 (unsigned long long)bh->b_blocknr,
1273 le16_to_cpu(el->l_next_free_rec),
1274 le16_to_cpu(el->l_count));
1285 * Catch any trailing bh that the loop didn't handle.
1293 * Given an initialized path (that is, it has a valid root extent
1294 * list), this function will traverse the btree in search of the path
1295 * which would contain cpos.
1297 * The path traveled is recorded in the path structure.
1299 * Note that this will not do any comparisons on leaf node extent
1300 * records, so it will work fine in the case that we just added a tree
1303 struct find_path_data {
1305 struct ocfs2_path *path;
1307 static void find_path_ins(void *data, struct buffer_head *bh)
1309 struct find_path_data *fp = data;
1312 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1315 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1318 struct find_path_data data;
1322 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1323 find_path_ins, &data);
1326 static void find_leaf_ins(void *data, struct buffer_head *bh)
1328 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1329 struct ocfs2_extent_list *el = &eb->h_list;
1330 struct buffer_head **ret = data;
1332 /* We want to retain only the leaf block. */
1333 if (le16_to_cpu(el->l_tree_depth) == 0) {
1339 * Find the leaf block in the tree which would contain cpos. No
1340 * checking of the actual leaf is done.
1342 * Some paths want to call this instead of allocating a path structure
1343 * and calling ocfs2_find_path().
1345 * This function doesn't handle non btree extent lists.
1347 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1348 u32 cpos, struct buffer_head **leaf_bh)
1351 struct buffer_head *bh = NULL;
1353 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1365 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1367 * Basically, we've moved stuff around at the bottom of the tree and
1368 * we need to fix up the extent records above the changes to reflect
1371 * left_rec: the record on the left.
1372 * left_child_el: is the child list pointed to by left_rec
1373 * right_rec: the record to the right of left_rec
1374 * right_child_el: is the child list pointed to by right_rec
1376 * By definition, this only works on interior nodes.
1378 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1379 struct ocfs2_extent_list *left_child_el,
1380 struct ocfs2_extent_rec *right_rec,
1381 struct ocfs2_extent_list *right_child_el)
1383 u32 left_clusters, right_end;
1386 * Interior nodes never have holes. Their cpos is the cpos of
1387 * the leftmost record in their child list. Their cluster
1388 * count covers the full theoretical range of their child list
1389 * - the range between their cpos and the cpos of the record
1390 * immediately to their right.
1392 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1393 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1394 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1395 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1397 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1398 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1401 * Calculate the rightmost cluster count boundary before
1402 * moving cpos - we will need to adjust clusters after
1403 * updating e_cpos to keep the same highest cluster count.
1405 right_end = le32_to_cpu(right_rec->e_cpos);
1406 right_end += le32_to_cpu(right_rec->e_int_clusters);
1408 right_rec->e_cpos = left_rec->e_cpos;
1409 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1411 right_end -= le32_to_cpu(right_rec->e_cpos);
1412 right_rec->e_int_clusters = cpu_to_le32(right_end);
1416 * Adjust the adjacent root node records involved in a
1417 * rotation. left_el_blkno is passed in as a key so that we can easily
1418 * find it's index in the root list.
1420 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1421 struct ocfs2_extent_list *left_el,
1422 struct ocfs2_extent_list *right_el,
1427 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1428 le16_to_cpu(left_el->l_tree_depth));
1430 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1431 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1436 * The path walking code should have never returned a root and
1437 * two paths which are not adjacent.
1439 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1441 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1442 &root_el->l_recs[i + 1], right_el);
1446 * We've changed a leaf block (in right_path) and need to reflect that
1447 * change back up the subtree.
1449 * This happens in multiple places:
1450 * - When we've moved an extent record from the left path leaf to the right
1451 * path leaf to make room for an empty extent in the left path leaf.
1452 * - When our insert into the right path leaf is at the leftmost edge
1453 * and requires an update of the path immediately to it's left. This
1454 * can occur at the end of some types of rotation and appending inserts.
1456 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1457 struct ocfs2_path *left_path,
1458 struct ocfs2_path *right_path,
1462 struct ocfs2_extent_list *el, *left_el, *right_el;
1463 struct ocfs2_extent_rec *left_rec, *right_rec;
1464 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1467 * Update the counts and position values within all the
1468 * interior nodes to reflect the leaf rotation we just did.
1470 * The root node is handled below the loop.
1472 * We begin the loop with right_el and left_el pointing to the
1473 * leaf lists and work our way up.
1475 * NOTE: within this loop, left_el and right_el always refer
1476 * to the *child* lists.
1478 left_el = path_leaf_el(left_path);
1479 right_el = path_leaf_el(right_path);
1480 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1481 mlog(0, "Adjust records at index %u\n", i);
1484 * One nice property of knowing that all of these
1485 * nodes are below the root is that we only deal with
1486 * the leftmost right node record and the rightmost
1489 el = left_path->p_node[i].el;
1490 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1491 left_rec = &el->l_recs[idx];
1493 el = right_path->p_node[i].el;
1494 right_rec = &el->l_recs[0];
1496 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1499 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1503 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1508 * Setup our list pointers now so that the current
1509 * parents become children in the next iteration.
1511 left_el = left_path->p_node[i].el;
1512 right_el = right_path->p_node[i].el;
1516 * At the root node, adjust the two adjacent records which
1517 * begin our path to the leaves.
1520 el = left_path->p_node[subtree_index].el;
1521 left_el = left_path->p_node[subtree_index + 1].el;
1522 right_el = right_path->p_node[subtree_index + 1].el;
1524 ocfs2_adjust_root_records(el, left_el, right_el,
1525 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1527 root_bh = left_path->p_node[subtree_index].bh;
1529 ret = ocfs2_journal_dirty(handle, root_bh);
1534 static int ocfs2_rotate_subtree_right(struct inode *inode,
1536 struct ocfs2_path *left_path,
1537 struct ocfs2_path *right_path,
1541 struct buffer_head *right_leaf_bh;
1542 struct buffer_head *left_leaf_bh = NULL;
1543 struct buffer_head *root_bh;
1544 struct ocfs2_extent_list *right_el, *left_el;
1545 struct ocfs2_extent_rec move_rec;
1547 left_leaf_bh = path_leaf_bh(left_path);
1548 left_el = path_leaf_el(left_path);
1550 if (left_el->l_next_free_rec != left_el->l_count) {
1551 ocfs2_error(inode->i_sb,
1552 "Inode %llu has non-full interior leaf node %llu"
1554 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555 (unsigned long long)left_leaf_bh->b_blocknr,
1556 le16_to_cpu(left_el->l_next_free_rec));
1561 * This extent block may already have an empty record, so we
1562 * return early if so.
1564 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1567 root_bh = left_path->p_node[subtree_index].bh;
1568 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1570 ret = ocfs2_journal_access(handle, inode, root_bh,
1571 OCFS2_JOURNAL_ACCESS_WRITE);
1577 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1578 ret = ocfs2_journal_access(handle, inode,
1579 right_path->p_node[i].bh,
1580 OCFS2_JOURNAL_ACCESS_WRITE);
1586 ret = ocfs2_journal_access(handle, inode,
1587 left_path->p_node[i].bh,
1588 OCFS2_JOURNAL_ACCESS_WRITE);
1595 right_leaf_bh = path_leaf_bh(right_path);
1596 right_el = path_leaf_el(right_path);
1598 /* This is a code error, not a disk corruption. */
1599 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1600 "because rightmost leaf block %llu is empty\n",
1601 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1602 (unsigned long long)right_leaf_bh->b_blocknr);
1604 ocfs2_create_empty_extent(right_el);
1606 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1612 /* Do the copy now. */
1613 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1614 move_rec = left_el->l_recs[i];
1615 right_el->l_recs[0] = move_rec;
1618 * Clear out the record we just copied and shift everything
1619 * over, leaving an empty extent in the left leaf.
1621 * We temporarily subtract from next_free_rec so that the
1622 * shift will lose the tail record (which is now defunct).
1624 le16_add_cpu(&left_el->l_next_free_rec, -1);
1625 ocfs2_shift_records_right(left_el);
1626 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1627 le16_add_cpu(&left_el->l_next_free_rec, 1);
1629 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1635 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1643 * Given a full path, determine what cpos value would return us a path
1644 * containing the leaf immediately to the left of the current one.
1646 * Will return zero if the path passed in is already the leftmost path.
1648 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1649 struct ocfs2_path *path, u32 *cpos)
1653 struct ocfs2_extent_list *el;
1655 BUG_ON(path->p_tree_depth == 0);
1659 blkno = path_leaf_bh(path)->b_blocknr;
1661 /* Start at the tree node just above the leaf and work our way up. */
1662 i = path->p_tree_depth - 1;
1664 el = path->p_node[i].el;
1667 * Find the extent record just before the one in our
1670 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1671 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1675 * We've determined that the
1676 * path specified is already
1677 * the leftmost one - return a
1683 * The leftmost record points to our
1684 * leaf - we need to travel up the
1690 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1691 *cpos = *cpos + ocfs2_rec_clusters(el,
1692 &el->l_recs[j - 1]);
1699 * If we got here, we never found a valid node where
1700 * the tree indicated one should be.
1703 "Invalid extent tree at extent block %llu\n",
1704 (unsigned long long)blkno);
1709 blkno = path->p_node[i].bh->b_blocknr;
1718 * Extend the transaction by enough credits to complete the rotation,
1719 * and still leave at least the original number of credits allocated
1720 * to this transaction.
1722 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1724 struct ocfs2_path *path)
1726 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1728 if (handle->h_buffer_credits < credits)
1729 return ocfs2_extend_trans(handle, credits);
1735 * Trap the case where we're inserting into the theoretical range past
1736 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1737 * whose cpos is less than ours into the right leaf.
1739 * It's only necessary to look at the rightmost record of the left
1740 * leaf because the logic that calls us should ensure that the
1741 * theoretical ranges in the path components above the leaves are
1744 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1747 struct ocfs2_extent_list *left_el;
1748 struct ocfs2_extent_rec *rec;
1751 left_el = path_leaf_el(left_path);
1752 next_free = le16_to_cpu(left_el->l_next_free_rec);
1753 rec = &left_el->l_recs[next_free - 1];
1755 if (insert_cpos > le32_to_cpu(rec->e_cpos))
1760 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1762 int next_free = le16_to_cpu(el->l_next_free_rec);
1764 struct ocfs2_extent_rec *rec;
1769 rec = &el->l_recs[0];
1770 if (ocfs2_is_empty_extent(rec)) {
1774 rec = &el->l_recs[1];
1777 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1778 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1784 * Rotate all the records in a btree right one record, starting at insert_cpos.
1786 * The path to the rightmost leaf should be passed in.
1788 * The array is assumed to be large enough to hold an entire path (tree depth).
1790 * Upon succesful return from this function:
1792 * - The 'right_path' array will contain a path to the leaf block
1793 * whose range contains e_cpos.
1794 * - That leaf block will have a single empty extent in list index 0.
1795 * - In the case that the rotation requires a post-insert update,
1796 * *ret_left_path will contain a valid path which can be passed to
1797 * ocfs2_insert_path().
1799 static int ocfs2_rotate_tree_right(struct inode *inode,
1801 enum ocfs2_split_type split,
1803 struct ocfs2_path *right_path,
1804 struct ocfs2_path **ret_left_path)
1806 int ret, start, orig_credits = handle->h_buffer_credits;
1808 struct ocfs2_path *left_path = NULL;
1810 *ret_left_path = NULL;
1812 left_path = ocfs2_new_path(path_root_bh(right_path),
1813 path_root_el(right_path));
1820 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1826 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1829 * What we want to do here is:
1831 * 1) Start with the rightmost path.
1833 * 2) Determine a path to the leaf block directly to the left
1836 * 3) Determine the 'subtree root' - the lowest level tree node
1837 * which contains a path to both leaves.
1839 * 4) Rotate the subtree.
1841 * 5) Find the next subtree by considering the left path to be
1842 * the new right path.
1844 * The check at the top of this while loop also accepts
1845 * insert_cpos == cpos because cpos is only a _theoretical_
1846 * value to get us the left path - insert_cpos might very well
1847 * be filling that hole.
1849 * Stop at a cpos of '0' because we either started at the
1850 * leftmost branch (i.e., a tree with one branch and a
1851 * rotation inside of it), or we've gone as far as we can in
1852 * rotating subtrees.
1854 while (cpos && insert_cpos <= cpos) {
1855 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1858 ret = ocfs2_find_path(inode, left_path, cpos);
1864 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1865 path_leaf_bh(right_path),
1866 "Inode %lu: error during insert of %u "
1867 "(left path cpos %u) results in two identical "
1868 "paths ending at %llu\n",
1869 inode->i_ino, insert_cpos, cpos,
1870 (unsigned long long)
1871 path_leaf_bh(left_path)->b_blocknr);
1873 if (split == SPLIT_NONE &&
1874 ocfs2_rotate_requires_path_adjustment(left_path,
1878 * We've rotated the tree as much as we
1879 * should. The rest is up to
1880 * ocfs2_insert_path() to complete, after the
1881 * record insertion. We indicate this
1882 * situation by returning the left path.
1884 * The reason we don't adjust the records here
1885 * before the record insert is that an error
1886 * later might break the rule where a parent
1887 * record e_cpos will reflect the actual
1888 * e_cpos of the 1st nonempty record of the
1891 *ret_left_path = left_path;
1895 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1897 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1899 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1900 right_path->p_tree_depth);
1902 ret = ocfs2_extend_rotate_transaction(handle, start,
1903 orig_credits, right_path);
1909 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1916 if (split != SPLIT_NONE &&
1917 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1920 * A rotate moves the rightmost left leaf
1921 * record over to the leftmost right leaf
1922 * slot. If we're doing an extent split
1923 * instead of a real insert, then we have to
1924 * check that the extent to be split wasn't
1925 * just moved over. If it was, then we can
1926 * exit here, passing left_path back -
1927 * ocfs2_split_extent() is smart enough to
1928 * search both leaves.
1930 *ret_left_path = left_path;
1935 * There is no need to re-read the next right path
1936 * as we know that it'll be our current left
1937 * path. Optimize by copying values instead.
1939 ocfs2_mv_path(right_path, left_path);
1941 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1950 ocfs2_free_path(left_path);
1956 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1957 struct ocfs2_path *path)
1960 struct ocfs2_extent_rec *rec;
1961 struct ocfs2_extent_list *el;
1962 struct ocfs2_extent_block *eb;
1965 /* Path should always be rightmost. */
1966 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1967 BUG_ON(eb->h_next_leaf_blk != 0ULL);
1970 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1971 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1972 rec = &el->l_recs[idx];
1973 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1975 for (i = 0; i < path->p_tree_depth; i++) {
1976 el = path->p_node[i].el;
1977 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1978 rec = &el->l_recs[idx];
1980 rec->e_int_clusters = cpu_to_le32(range);
1981 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1983 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1987 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1988 struct ocfs2_cached_dealloc_ctxt *dealloc,
1989 struct ocfs2_path *path, int unlink_start)
1992 struct ocfs2_extent_block *eb;
1993 struct ocfs2_extent_list *el;
1994 struct buffer_head *bh;
1996 for(i = unlink_start; i < path_num_items(path); i++) {
1997 bh = path->p_node[i].bh;
1999 eb = (struct ocfs2_extent_block *)bh->b_data;
2001 * Not all nodes might have had their final count
2002 * decremented by the caller - handle this here.
2005 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2007 "Inode %llu, attempted to remove extent block "
2008 "%llu with %u records\n",
2009 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2010 (unsigned long long)le64_to_cpu(eb->h_blkno),
2011 le16_to_cpu(el->l_next_free_rec));
2013 ocfs2_journal_dirty(handle, bh);
2014 ocfs2_remove_from_cache(inode, bh);
2018 el->l_next_free_rec = 0;
2019 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2021 ocfs2_journal_dirty(handle, bh);
2023 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2027 ocfs2_remove_from_cache(inode, bh);
2031 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2032 struct ocfs2_path *left_path,
2033 struct ocfs2_path *right_path,
2035 struct ocfs2_cached_dealloc_ctxt *dealloc)
2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2040 struct ocfs2_extent_list *el;
2041 struct ocfs2_extent_block *eb;
2043 el = path_leaf_el(left_path);
2045 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2047 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2048 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2051 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2053 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2054 le16_add_cpu(&root_el->l_next_free_rec, -1);
2056 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2057 eb->h_next_leaf_blk = 0;
2059 ocfs2_journal_dirty(handle, root_bh);
2060 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2062 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2066 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2067 struct ocfs2_path *left_path,
2068 struct ocfs2_path *right_path,
2070 struct ocfs2_cached_dealloc_ctxt *dealloc,
2073 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2074 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2075 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2076 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2077 struct ocfs2_extent_block *eb;
2081 right_leaf_el = path_leaf_el(right_path);
2082 left_leaf_el = path_leaf_el(left_path);
2083 root_bh = left_path->p_node[subtree_index].bh;
2084 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2086 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2089 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2090 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2092 * It's legal for us to proceed if the right leaf is
2093 * the rightmost one and it has an empty extent. There
2094 * are two cases to handle - whether the leaf will be
2095 * empty after removal or not. If the leaf isn't empty
2096 * then just remove the empty extent up front. The
2097 * next block will handle empty leaves by flagging
2100 * Non rightmost leaves will throw -EAGAIN and the
2101 * caller can manually move the subtree and retry.
2104 if (eb->h_next_leaf_blk != 0ULL)
2107 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2108 ret = ocfs2_journal_access(handle, inode,
2109 path_leaf_bh(right_path),
2110 OCFS2_JOURNAL_ACCESS_WRITE);
2116 ocfs2_remove_empty_extent(right_leaf_el);
2118 right_has_empty = 1;
2121 if (eb->h_next_leaf_blk == 0ULL &&
2122 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2124 * We have to update i_last_eb_blk during the meta
2127 ret = ocfs2_journal_access(handle, inode, di_bh,
2128 OCFS2_JOURNAL_ACCESS_WRITE);
2134 del_right_subtree = 1;
2138 * Getting here with an empty extent in the right path implies
2139 * that it's the rightmost path and will be deleted.
2141 BUG_ON(right_has_empty && !del_right_subtree);
2143 ret = ocfs2_journal_access(handle, inode, root_bh,
2144 OCFS2_JOURNAL_ACCESS_WRITE);
2150 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151 ret = ocfs2_journal_access(handle, inode,
2152 right_path->p_node[i].bh,
2153 OCFS2_JOURNAL_ACCESS_WRITE);
2159 ret = ocfs2_journal_access(handle, inode,
2160 left_path->p_node[i].bh,
2161 OCFS2_JOURNAL_ACCESS_WRITE);
2168 if (!right_has_empty) {
2170 * Only do this if we're moving a real
2171 * record. Otherwise, the action is delayed until
2172 * after removal of the right path in which case we
2173 * can do a simple shift to remove the empty extent.
2175 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2176 memset(&right_leaf_el->l_recs[0], 0,
2177 sizeof(struct ocfs2_extent_rec));
2179 if (eb->h_next_leaf_blk == 0ULL) {
2181 * Move recs over to get rid of empty extent, decrease
2182 * next_free. This is allowed to remove the last
2183 * extent in our leaf (setting l_next_free_rec to
2184 * zero) - the delete code below won't care.
2186 ocfs2_remove_empty_extent(right_leaf_el);
2189 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2192 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2196 if (del_right_subtree) {
2197 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2198 subtree_index, dealloc);
2199 ocfs2_update_edge_lengths(inode, handle, left_path);
2201 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2202 di->i_last_eb_blk = eb->h_blkno;
2205 * Removal of the extent in the left leaf was skipped
2206 * above so we could delete the right path
2209 if (right_has_empty)
2210 ocfs2_remove_empty_extent(left_leaf_el);
2212 ret = ocfs2_journal_dirty(handle, di_bh);
2218 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2226 * Given a full path, determine what cpos value would return us a path
2227 * containing the leaf immediately to the right of the current one.
2229 * Will return zero if the path passed in is already the rightmost path.
2231 * This looks similar, but is subtly different to
2232 * ocfs2_find_cpos_for_left_leaf().
2234 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2235 struct ocfs2_path *path, u32 *cpos)
2239 struct ocfs2_extent_list *el;
2243 if (path->p_tree_depth == 0)
2246 blkno = path_leaf_bh(path)->b_blocknr;
2248 /* Start at the tree node just above the leaf and work our way up. */
2249 i = path->p_tree_depth - 1;
2253 el = path->p_node[i].el;
2256 * Find the extent record just after the one in our
2259 next_free = le16_to_cpu(el->l_next_free_rec);
2260 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2261 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2262 if (j == (next_free - 1)) {
2265 * We've determined that the
2266 * path specified is already
2267 * the rightmost one - return a
2273 * The rightmost record points to our
2274 * leaf - we need to travel up the
2280 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2286 * If we got here, we never found a valid node where
2287 * the tree indicated one should be.
2290 "Invalid extent tree at extent block %llu\n",
2291 (unsigned long long)blkno);
2296 blkno = path->p_node[i].bh->b_blocknr;
2304 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2306 struct buffer_head *bh,
2307 struct ocfs2_extent_list *el)
2311 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2314 ret = ocfs2_journal_access(handle, inode, bh,
2315 OCFS2_JOURNAL_ACCESS_WRITE);
2321 ocfs2_remove_empty_extent(el);
2323 ret = ocfs2_journal_dirty(handle, bh);
2331 static int __ocfs2_rotate_tree_left(struct inode *inode,
2332 handle_t *handle, int orig_credits,
2333 struct ocfs2_path *path,
2334 struct ocfs2_cached_dealloc_ctxt *dealloc,
2335 struct ocfs2_path **empty_extent_path)
2337 int ret, subtree_root, deleted;
2339 struct ocfs2_path *left_path = NULL;
2340 struct ocfs2_path *right_path = NULL;
2342 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2344 *empty_extent_path = NULL;
2346 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2353 left_path = ocfs2_new_path(path_root_bh(path),
2354 path_root_el(path));
2361 ocfs2_cp_path(left_path, path);
2363 right_path = ocfs2_new_path(path_root_bh(path),
2364 path_root_el(path));
2371 while (right_cpos) {
2372 ret = ocfs2_find_path(inode, right_path, right_cpos);
2378 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2381 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2383 (unsigned long long)
2384 right_path->p_node[subtree_root].bh->b_blocknr,
2385 right_path->p_tree_depth);
2387 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2388 orig_credits, left_path);
2394 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2395 right_path, subtree_root,
2397 if (ret == -EAGAIN) {
2399 * The rotation has to temporarily stop due to
2400 * the right subtree having an empty
2401 * extent. Pass it back to the caller for a
2404 *empty_extent_path = right_path;
2414 * The subtree rotate might have removed records on
2415 * the rightmost edge. If so, then rotation is
2421 ocfs2_mv_path(left_path, right_path);
2423 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2432 ocfs2_free_path(right_path);
2433 ocfs2_free_path(left_path);
2438 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2439 struct ocfs2_path *path,
2440 struct ocfs2_cached_dealloc_ctxt *dealloc)
2442 int ret, subtree_index;
2444 struct ocfs2_path *left_path = NULL;
2445 struct ocfs2_dinode *di;
2446 struct ocfs2_extent_block *eb;
2447 struct ocfs2_extent_list *el;
2450 * XXX: This code assumes that the root is an inode, which is
2451 * true for now but may change as tree code gets generic.
2453 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2454 if (!OCFS2_IS_VALID_DINODE(di)) {
2456 ocfs2_error(inode->i_sb,
2457 "Inode %llu has invalid path root",
2458 (unsigned long long)OCFS2_I(inode)->ip_blkno);
2463 * There's two ways we handle this depending on
2464 * whether path is the only existing one.
2466 ret = ocfs2_extend_rotate_transaction(handle, 0,
2467 handle->h_buffer_credits,
2474 ret = ocfs2_journal_access_path(inode, handle, path);
2480 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2488 * We have a path to the left of this one - it needs
2491 left_path = ocfs2_new_path(path_root_bh(path),
2492 path_root_el(path));
2499 ret = ocfs2_find_path(inode, left_path, cpos);
2505 ret = ocfs2_journal_access_path(inode, handle, left_path);
2511 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2513 ocfs2_unlink_subtree(inode, handle, left_path, path,
2514 subtree_index, dealloc);
2515 ocfs2_update_edge_lengths(inode, handle, left_path);
2517 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2518 di->i_last_eb_blk = eb->h_blkno;
2521 * 'path' is also the leftmost path which
2522 * means it must be the only one. This gets
2523 * handled differently because we want to
2524 * revert the inode back to having extents
2527 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2529 el = &di->id2.i_list;
2530 el->l_tree_depth = 0;
2531 el->l_next_free_rec = 0;
2532 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2534 di->i_last_eb_blk = 0;
2537 ocfs2_journal_dirty(handle, path_root_bh(path));
2540 ocfs2_free_path(left_path);
2545 * Left rotation of btree records.
2547 * In many ways, this is (unsurprisingly) the opposite of right
2548 * rotation. We start at some non-rightmost path containing an empty
2549 * extent in the leaf block. The code works its way to the rightmost
2550 * path by rotating records to the left in every subtree.
2552 * This is used by any code which reduces the number of extent records
2553 * in a leaf. After removal, an empty record should be placed in the
2554 * leftmost list position.
2556 * This won't handle a length update of the rightmost path records if
2557 * the rightmost tree leaf record is removed so the caller is
2558 * responsible for detecting and correcting that.
2560 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2561 struct ocfs2_path *path,
2562 struct ocfs2_cached_dealloc_ctxt *dealloc)
2564 int ret, orig_credits = handle->h_buffer_credits;
2565 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2566 struct ocfs2_extent_block *eb;
2567 struct ocfs2_extent_list *el;
2569 el = path_leaf_el(path);
2570 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2573 if (path->p_tree_depth == 0) {
2574 rightmost_no_delete:
2576 * In-inode extents. This is trivially handled, so do
2579 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2581 path_leaf_el(path));
2588 * Handle rightmost branch now. There's several cases:
2589 * 1) simple rotation leaving records in there. That's trivial.
2590 * 2) rotation requiring a branch delete - there's no more
2591 * records left. Two cases of this:
2592 * a) There are branches to the left.
2593 * b) This is also the leftmost (the only) branch.
2595 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2596 * 2a) we need the left branch so that we can update it with the unlink
2597 * 2b) we need to bring the inode back to inline extents.
2600 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2602 if (eb->h_next_leaf_blk == 0) {
2604 * This gets a bit tricky if we're going to delete the
2605 * rightmost path. Get the other cases out of the way
2608 if (le16_to_cpu(el->l_next_free_rec) > 1)
2609 goto rightmost_no_delete;
2611 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2613 ocfs2_error(inode->i_sb,
2614 "Inode %llu has empty extent block at %llu",
2615 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2616 (unsigned long long)le64_to_cpu(eb->h_blkno));
2621 * XXX: The caller can not trust "path" any more after
2622 * this as it will have been deleted. What do we do?
2624 * In theory the rotate-for-merge code will never get
2625 * here because it'll always ask for a rotate in a
2629 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2637 * Now we can loop, remembering the path we get from -EAGAIN
2638 * and restarting from there.
2641 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2642 dealloc, &restart_path);
2643 if (ret && ret != -EAGAIN) {
2648 while (ret == -EAGAIN) {
2649 tmp_path = restart_path;
2650 restart_path = NULL;
2652 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2655 if (ret && ret != -EAGAIN) {
2660 ocfs2_free_path(tmp_path);
2668 ocfs2_free_path(tmp_path);
2669 ocfs2_free_path(restart_path);
2673 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2676 struct ocfs2_extent_rec *rec = &el->l_recs[index];
2679 if (rec->e_leaf_clusters == 0) {
2681 * We consumed all of the merged-from record. An empty
2682 * extent cannot exist anywhere but the 1st array
2683 * position, so move things over if the merged-from
2684 * record doesn't occupy that position.
2686 * This creates a new empty extent so the caller
2687 * should be smart enough to have removed any existing
2691 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2692 size = index * sizeof(struct ocfs2_extent_rec);
2693 memmove(&el->l_recs[1], &el->l_recs[0], size);
2697 * Always memset - the caller doesn't check whether it
2698 * created an empty extent, so there could be junk in
2701 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2706 * Remove split_rec clusters from the record at index and merge them
2707 * onto the beginning of the record at index + 1.
2709 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2711 struct ocfs2_extent_rec *split_rec,
2712 struct ocfs2_extent_list *el, int index)
2715 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2716 struct ocfs2_extent_rec *left_rec;
2717 struct ocfs2_extent_rec *right_rec;
2719 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2721 left_rec = &el->l_recs[index];
2722 right_rec = &el->l_recs[index + 1];
2724 ret = ocfs2_journal_access(handle, inode, bh,
2725 OCFS2_JOURNAL_ACCESS_WRITE);
2731 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2733 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2734 le64_add_cpu(&right_rec->e_blkno,
2735 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2736 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2738 ocfs2_cleanup_merge(el, index);
2740 ret = ocfs2_journal_dirty(handle, bh);
2749 * Remove split_rec clusters from the record at index and merge them
2750 * onto the tail of the record at index - 1.
2752 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2754 struct ocfs2_extent_rec *split_rec,
2755 struct ocfs2_extent_list *el, int index)
2757 int ret, has_empty_extent = 0;
2758 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2759 struct ocfs2_extent_rec *left_rec;
2760 struct ocfs2_extent_rec *right_rec;
2764 left_rec = &el->l_recs[index - 1];
2765 right_rec = &el->l_recs[index];
2766 if (ocfs2_is_empty_extent(&el->l_recs[0]))
2767 has_empty_extent = 1;
2769 ret = ocfs2_journal_access(handle, inode, bh,
2770 OCFS2_JOURNAL_ACCESS_WRITE);
2776 if (has_empty_extent && index == 1) {
2778 * The easy case - we can just plop the record right in.
2780 *left_rec = *split_rec;
2782 has_empty_extent = 0;
2784 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2787 le32_add_cpu(&right_rec->e_cpos, split_clusters);
2788 le64_add_cpu(&right_rec->e_blkno,
2789 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2790 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2792 ocfs2_cleanup_merge(el, index);
2794 ret = ocfs2_journal_dirty(handle, bh);
2802 static int ocfs2_try_to_merge_extent(struct inode *inode,
2804 struct ocfs2_path *left_path,
2806 struct ocfs2_extent_rec *split_rec,
2807 struct ocfs2_cached_dealloc_ctxt *dealloc,
2808 struct ocfs2_merge_ctxt *ctxt)
2811 int ret = 0, delete_tail_recs = 0;
2812 struct ocfs2_extent_list *el = path_leaf_el(left_path);
2813 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2815 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2817 if (ctxt->c_split_covers_rec) {
2820 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT ||
2821 ctxt->c_has_empty_extent)
2824 if (ctxt->c_has_empty_extent) {
2826 * The merge code will need to create an empty
2827 * extent to take the place of the newly
2828 * emptied slot. Remove any pre-existing empty
2829 * extents - having more than one in a leaf is
2832 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2839 rec = &el->l_recs[split_index];
2843 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2845 * Left-right contig implies this.
2847 BUG_ON(!ctxt->c_split_covers_rec);
2848 BUG_ON(split_index == 0);
2851 * Since the leftright insert always covers the entire
2852 * extent, this call will delete the insert record
2853 * entirely, resulting in an empty extent record added to
2856 * Since the adding of an empty extent shifts
2857 * everything back to the right, there's no need to
2858 * update split_index here.
2860 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2861 handle, split_rec, el, split_index);
2868 * We can only get this from logic error above.
2870 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2873 * The left merge left us with an empty extent, remove
2876 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2882 rec = &el->l_recs[split_index];
2885 * Note that we don't pass split_rec here on purpose -
2886 * we've merged it into the left side.
2888 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2889 handle, rec, el, split_index);
2895 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2897 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2900 * Error from this last rotate is not critical, so
2901 * print but don't bubble it up.
2908 * Merge a record to the left or right.
2910 * 'contig_type' is relative to the existing record,
2911 * so for example, if we're "right contig", it's to
2912 * the record on the left (hence the left merge).
2914 if (ctxt->c_contig_type == CONTIG_RIGHT) {
2915 ret = ocfs2_merge_rec_left(inode,
2916 path_leaf_bh(left_path),
2917 handle, split_rec, el,
2924 ret = ocfs2_merge_rec_right(inode,
2925 path_leaf_bh(left_path),
2926 handle, split_rec, el,
2934 if (ctxt->c_split_covers_rec) {
2936 * The merge may have left an empty extent in
2937 * our leaf. Try to rotate it away.
2939 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2951 static void ocfs2_subtract_from_rec(struct super_block *sb,
2952 enum ocfs2_split_type split,
2953 struct ocfs2_extent_rec *rec,
2954 struct ocfs2_extent_rec *split_rec)
2958 len_blocks = ocfs2_clusters_to_blocks(sb,
2959 le16_to_cpu(split_rec->e_leaf_clusters));
2961 if (split == SPLIT_LEFT) {
2963 * Region is on the left edge of the existing
2966 le32_add_cpu(&rec->e_cpos,
2967 le16_to_cpu(split_rec->e_leaf_clusters));
2968 le64_add_cpu(&rec->e_blkno, len_blocks);
2969 le16_add_cpu(&rec->e_leaf_clusters,
2970 -le16_to_cpu(split_rec->e_leaf_clusters));
2973 * Region is on the right edge of the existing
2976 le16_add_cpu(&rec->e_leaf_clusters,
2977 -le16_to_cpu(split_rec->e_leaf_clusters));
2982 * Do the final bits of extent record insertion at the target leaf
2983 * list. If this leaf is part of an allocation tree, it is assumed
2984 * that the tree above has been prepared.
2986 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2987 struct ocfs2_extent_list *el,
2988 struct ocfs2_insert_type *insert,
2989 struct inode *inode)
2991 int i = insert->ins_contig_index;
2993 struct ocfs2_extent_rec *rec;
2995 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2997 if (insert->ins_split != SPLIT_NONE) {
2998 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3000 rec = &el->l_recs[i];
3001 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3007 * Contiguous insert - either left or right.
3009 if (insert->ins_contig != CONTIG_NONE) {
3010 rec = &el->l_recs[i];
3011 if (insert->ins_contig == CONTIG_LEFT) {
3012 rec->e_blkno = insert_rec->e_blkno;
3013 rec->e_cpos = insert_rec->e_cpos;
3015 le16_add_cpu(&rec->e_leaf_clusters,
3016 le16_to_cpu(insert_rec->e_leaf_clusters));
3021 * Handle insert into an empty leaf.
3023 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3024 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3025 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3026 el->l_recs[0] = *insert_rec;
3027 el->l_next_free_rec = cpu_to_le16(1);
3034 if (insert->ins_appending == APPEND_TAIL) {
3035 i = le16_to_cpu(el->l_next_free_rec) - 1;
3036 rec = &el->l_recs[i];
3037 range = le32_to_cpu(rec->e_cpos)
3038 + le16_to_cpu(rec->e_leaf_clusters);
3039 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3041 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3042 le16_to_cpu(el->l_count),
3043 "inode %lu, depth %u, count %u, next free %u, "
3044 "rec.cpos %u, rec.clusters %u, "
3045 "insert.cpos %u, insert.clusters %u\n",
3047 le16_to_cpu(el->l_tree_depth),
3048 le16_to_cpu(el->l_count),
3049 le16_to_cpu(el->l_next_free_rec),
3050 le32_to_cpu(el->l_recs[i].e_cpos),
3051 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3052 le32_to_cpu(insert_rec->e_cpos),
3053 le16_to_cpu(insert_rec->e_leaf_clusters));
3055 el->l_recs[i] = *insert_rec;
3056 le16_add_cpu(&el->l_next_free_rec, 1);
3062 * Ok, we have to rotate.
3064 * At this point, it is safe to assume that inserting into an
3065 * empty leaf and appending to a leaf have both been handled
3068 * This leaf needs to have space, either by the empty 1st
3069 * extent record, or by virtue of an l_next_rec < l_count.
3071 ocfs2_rotate_leaf(el, insert_rec);
3074 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3075 struct ocfs2_dinode *di,
3078 le32_add_cpu(&di->i_clusters, clusters);
3079 spin_lock(&OCFS2_I(inode)->ip_lock);
3080 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3081 spin_unlock(&OCFS2_I(inode)->ip_lock);
3084 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3086 struct ocfs2_path *path,
3087 struct ocfs2_extent_rec *insert_rec)
3089 int ret, i, next_free;
3090 struct buffer_head *bh;
3091 struct ocfs2_extent_list *el;
3092 struct ocfs2_extent_rec *rec;
3095 * Update everything except the leaf block.
3097 for (i = 0; i < path->p_tree_depth; i++) {
3098 bh = path->p_node[i].bh;
3099 el = path->p_node[i].el;
3101 next_free = le16_to_cpu(el->l_next_free_rec);
3102 if (next_free == 0) {
3103 ocfs2_error(inode->i_sb,
3104 "Dinode %llu has a bad extent list",
3105 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3110 rec = &el->l_recs[next_free - 1];
3112 rec->e_int_clusters = insert_rec->e_cpos;
3113 le32_add_cpu(&rec->e_int_clusters,
3114 le16_to_cpu(insert_rec->e_leaf_clusters));
3115 le32_add_cpu(&rec->e_int_clusters,
3116 -le32_to_cpu(rec->e_cpos));
3118 ret = ocfs2_journal_dirty(handle, bh);
3125 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3126 struct ocfs2_extent_rec *insert_rec,
3127 struct ocfs2_path *right_path,
3128 struct ocfs2_path **ret_left_path)
3131 struct ocfs2_extent_list *el;
3132 struct ocfs2_path *left_path = NULL;
3134 *ret_left_path = NULL;
3137 * This shouldn't happen for non-trees. The extent rec cluster
3138 * count manipulation below only works for interior nodes.
3140 BUG_ON(right_path->p_tree_depth == 0);
3143 * If our appending insert is at the leftmost edge of a leaf,
3144 * then we might need to update the rightmost records of the
3147 el = path_leaf_el(right_path);
3148 next_free = le16_to_cpu(el->l_next_free_rec);
3149 if (next_free == 0 ||
3150 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3153 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3160 mlog(0, "Append may need a left path update. cpos: %u, "
3161 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3165 * No need to worry if the append is already in the
3169 left_path = ocfs2_new_path(path_root_bh(right_path),
3170 path_root_el(right_path));
3177 ret = ocfs2_find_path(inode, left_path, left_cpos);
3184 * ocfs2_insert_path() will pass the left_path to the
3190 ret = ocfs2_journal_access_path(inode, handle, right_path);
3196 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3198 *ret_left_path = left_path;
3202 ocfs2_free_path(left_path);
3207 static void ocfs2_split_record(struct inode *inode,
3208 struct ocfs2_path *left_path,
3209 struct ocfs2_path *right_path,
3210 struct ocfs2_extent_rec *split_rec,
3211 enum ocfs2_split_type split)
3214 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3215 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3216 struct ocfs2_extent_rec *rec, *tmprec;
3218 right_el = path_leaf_el(right_path);;
3220 left_el = path_leaf_el(left_path);
3223 insert_el = right_el;
3224 index = ocfs2_search_extent_list(el, cpos);
3226 if (index == 0 && left_path) {
3227 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3230 * This typically means that the record
3231 * started in the left path but moved to the
3232 * right as a result of rotation. We either
3233 * move the existing record to the left, or we
3234 * do the later insert there.
3236 * In this case, the left path should always
3237 * exist as the rotate code will have passed
3238 * it back for a post-insert update.
3241 if (split == SPLIT_LEFT) {
3243 * It's a left split. Since we know
3244 * that the rotate code gave us an
3245 * empty extent in the left path, we
3246 * can just do the insert there.
3248 insert_el = left_el;
3251 * Right split - we have to move the
3252 * existing record over to the left
3253 * leaf. The insert will be into the
3254 * newly created empty extent in the
3257 tmprec = &right_el->l_recs[index];
3258 ocfs2_rotate_leaf(left_el, tmprec);
3261 memset(tmprec, 0, sizeof(*tmprec));
3262 index = ocfs2_search_extent_list(left_el, cpos);
3263 BUG_ON(index == -1);
3268 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3270 * Left path is easy - we can just allow the insert to
3274 insert_el = left_el;
3275 index = ocfs2_search_extent_list(el, cpos);
3276 BUG_ON(index == -1);
3279 rec = &el->l_recs[index];
3280 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3281 ocfs2_rotate_leaf(insert_el, split_rec);
3285 * This function only does inserts on an allocation b-tree. For dinode
3286 * lists, ocfs2_insert_at_leaf() is called directly.
3288 * right_path is the path we want to do the actual insert
3289 * in. left_path should only be passed in if we need to update that
3290 * portion of the tree after an edge insert.
3292 static int ocfs2_insert_path(struct inode *inode,
3294 struct ocfs2_path *left_path,
3295 struct ocfs2_path *right_path,
3296 struct ocfs2_extent_rec *insert_rec,
3297 struct ocfs2_insert_type *insert)
3299 int ret, subtree_index;
3300 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3303 * Pass both paths to the journal. The majority of inserts
3304 * will be touching all components anyway.
3306 ret = ocfs2_journal_access_path(inode, handle, right_path);
3313 int credits = handle->h_buffer_credits;
3316 * There's a chance that left_path got passed back to
3317 * us without being accounted for in the
3318 * journal. Extend our transaction here to be sure we
3319 * can change those blocks.
3321 credits += left_path->p_tree_depth;
3323 ret = ocfs2_extend_trans(handle, credits);
3329 ret = ocfs2_journal_access_path(inode, handle, left_path);
3336 if (insert->ins_split != SPLIT_NONE) {
3338 * We could call ocfs2_insert_at_leaf() for some types
3339 * of splits, but it's easier to just let one seperate
3340 * function sort it all out.
3342 ocfs2_split_record(inode, left_path, right_path,
3343 insert_rec, insert->ins_split);
3345 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3348 ret = ocfs2_journal_dirty(handle, leaf_bh);
3354 * The rotate code has indicated that we need to fix
3355 * up portions of the tree after the insert.
3357 * XXX: Should we extend the transaction here?
3359 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3361 ocfs2_complete_edge_insert(inode, handle, left_path,
3362 right_path, subtree_index);
3370 static int ocfs2_do_insert_extent(struct inode *inode,
3372 struct buffer_head *di_bh,
3373 struct ocfs2_extent_rec *insert_rec,
3374 struct ocfs2_insert_type *type)
3376 int ret, rotate = 0;
3378 struct ocfs2_path *right_path = NULL;
3379 struct ocfs2_path *left_path = NULL;
3380 struct ocfs2_dinode *di;
3381 struct ocfs2_extent_list *el;
3383 di = (struct ocfs2_dinode *) di_bh->b_data;
3384 el = &di->id2.i_list;
3386 ret = ocfs2_journal_access(handle, inode, di_bh,
3387 OCFS2_JOURNAL_ACCESS_WRITE);
3393 if (le16_to_cpu(el->l_tree_depth) == 0) {
3394 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3395 goto out_update_clusters;
3398 right_path = ocfs2_new_inode_path(di_bh);
3406 * Determine the path to start with. Rotations need the
3407 * rightmost path, everything else can go directly to the
3410 cpos = le32_to_cpu(insert_rec->e_cpos);
3411 if (type->ins_appending == APPEND_NONE &&
3412 type->ins_contig == CONTIG_NONE) {
3417 ret = ocfs2_find_path(inode, right_path, cpos);
3424 * Rotations and appends need special treatment - they modify
3425 * parts of the tree's above them.
3427 * Both might pass back a path immediate to the left of the
3428 * one being inserted to. This will be cause
3429 * ocfs2_insert_path() to modify the rightmost records of
3430 * left_path to account for an edge insert.
3432 * XXX: When modifying this code, keep in mind that an insert
3433 * can wind up skipping both of these two special cases...
3436 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3437 le32_to_cpu(insert_rec->e_cpos),
3438 right_path, &left_path);
3443 } else if (type->ins_appending == APPEND_TAIL
3444 && type->ins_contig != CONTIG_LEFT) {
3445 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3446 right_path, &left_path);
3453 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3460 out_update_clusters:
3461 if (type->ins_split == SPLIT_NONE)
3462 ocfs2_update_dinode_clusters(inode, di,
3463 le16_to_cpu(insert_rec->e_leaf_clusters));
3465 ret = ocfs2_journal_dirty(handle, di_bh);
3470 ocfs2_free_path(left_path);
3471 ocfs2_free_path(right_path);
3476 static enum ocfs2_contig_type
3477 ocfs2_figure_merge_contig_type(struct inode *inode,
3478 struct ocfs2_extent_list *el, int index,
3479 struct ocfs2_extent_rec *split_rec)
3481 struct ocfs2_extent_rec *rec;
3482 enum ocfs2_contig_type ret = CONTIG_NONE;
3485 * We're careful to check for an empty extent record here -
3486 * the merge code will know what to do if it sees one.
3490 rec = &el->l_recs[index - 1];
3491 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3492 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3495 ret = ocfs2_extent_contig(inode, rec, split_rec);
3499 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3500 enum ocfs2_contig_type contig_type;
3502 rec = &el->l_recs[index + 1];
3503 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3505 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3506 ret = CONTIG_LEFTRIGHT;
3507 else if (ret == CONTIG_NONE)
3514 static void ocfs2_figure_contig_type(struct inode *inode,
3515 struct ocfs2_insert_type *insert,
3516 struct ocfs2_extent_list *el,
3517 struct ocfs2_extent_rec *insert_rec)
3520 enum ocfs2_contig_type contig_type = CONTIG_NONE;
3522 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3524 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3525 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3527 if (contig_type != CONTIG_NONE) {
3528 insert->ins_contig_index = i;
3532 insert->ins_contig = contig_type;
3536 * This should only be called against the righmost leaf extent list.
3538 * ocfs2_figure_appending_type() will figure out whether we'll have to
3539 * insert at the tail of the rightmost leaf.
3541 * This should also work against the dinode list for tree's with 0
3542 * depth. If we consider the dinode list to be the rightmost leaf node
3543 * then the logic here makes sense.
3545 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3546 struct ocfs2_extent_list *el,
3547 struct ocfs2_extent_rec *insert_rec)
3550 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3551 struct ocfs2_extent_rec *rec;
3553 insert->ins_appending = APPEND_NONE;
3555 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3557 if (!el->l_next_free_rec)
3558 goto set_tail_append;
3560 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3561 /* Were all records empty? */
3562 if (le16_to_cpu(el->l_next_free_rec) == 1)
3563 goto set_tail_append;
3566 i = le16_to_cpu(el->l_next_free_rec) - 1;
3567 rec = &el->l_recs[i];
3570 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3571 goto set_tail_append;
3576 insert->ins_appending = APPEND_TAIL;
3580 * Helper function called at the begining of an insert.
3582 * This computes a few things that are commonly used in the process of
3583 * inserting into the btree:
3584 * - Whether the new extent is contiguous with an existing one.
3585 * - The current tree depth.
3586 * - Whether the insert is an appending one.
3587 * - The total # of free records in the tree.
3589 * All of the information is stored on the ocfs2_insert_type
3592 static int ocfs2_figure_insert_type(struct inode *inode,
3593 struct buffer_head *di_bh,
3594 struct buffer_head **last_eb_bh,
3595 struct ocfs2_extent_rec *insert_rec,
3596 struct ocfs2_insert_type *insert)
3599 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3600 struct ocfs2_extent_block *eb;
3601 struct ocfs2_extent_list *el;
3602 struct ocfs2_path *path = NULL;
3603 struct buffer_head *bh = NULL;
3605 insert->ins_split = SPLIT_NONE;
3607 el = &di->id2.i_list;
3608 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3610 if (el->l_tree_depth) {
3612 * If we have tree depth, we read in the
3613 * rightmost extent block ahead of time as
3614 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3615 * may want it later.
3617 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3618 le64_to_cpu(di->i_last_eb_blk), &bh,
3619 OCFS2_BH_CACHED, inode);
3624 eb = (struct ocfs2_extent_block *) bh->b_data;
3629 * Unless we have a contiguous insert, we'll need to know if
3630 * there is room left in our allocation tree for another
3633 * XXX: This test is simplistic, we can search for empty
3634 * extent records too.
3636 insert->ins_free_records = le16_to_cpu(el->l_count) -
3637 le16_to_cpu(el->l_next_free_rec);
3639 if (!insert->ins_tree_depth) {
3640 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3641 ocfs2_figure_appending_type(insert, el, insert_rec);
3645 path = ocfs2_new_inode_path(di_bh);
3653 * In the case that we're inserting past what the tree
3654 * currently accounts for, ocfs2_find_path() will return for
3655 * us the rightmost tree path. This is accounted for below in
3656 * the appending code.
3658 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3664 el = path_leaf_el(path);
3667 * Now that we have the path, there's two things we want to determine:
3668 * 1) Contiguousness (also set contig_index if this is so)
3670 * 2) Are we doing an append? We can trivially break this up
3671 * into two types of appends: simple record append, or a
3672 * rotate inside the tail leaf.
3674 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3677 * The insert code isn't quite ready to deal with all cases of
3678 * left contiguousness. Specifically, if it's an insert into
3679 * the 1st record in a leaf, it will require the adjustment of
3680 * cluster count on the last record of the path directly to it's
3681 * left. For now, just catch that case and fool the layers
3682 * above us. This works just fine for tree_depth == 0, which
3683 * is why we allow that above.
3685 if (insert->ins_contig == CONTIG_LEFT &&
3686 insert->ins_contig_index == 0)
3687 insert->ins_contig = CONTIG_NONE;
3690 * Ok, so we can simply compare against last_eb to figure out
3691 * whether the path doesn't exist. This will only happen in
3692 * the case that we're doing a tail append, so maybe we can
3693 * take advantage of that information somehow.
3695 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3697 * Ok, ocfs2_find_path() returned us the rightmost
3698 * tree path. This might be an appending insert. There are
3700 * 1) We're doing a true append at the tail:
3701 * -This might even be off the end of the leaf
3702 * 2) We're "appending" by rotating in the tail
3704 ocfs2_figure_appending_type(insert, el, insert_rec);
3708 ocfs2_free_path(path);
3718 * Insert an extent into an inode btree.
3720 * The caller needs to update fe->i_clusters
3722 int ocfs2_insert_extent(struct ocfs2_super *osb,
3724 struct inode *inode,
3725 struct buffer_head *fe_bh,
3730 struct ocfs2_alloc_context *meta_ac)
3733 struct buffer_head *last_eb_bh = NULL;
3734 struct ocfs2_insert_type insert = {0, };
3735 struct ocfs2_extent_rec rec;
3737 mlog(0, "add %u clusters at position %u to inode %llu\n",
3738 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3740 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3741 (OCFS2_I(inode)->ip_clusters != cpos),
3742 "Device %s, asking for sparse allocation: inode %llu, "
3743 "cpos %u, clusters %u\n",
3745 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3746 OCFS2_I(inode)->ip_clusters);
3748 memset(&rec, 0, sizeof(rec));
3749 rec.e_cpos = cpu_to_le32(cpos);
3750 rec.e_blkno = cpu_to_le64(start_blk);
3751 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
3752 rec.e_flags = flags;
3754 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3761 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3762 "Insert.contig_index: %d, Insert.free_records: %d, "
3763 "Insert.tree_depth: %d\n",
3764 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3765 insert.ins_free_records, insert.ins_tree_depth);
3767 if (insert.ins_contig == CONTIG_NONE && insert.ins_free_records == 0) {
3768 status = ocfs2_grow_tree(inode, handle, fe_bh,
3769 &insert.ins_tree_depth, &last_eb_bh,
3777 /* Finally, we can add clusters. This might rotate the tree for us. */
3778 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
3782 ocfs2_extent_map_insert_rec(inode, &rec);
3792 static void ocfs2_make_right_split_rec(struct super_block *sb,
3793 struct ocfs2_extent_rec *split_rec,
3795 struct ocfs2_extent_rec *rec)
3797 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3798 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3800 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3802 split_rec->e_cpos = cpu_to_le32(cpos);
3803 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3805 split_rec->e_blkno = rec->e_blkno;
3806 le64_add_cpu(&split_rec->e_blkno,
3807 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3809 split_rec->e_flags = rec->e_flags;
3812 static int ocfs2_split_and_insert(struct inode *inode,
3814 struct ocfs2_path *path,
3815 struct buffer_head *di_bh,
3816 struct buffer_head **last_eb_bh,
3818 struct ocfs2_extent_rec *orig_split_rec,
3819 struct ocfs2_alloc_context *meta_ac)
3822 unsigned int insert_range, rec_range, do_leftright = 0;
3823 struct ocfs2_extent_rec tmprec;
3824 struct ocfs2_extent_list *rightmost_el;
3825 struct ocfs2_extent_rec rec;
3826 struct ocfs2_extent_rec split_rec = *orig_split_rec;
3827 struct ocfs2_insert_type insert;
3828 struct ocfs2_extent_block *eb;
3829 struct ocfs2_dinode *di;
3833 * Store a copy of the record on the stack - it might move
3834 * around as the tree is manipulated below.
3836 rec = path_leaf_el(path)->l_recs[split_index];
3838 di = (struct ocfs2_dinode *)di_bh->b_data;
3839 rightmost_el = &di->id2.i_list;
3841 depth = le16_to_cpu(rightmost_el->l_tree_depth);
3843 BUG_ON(!(*last_eb_bh));
3844 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3845 rightmost_el = &eb->h_list;
3848 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3849 le16_to_cpu(rightmost_el->l_count)) {
3850 int old_depth = depth;
3852 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3859 if (old_depth != depth) {
3860 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
3861 rightmost_el = &eb->h_list;
3865 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3866 insert.ins_appending = APPEND_NONE;
3867 insert.ins_contig = CONTIG_NONE;
3868 insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
3869 - le16_to_cpu(rightmost_el->l_next_free_rec);
3870 insert.ins_tree_depth = depth;
3872 insert_range = le32_to_cpu(split_rec.e_cpos) +
3873 le16_to_cpu(split_rec.e_leaf_clusters);
3874 rec_range = le32_to_cpu(rec.e_cpos) +
3875 le16_to_cpu(rec.e_leaf_clusters);
3877 if (split_rec.e_cpos == rec.e_cpos) {
3878 insert.ins_split = SPLIT_LEFT;
3879 } else if (insert_range == rec_range) {
3880 insert.ins_split = SPLIT_RIGHT;
3883 * Left/right split. We fake this as a right split
3884 * first and then make a second pass as a left split.
3886 insert.ins_split = SPLIT_RIGHT;
3888 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3893 BUG_ON(do_leftright);
3897 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3904 if (do_leftright == 1) {
3906 struct ocfs2_extent_list *el;
3909 split_rec = *orig_split_rec;
3911 ocfs2_reinit_path(path, 1);
3913 cpos = le32_to_cpu(split_rec.e_cpos);
3914 ret = ocfs2_find_path(inode, path, cpos);
3920 el = path_leaf_el(path);
3921 split_index = ocfs2_search_extent_list(el, cpos);
3930 * Mark part or all of the extent record at split_index in the leaf
3931 * pointed to by path as written. This removes the unwritten
3934 * Care is taken to handle contiguousness so as to not grow the tree.
3936 * meta_ac is not strictly necessary - we only truly need it if growth
3937 * of the tree is required. All other cases will degrade into a less
3938 * optimal tree layout.
3940 * last_eb_bh should be the rightmost leaf block for any inode with a
3941 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3943 * This code is optimized for readability - several passes might be
3944 * made over certain portions of the tree. All of those blocks will
3945 * have been brought into cache (and pinned via the journal), so the
3946 * extra overhead is not expressed in terms of disk reads.
3948 static int __ocfs2_mark_extent_written(struct inode *inode,
3949 struct buffer_head *di_bh,
3951 struct ocfs2_path *path,
3953 struct ocfs2_extent_rec *split_rec,
3954 struct ocfs2_alloc_context *meta_ac,
3955 struct ocfs2_cached_dealloc_ctxt *dealloc)
3958 struct ocfs2_extent_list *el = path_leaf_el(path);
3959 struct buffer_head *eb_bh, *last_eb_bh = NULL;
3960 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3961 struct ocfs2_merge_ctxt ctxt;
3962 struct ocfs2_extent_list *rightmost_el;
3964 if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
3970 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3971 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3972 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3978 eb_bh = path_leaf_bh(path);
3979 ret = ocfs2_journal_access(handle, inode, eb_bh,
3980 OCFS2_JOURNAL_ACCESS_WRITE);
3986 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3991 * The core merge / split code wants to know how much room is
3992 * left in this inodes allocation tree, so we pass the
3993 * rightmost extent list.
3995 if (path->p_tree_depth) {
3996 struct ocfs2_extent_block *eb;
3997 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3999 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4000 le64_to_cpu(di->i_last_eb_blk),
4001 &last_eb_bh, OCFS2_BH_CACHED, inode);
4007 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4008 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4009 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4014 rightmost_el = &eb->h_list;
4016 rightmost_el = path_root_el(path);
4018 ctxt.c_used_tail_recs = le16_to_cpu(rightmost_el->l_next_free_rec);
4019 if (ctxt.c_used_tail_recs > 0 &&
4020 ocfs2_is_empty_extent(&rightmost_el->l_recs[0]))
4021 ctxt.c_used_tail_recs--;
4023 if (rec->e_cpos == split_rec->e_cpos &&
4024 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4025 ctxt.c_split_covers_rec = 1;
4027 ctxt.c_split_covers_rec = 0;
4029 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4031 mlog(0, "index: %d, contig: %u, used_tail_recs: %u, "
4032 "has_empty: %u, split_covers: %u\n", split_index,
4033 ctxt.c_contig_type, ctxt.c_used_tail_recs,
4034 ctxt.c_has_empty_extent, ctxt.c_split_covers_rec);
4036 if (ctxt.c_contig_type == CONTIG_NONE) {
4037 if (ctxt.c_split_covers_rec)
4038 el->l_recs[split_index] = *split_rec;
4040 ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4041 &last_eb_bh, split_index,
4042 split_rec, meta_ac);
4046 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4047 split_index, split_rec,
4053 ocfs2_journal_dirty(handle, eb_bh);
4061 * Mark the already-existing extent at cpos as written for len clusters.
4063 * If the existing extent is larger than the request, initiate a
4064 * split. An attempt will be made at merging with adjacent extents.
4066 * The caller is responsible for passing down meta_ac if we'll need it.
4068 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4069 handle_t *handle, u32 cpos, u32 len, u32 phys,
4070 struct ocfs2_alloc_context *meta_ac,
4071 struct ocfs2_cached_dealloc_ctxt *dealloc)
4074 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4075 struct ocfs2_extent_rec split_rec;
4076 struct ocfs2_path *left_path = NULL;
4077 struct ocfs2_extent_list *el;
4079 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4080 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4082 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4083 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4084 "that are being written to, but the feature bit "
4085 "is not set in the super block.",
4086 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4092 * XXX: This should be fixed up so that we just re-insert the
4093 * next extent records.
4095 ocfs2_extent_map_trunc(inode, 0);
4097 left_path = ocfs2_new_inode_path(di_bh);
4104 ret = ocfs2_find_path(inode, left_path, cpos);
4109 el = path_leaf_el(left_path);
4111 index = ocfs2_search_extent_list(el, cpos);
4112 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4113 ocfs2_error(inode->i_sb,
4114 "Inode %llu has an extent at cpos %u which can no "
4115 "longer be found.\n",
4116 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4121 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4122 split_rec.e_cpos = cpu_to_le32(cpos);
4123 split_rec.e_leaf_clusters = cpu_to_le16(len);
4124 split_rec.e_blkno = cpu_to_le64(start_blkno);
4125 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4126 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4128 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4129 index, &split_rec, meta_ac, dealloc);
4134 ocfs2_free_path(left_path);
4138 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4139 handle_t *handle, struct ocfs2_path *path,
4140 int index, u32 new_range,
4141 struct ocfs2_alloc_context *meta_ac)
4143 int ret, depth, credits = handle->h_buffer_credits;
4144 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4145 struct buffer_head *last_eb_bh = NULL;
4146 struct ocfs2_extent_block *eb;
4147 struct ocfs2_extent_list *rightmost_el, *el;
4148 struct ocfs2_extent_rec split_rec;
4149 struct ocfs2_extent_rec *rec;
4150 struct ocfs2_insert_type insert;
4153 * Setup the record to split before we grow the tree.
4155 el = path_leaf_el(path);
4156 rec = &el->l_recs[index];
4157 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4159 depth = path->p_tree_depth;
4161 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4162 le64_to_cpu(di->i_last_eb_blk),
4163 &last_eb_bh, OCFS2_BH_CACHED, inode);
4169 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4170 rightmost_el = &eb->h_list;
4172 rightmost_el = path_leaf_el(path);
4174 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4175 ret = ocfs2_extend_trans(handle, credits);
4181 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4182 le16_to_cpu(rightmost_el->l_count)) {
4183 int old_depth = depth;
4185 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4192 if (old_depth != depth) {
4193 eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
4194 rightmost_el = &eb->h_list;
4198 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4199 insert.ins_appending = APPEND_NONE;
4200 insert.ins_contig = CONTIG_NONE;
4201 insert.ins_split = SPLIT_RIGHT;
4202 insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
4203 - le16_to_cpu(rightmost_el->l_next_free_rec);
4204 insert.ins_tree_depth = depth;
4206 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4215 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4216 struct ocfs2_path *path, int index,
4217 struct ocfs2_cached_dealloc_ctxt *dealloc,
4221 u32 left_cpos, rec_range, trunc_range;
4222 int wants_rotate = 0, is_rightmost_tree_rec = 0;
4223 struct super_block *sb = inode->i_sb;
4224 struct ocfs2_path *left_path = NULL;
4225 struct ocfs2_extent_list *el = path_leaf_el(path);
4226 struct ocfs2_extent_rec *rec;
4227 struct ocfs2_extent_block *eb;
4229 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4230 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4239 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4240 path->p_tree_depth) {
4242 * Check whether this is the rightmost tree record. If
4243 * we remove all of this record or part of its right
4244 * edge then an update of the record lengths above it
4247 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4248 if (eb->h_next_leaf_blk == 0)
4249 is_rightmost_tree_rec = 1;
4252 rec = &el->l_recs[index];
4253 if (index == 0 && path->p_tree_depth &&
4254 le32_to_cpu(rec->e_cpos) == cpos) {
4256 * Changing the leftmost offset (via partial or whole
4257 * record truncate) of an interior (or rightmost) path
4258 * means we have to update the subtree that is formed
4259 * by this leaf and the one to it's left.
4261 * There are two cases we can skip:
4262 * 1) Path is the leftmost one in our inode tree.
4263 * 2) The leaf is rightmost and will be empty after
4264 * we remove the extent record - the rotate code
4265 * knows how to update the newly formed edge.
4268 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4275 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4276 left_path = ocfs2_new_path(path_root_bh(path),
4277 path_root_el(path));
4284 ret = ocfs2_find_path(inode, left_path, left_cpos);
4292 ret = ocfs2_extend_rotate_transaction(handle, 0,
4293 handle->h_buffer_credits,
4300 ret = ocfs2_journal_access_path(inode, handle, path);
4306 ret = ocfs2_journal_access_path(inode, handle, left_path);
4312 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4313 trunc_range = cpos + len;
4315 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4318 memset(rec, 0, sizeof(*rec));
4319 ocfs2_cleanup_merge(el, index);
4322 next_free = le16_to_cpu(el->l_next_free_rec);
4323 if (is_rightmost_tree_rec && next_free > 1) {
4325 * We skip the edge update if this path will
4326 * be deleted by the rotate code.
4328 rec = &el->l_recs[next_free - 1];
4329 ocfs2_adjust_rightmost_records(inode, handle, path,
4332 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4333 /* Remove leftmost portion of the record. */
4334 le32_add_cpu(&rec->e_cpos, len);
4335 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4336 le16_add_cpu(&rec->e_leaf_clusters, -len);
4337 } else if (rec_range == trunc_range) {
4338 /* Remove rightmost portion of the record */
4339 le16_add_cpu(&rec->e_leaf_clusters, -len);
4340 if (is_rightmost_tree_rec)
4341 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4343 /* Caller should have trapped this. */
4344 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4345 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4346 le32_to_cpu(rec->e_cpos),
4347 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4354 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4355 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4359 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4361 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4368 ocfs2_free_path(left_path);
4372 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4373 u32 cpos, u32 len, handle_t *handle,
4374 struct ocfs2_alloc_context *meta_ac,
4375 struct ocfs2_cached_dealloc_ctxt *dealloc)
4378 u32 rec_range, trunc_range;
4379 struct ocfs2_extent_rec *rec;
4380 struct ocfs2_extent_list *el;
4381 struct ocfs2_path *path;
4383 ocfs2_extent_map_trunc(inode, 0);
4385 path = ocfs2_new_inode_path(di_bh);
4392 ret = ocfs2_find_path(inode, path, cpos);
4398 el = path_leaf_el(path);
4399 index = ocfs2_search_extent_list(el, cpos);
4400 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4401 ocfs2_error(inode->i_sb,
4402 "Inode %llu has an extent at cpos %u which can no "
4403 "longer be found.\n",
4404 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4410 * We have 3 cases of extent removal:
4411 * 1) Range covers the entire extent rec
4412 * 2) Range begins or ends on one edge of the extent rec
4413 * 3) Range is in the middle of the extent rec (no shared edges)
4415 * For case 1 we remove the extent rec and left rotate to
4418 * For case 2 we just shrink the existing extent rec, with a
4419 * tree update if the shrinking edge is also the edge of an
4422 * For case 3 we do a right split to turn the extent rec into
4423 * something case 2 can handle.
4425 rec = &el->l_recs[index];
4426 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4427 trunc_range = cpos + len;
4429 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4431 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4432 "(cpos %u, len %u)\n",
4433 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4434 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4436 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4437 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4444 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4445 trunc_range, meta_ac);
4452 * The split could have manipulated the tree enough to
4453 * move the record location, so we have to look for it again.
4455 ocfs2_reinit_path(path, 1);
4457 ret = ocfs2_find_path(inode, path, cpos);
4463 el = path_leaf_el(path);
4464 index = ocfs2_search_extent_list(el, cpos);
4465 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4466 ocfs2_error(inode->i_sb,
4467 "Inode %llu: split at cpos %u lost record.",
4468 (unsigned long long)OCFS2_I(inode)->ip_blkno,
4475 * Double check our values here. If anything is fishy,
4476 * it's easier to catch it at the top level.
4478 rec = &el->l_recs[index];
4479 rec_range = le32_to_cpu(rec->e_cpos) +
4480 ocfs2_rec_clusters(el, rec);
4481 if (rec_range != trunc_range) {
4482 ocfs2_error(inode->i_sb,
4483 "Inode %llu: error after split at cpos %u"
4484 "trunc len %u, existing record is (%u,%u)",
4485 (unsigned long long)OCFS2_I(inode)->ip_blkno,
4486 cpos, len, le32_to_cpu(rec->e_cpos),
4487 ocfs2_rec_clusters(el, rec));
4492 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4501 ocfs2_free_path(path);
4505 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4507 struct buffer_head *tl_bh = osb->osb_tl_bh;
4508 struct ocfs2_dinode *di;
4509 struct ocfs2_truncate_log *tl;
4511 di = (struct ocfs2_dinode *) tl_bh->b_data;
4512 tl = &di->id2.i_dealloc;
4514 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4515 "slot %d, invalid truncate log parameters: used = "
4516 "%u, count = %u\n", osb->slot_num,
4517 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4518 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4521 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4522 unsigned int new_start)
4524 unsigned int tail_index;
4525 unsigned int current_tail;
4527 /* No records, nothing to coalesce */
4528 if (!le16_to_cpu(tl->tl_used))
4531 tail_index = le16_to_cpu(tl->tl_used) - 1;
4532 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4533 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4535 return current_tail == new_start;
4538 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4541 unsigned int num_clusters)
4544 unsigned int start_cluster, tl_count;
4545 struct inode *tl_inode = osb->osb_tl_inode;
4546 struct buffer_head *tl_bh = osb->osb_tl_bh;
4547 struct ocfs2_dinode *di;
4548 struct ocfs2_truncate_log *tl;
4550 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4551 (unsigned long long)start_blk, num_clusters);
4553 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4555 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4557 di = (struct ocfs2_dinode *) tl_bh->b_data;
4558 tl = &di->id2.i_dealloc;
4559 if (!OCFS2_IS_VALID_DINODE(di)) {
4560 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4565 tl_count = le16_to_cpu(tl->tl_count);
4566 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4568 "Truncate record count on #%llu invalid "
4569 "wanted %u, actual %u\n",
4570 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4571 ocfs2_truncate_recs_per_inode(osb->sb),
4572 le16_to_cpu(tl->tl_count));
4574 /* Caller should have known to flush before calling us. */
4575 index = le16_to_cpu(tl->tl_used);
4576 if (index >= tl_count) {
4582 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4583 OCFS2_JOURNAL_ACCESS_WRITE);
4589 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4590 "%llu (index = %d)\n", num_clusters, start_cluster,
4591 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4593 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4595 * Move index back to the record we are coalescing with.
4596 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4600 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4601 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4602 index, le32_to_cpu(tl->tl_recs[index].t_start),
4605 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4606 tl->tl_used = cpu_to_le16(index + 1);
4608 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4610 status = ocfs2_journal_dirty(handle, tl_bh);
4621 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4623 struct inode *data_alloc_inode,
4624 struct buffer_head *data_alloc_bh)
4628 unsigned int num_clusters;
4630 struct ocfs2_truncate_rec rec;
4631 struct ocfs2_dinode *di;
4632 struct ocfs2_truncate_log *tl;
4633 struct inode *tl_inode = osb->osb_tl_inode;
4634 struct buffer_head *tl_bh = osb->osb_tl_bh;
4638 di = (struct ocfs2_dinode *) tl_bh->b_data;
4639 tl = &di->id2.i_dealloc;
4640 i = le16_to_cpu(tl->tl_used) - 1;
4642 /* Caller has given us at least enough credits to
4643 * update the truncate log dinode */
4644 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4645 OCFS2_JOURNAL_ACCESS_WRITE);
4651 tl->tl_used = cpu_to_le16(i);
4653 status = ocfs2_journal_dirty(handle, tl_bh);
4659 /* TODO: Perhaps we can calculate the bulk of the
4660 * credits up front rather than extending like
4662 status = ocfs2_extend_trans(handle,
4663 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4669 rec = tl->tl_recs[i];
4670 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4671 le32_to_cpu(rec.t_start));
4672 num_clusters = le32_to_cpu(rec.t_clusters);
4674 /* if start_blk is not set, we ignore the record as
4677 mlog(0, "free record %d, start = %u, clusters = %u\n",
4678 i, le32_to_cpu(rec.t_start), num_clusters);
4680 status = ocfs2_free_clusters(handle, data_alloc_inode,
4681 data_alloc_bh, start_blk,
4696 /* Expects you to already be holding tl_inode->i_mutex */
4697 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4700 unsigned int num_to_flush;
4702 struct inode *tl_inode = osb->osb_tl_inode;
4703 struct inode *data_alloc_inode = NULL;
4704 struct buffer_head *tl_bh = osb->osb_tl_bh;
4705 struct buffer_head *data_alloc_bh = NULL;
4706 struct ocfs2_dinode *di;
4707 struct ocfs2_truncate_log *tl;
4711 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4713 di = (struct ocfs2_dinode *) tl_bh->b_data;
4714 tl = &di->id2.i_dealloc;
4715 if (!OCFS2_IS_VALID_DINODE(di)) {
4716 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4721 num_to_flush = le16_to_cpu(tl->tl_used);
4722 mlog(0, "Flush %u records from truncate log #%llu\n",
4723 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
4724 if (!num_to_flush) {
4729 data_alloc_inode = ocfs2_get_system_file_inode(osb,
4730 GLOBAL_BITMAP_SYSTEM_INODE,
4731 OCFS2_INVALID_SLOT);
4732 if (!data_alloc_inode) {
4734 mlog(ML_ERROR, "Could not get bitmap inode!\n");
4738 mutex_lock(&data_alloc_inode->i_mutex);
4740 status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
4746 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4747 if (IS_ERR(handle)) {
4748 status = PTR_ERR(handle);
4753 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4758 ocfs2_commit_trans(osb, handle);
4761 brelse(data_alloc_bh);
4762 ocfs2_meta_unlock(data_alloc_inode, 1);
4765 mutex_unlock(&data_alloc_inode->i_mutex);
4766 iput(data_alloc_inode);
4773 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4776 struct inode *tl_inode = osb->osb_tl_inode;
4778 mutex_lock(&tl_inode->i_mutex);
4779 status = __ocfs2_flush_truncate_log(osb);
4780 mutex_unlock(&tl_inode->i_mutex);
4785 static void ocfs2_truncate_log_worker(struct work_struct *work)
4788 struct ocfs2_super *osb =
4789 container_of(work, struct ocfs2_super,
4790 osb_truncate_log_wq.work);
4794 status = ocfs2_flush_truncate_log(osb);
4801 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4802 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4805 if (osb->osb_tl_inode) {
4806 /* We want to push off log flushes while truncates are
4809 cancel_delayed_work(&osb->osb_truncate_log_wq);
4811 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4812 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4816 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4818 struct inode **tl_inode,
4819 struct buffer_head **tl_bh)
4822 struct inode *inode = NULL;
4823 struct buffer_head *bh = NULL;
4825 inode = ocfs2_get_system_file_inode(osb,
4826 TRUNCATE_LOG_SYSTEM_INODE,
4830 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4834 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4835 OCFS2_BH_CACHED, inode);
4849 /* called during the 1st stage of node recovery. we stamp a clean
4850 * truncate log and pass back a copy for processing later. if the
4851 * truncate log does not require processing, a *tl_copy is set to
4853 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4855 struct ocfs2_dinode **tl_copy)
4858 struct inode *tl_inode = NULL;
4859 struct buffer_head *tl_bh = NULL;
4860 struct ocfs2_dinode *di;
4861 struct ocfs2_truncate_log *tl;
4865 mlog(0, "recover truncate log from slot %d\n", slot_num);
4867 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4873 di = (struct ocfs2_dinode *) tl_bh->b_data;
4874 tl = &di->id2.i_dealloc;
4875 if (!OCFS2_IS_VALID_DINODE(di)) {
4876 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4881 if (le16_to_cpu(tl->tl_used)) {
4882 mlog(0, "We'll have %u logs to recover\n",
4883 le16_to_cpu(tl->tl_used));
4885 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4892 /* Assuming the write-out below goes well, this copy
4893 * will be passed back to recovery for processing. */
4894 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4896 /* All we need to do to clear the truncate log is set
4900 status = ocfs2_write_block(osb, tl_bh, tl_inode);
4913 if (status < 0 && (*tl_copy)) {
4922 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4923 struct ocfs2_dinode *tl_copy)
4927 unsigned int clusters, num_recs, start_cluster;
4930 struct inode *tl_inode = osb->osb_tl_inode;
4931 struct ocfs2_truncate_log *tl;
4935 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4936 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4940 tl = &tl_copy->id2.i_dealloc;
4941 num_recs = le16_to_cpu(tl->tl_used);
4942 mlog(0, "cleanup %u records from %llu\n", num_recs,
4943 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
4945 mutex_lock(&tl_inode->i_mutex);
4946 for(i = 0; i < num_recs; i++) {
4947 if (ocfs2_truncate_log_needs_flush(osb)) {
4948 status = __ocfs2_flush_truncate_log(osb);
4955 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4956 if (IS_ERR(handle)) {
4957 status = PTR_ERR(handle);
4962 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4963 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4964 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4966 status = ocfs2_truncate_log_append(osb, handle,
4967 start_blk, clusters);
4968 ocfs2_commit_trans(osb, handle);
4976 mutex_unlock(&tl_inode->i_mutex);
4982 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4985 struct inode *tl_inode = osb->osb_tl_inode;
4990 cancel_delayed_work(&osb->osb_truncate_log_wq);
4991 flush_workqueue(ocfs2_wq);
4993 status = ocfs2_flush_truncate_log(osb);
4997 brelse(osb->osb_tl_bh);
4998 iput(osb->osb_tl_inode);
5004 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5007 struct inode *tl_inode = NULL;
5008 struct buffer_head *tl_bh = NULL;
5012 status = ocfs2_get_truncate_log_info(osb,
5019 /* ocfs2_truncate_log_shutdown keys on the existence of
5020 * osb->osb_tl_inode so we don't set any of the osb variables
5021 * until we're sure all is well. */
5022 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5023 ocfs2_truncate_log_worker);
5024 osb->osb_tl_bh = tl_bh;
5025 osb->osb_tl_inode = tl_inode;
5032 * Delayed de-allocation of suballocator blocks.
5034 * Some sets of block de-allocations might involve multiple suballocator inodes.
5036 * The locking for this can get extremely complicated, especially when
5037 * the suballocator inodes to delete from aren't known until deep
5038 * within an unrelated codepath.
5040 * ocfs2_extent_block structures are a good example of this - an inode
5041 * btree could have been grown by any number of nodes each allocating
5042 * out of their own suballoc inode.
5044 * These structures allow the delay of block de-allocation until a
5045 * later time, when locking of multiple cluster inodes won't cause
5050 * Describes a single block free from a suballocator
5052 struct ocfs2_cached_block_free {
5053 struct ocfs2_cached_block_free *free_next;
5055 unsigned int free_bit;
5058 struct ocfs2_per_slot_free_list {
5059 struct ocfs2_per_slot_free_list *f_next_suballocator;
5062 struct ocfs2_cached_block_free *f_first;
5065 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5068 struct ocfs2_cached_block_free *head)
5073 struct inode *inode;
5074 struct buffer_head *di_bh = NULL;
5075 struct ocfs2_cached_block_free *tmp;
5077 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5084 mutex_lock(&inode->i_mutex);
5086 ret = ocfs2_meta_lock(inode, &di_bh, 1);
5092 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5093 if (IS_ERR(handle)) {
5094 ret = PTR_ERR(handle);
5100 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5102 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5103 head->free_bit, (unsigned long long)head->free_blk);
5105 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5106 head->free_bit, bg_blkno, 1);
5112 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5119 head = head->free_next;
5124 ocfs2_commit_trans(osb, handle);
5127 ocfs2_meta_unlock(inode, 1);
5130 mutex_unlock(&inode->i_mutex);
5134 /* Premature exit may have left some dangling items. */
5136 head = head->free_next;
5143 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5144 struct ocfs2_cached_dealloc_ctxt *ctxt)
5147 struct ocfs2_per_slot_free_list *fl;
5152 while (ctxt->c_first_suballocator) {
5153 fl = ctxt->c_first_suballocator;
5156 mlog(0, "Free items: (type %u, slot %d)\n",
5157 fl->f_inode_type, fl->f_slot);
5158 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5159 fl->f_slot, fl->f_first);
5166 ctxt->c_first_suballocator = fl->f_next_suballocator;
5173 static struct ocfs2_per_slot_free_list *
5174 ocfs2_find_per_slot_free_list(int type,
5176 struct ocfs2_cached_dealloc_ctxt *ctxt)
5178 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5181 if (fl->f_inode_type == type && fl->f_slot == slot)
5184 fl = fl->f_next_suballocator;
5187 fl = kmalloc(sizeof(*fl), GFP_NOFS);
5189 fl->f_inode_type = type;
5192 fl->f_next_suballocator = ctxt->c_first_suballocator;
5194 ctxt->c_first_suballocator = fl;
5199 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5200 int type, int slot, u64 blkno,
5204 struct ocfs2_per_slot_free_list *fl;
5205 struct ocfs2_cached_block_free *item;
5207 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5214 item = kmalloc(sizeof(*item), GFP_NOFS);
5221 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5222 type, slot, bit, (unsigned long long)blkno);
5224 item->free_blk = blkno;
5225 item->free_bit = bit;
5226 item->free_next = fl->f_first;
5235 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5236 struct ocfs2_extent_block *eb)
5238 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5239 le16_to_cpu(eb->h_suballoc_slot),
5240 le64_to_cpu(eb->h_blkno),
5241 le16_to_cpu(eb->h_suballoc_bit));
5244 /* This function will figure out whether the currently last extent
5245 * block will be deleted, and if it will, what the new last extent
5246 * block will be so we can update his h_next_leaf_blk field, as well
5247 * as the dinodes i_last_eb_blk */
5248 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5249 unsigned int clusters_to_del,
5250 struct ocfs2_path *path,
5251 struct buffer_head **new_last_eb)
5253 int next_free, ret = 0;
5255 struct ocfs2_extent_rec *rec;
5256 struct ocfs2_extent_block *eb;
5257 struct ocfs2_extent_list *el;
5258 struct buffer_head *bh = NULL;
5260 *new_last_eb = NULL;
5262 /* we have no tree, so of course, no last_eb. */
5263 if (!path->p_tree_depth)
5266 /* trunc to zero special case - this makes tree_depth = 0
5267 * regardless of what it is. */
5268 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5271 el = path_leaf_el(path);
5272 BUG_ON(!el->l_next_free_rec);
5275 * Make sure that this extent list will actually be empty
5276 * after we clear away the data. We can shortcut out if
5277 * there's more than one non-empty extent in the
5278 * list. Otherwise, a check of the remaining extent is
5281 next_free = le16_to_cpu(el->l_next_free_rec);
5283 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5287 /* We may have a valid extent in index 1, check it. */
5289 rec = &el->l_recs[1];
5292 * Fall through - no more nonempty extents, so we want
5293 * to delete this leaf.
5299 rec = &el->l_recs[0];
5304 * Check it we'll only be trimming off the end of this
5307 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5311 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5317 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5323 eb = (struct ocfs2_extent_block *) bh->b_data;
5325 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5326 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5332 get_bh(*new_last_eb);
5333 mlog(0, "returning block %llu, (cpos: %u)\n",
5334 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5342 * Trim some clusters off the rightmost edge of a tree. Only called
5345 * The caller needs to:
5346 * - start journaling of each path component.
5347 * - compute and fully set up any new last ext block
5349 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5350 handle_t *handle, struct ocfs2_truncate_context *tc,
5351 u32 clusters_to_del, u64 *delete_start)
5353 int ret, i, index = path->p_tree_depth;
5356 struct buffer_head *bh;
5357 struct ocfs2_extent_list *el;
5358 struct ocfs2_extent_rec *rec;
5362 while (index >= 0) {
5363 bh = path->p_node[index].bh;
5364 el = path->p_node[index].el;
5366 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5367 index, (unsigned long long)bh->b_blocknr);
5369 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5372 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5373 ocfs2_error(inode->i_sb,
5374 "Inode %lu has invalid ext. block %llu",
5376 (unsigned long long)bh->b_blocknr);
5382 i = le16_to_cpu(el->l_next_free_rec) - 1;
5383 rec = &el->l_recs[i];
5385 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5386 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5387 ocfs2_rec_clusters(el, rec),
5388 (unsigned long long)le64_to_cpu(rec->e_blkno),
5389 le16_to_cpu(el->l_next_free_rec));
5391 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5393 if (le16_to_cpu(el->l_tree_depth) == 0) {
5395 * If the leaf block contains a single empty
5396 * extent and no records, we can just remove
5399 if (i == 0 && ocfs2_is_empty_extent(rec)) {
5401 sizeof(struct ocfs2_extent_rec));
5402 el->l_next_free_rec = cpu_to_le16(0);
5408 * Remove any empty extents by shifting things
5409 * left. That should make life much easier on
5410 * the code below. This condition is rare
5411 * enough that we shouldn't see a performance
5414 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5415 le16_add_cpu(&el->l_next_free_rec, -1);
5418 i < le16_to_cpu(el->l_next_free_rec); i++)
5419 el->l_recs[i] = el->l_recs[i + 1];
5421 memset(&el->l_recs[i], 0,
5422 sizeof(struct ocfs2_extent_rec));
5425 * We've modified our extent list. The
5426 * simplest way to handle this change
5427 * is to being the search from the
5430 goto find_tail_record;
5433 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5436 * We'll use "new_edge" on our way back up the
5437 * tree to know what our rightmost cpos is.
5439 new_edge = le16_to_cpu(rec->e_leaf_clusters);
5440 new_edge += le32_to_cpu(rec->e_cpos);
5443 * The caller will use this to delete data blocks.
5445 *delete_start = le64_to_cpu(rec->e_blkno)
5446 + ocfs2_clusters_to_blocks(inode->i_sb,
5447 le16_to_cpu(rec->e_leaf_clusters));
5450 * If it's now empty, remove this record.
5452 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5454 sizeof(struct ocfs2_extent_rec));
5455 le16_add_cpu(&el->l_next_free_rec, -1);
5458 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5460 sizeof(struct ocfs2_extent_rec));
5461 le16_add_cpu(&el->l_next_free_rec, -1);
5466 /* Can this actually happen? */
5467 if (le16_to_cpu(el->l_next_free_rec) == 0)
5471 * We never actually deleted any clusters
5472 * because our leaf was empty. There's no
5473 * reason to adjust the rightmost edge then.
5478 rec->e_int_clusters = cpu_to_le32(new_edge);
5479 le32_add_cpu(&rec->e_int_clusters,
5480 -le32_to_cpu(rec->e_cpos));
5483 * A deleted child record should have been
5486 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5490 ret = ocfs2_journal_dirty(handle, bh);
5496 mlog(0, "extent list container %llu, after: record %d: "
5497 "(%u, %u, %llu), next = %u.\n",
5498 (unsigned long long)bh->b_blocknr, i,
5499 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5500 (unsigned long long)le64_to_cpu(rec->e_blkno),
5501 le16_to_cpu(el->l_next_free_rec));
5504 * We must be careful to only attempt delete of an
5505 * extent block (and not the root inode block).
5507 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5508 struct ocfs2_extent_block *eb =
5509 (struct ocfs2_extent_block *)bh->b_data;
5512 * Save this for use when processing the
5515 deleted_eb = le64_to_cpu(eb->h_blkno);
5517 mlog(0, "deleting this extent block.\n");
5519 ocfs2_remove_from_cache(inode, bh);
5521 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5522 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5523 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5525 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5526 /* An error here is not fatal. */
5541 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5542 unsigned int clusters_to_del,
5543 struct inode *inode,
5544 struct buffer_head *fe_bh,
5546 struct ocfs2_truncate_context *tc,
5547 struct ocfs2_path *path)
5550 struct ocfs2_dinode *fe;
5551 struct ocfs2_extent_block *last_eb = NULL;
5552 struct ocfs2_extent_list *el;
5553 struct buffer_head *last_eb_bh = NULL;
5556 fe = (struct ocfs2_dinode *) fe_bh->b_data;
5558 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5566 * Each component will be touched, so we might as well journal
5567 * here to avoid having to handle errors later.
5569 status = ocfs2_journal_access_path(inode, handle, path);
5576 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5577 OCFS2_JOURNAL_ACCESS_WRITE);
5583 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5586 el = &(fe->id2.i_list);
5589 * Lower levels depend on this never happening, but it's best
5590 * to check it up here before changing the tree.
5592 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5593 ocfs2_error(inode->i_sb,
5594 "Inode %lu has an empty extent record, depth %u\n",
5595 inode->i_ino, le16_to_cpu(el->l_tree_depth));
5600 spin_lock(&OCFS2_I(inode)->ip_lock);
5601 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5603 spin_unlock(&OCFS2_I(inode)->ip_lock);
5604 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5606 status = ocfs2_trim_tree(inode, path, handle, tc,
5607 clusters_to_del, &delete_blk);
5613 if (le32_to_cpu(fe->i_clusters) == 0) {
5614 /* trunc to zero is a special case. */
5615 el->l_tree_depth = 0;
5616 fe->i_last_eb_blk = 0;
5618 fe->i_last_eb_blk = last_eb->h_blkno;
5620 status = ocfs2_journal_dirty(handle, fe_bh);
5627 /* If there will be a new last extent block, then by
5628 * definition, there cannot be any leaves to the right of
5630 last_eb->h_next_leaf_blk = 0;
5631 status = ocfs2_journal_dirty(handle, last_eb_bh);
5639 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5653 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5655 set_buffer_uptodate(bh);
5656 mark_buffer_dirty(bh);
5660 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5662 set_buffer_uptodate(bh);
5663 mark_buffer_dirty(bh);
5664 return ocfs2_journal_dirty_data(handle, bh);
5667 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5668 loff_t end, struct page **pages,
5669 int numpages, u64 phys, handle_t *handle)
5671 int i, ret, partial = 0;
5674 unsigned int from, to = PAGE_CACHE_SIZE;
5675 struct super_block *sb = inode->i_sb;
5677 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5682 to = PAGE_CACHE_SIZE;
5683 for(i = 0; i < numpages; i++) {
5686 from = start & (PAGE_CACHE_SIZE - 1);
5687 if ((end >> PAGE_CACHE_SHIFT) == page->index)
5688 to = end & (PAGE_CACHE_SIZE - 1);
5690 BUG_ON(from > PAGE_CACHE_SIZE);
5691 BUG_ON(to > PAGE_CACHE_SIZE);
5693 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
5697 kaddr = kmap_atomic(page, KM_USER0);
5698 memset(kaddr + from, 0, to - from);
5699 kunmap_atomic(kaddr, KM_USER0);
5702 * Need to set the buffers we zero'd into uptodate
5703 * here if they aren't - ocfs2_map_page_blocks()
5704 * might've skipped some
5706 if (ocfs2_should_order_data(inode)) {
5707 ret = walk_page_buffers(handle,
5710 ocfs2_ordered_zero_func);
5714 ret = walk_page_buffers(handle, page_buffers(page),
5716 ocfs2_writeback_zero_func);
5722 SetPageUptodate(page);
5724 flush_dcache_page(page);
5726 start = (page->index + 1) << PAGE_CACHE_SHIFT;
5730 for (i = 0; i < numpages; i++) {
5733 mark_page_accessed(page);
5734 page_cache_release(page);
5739 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
5740 struct page **pages, int *num, u64 *phys)
5742 int i, numpages = 0, ret = 0;
5743 unsigned int ext_flags;
5744 struct super_block *sb = inode->i_sb;
5745 struct address_space *mapping = inode->i_mapping;
5746 unsigned long index;
5747 loff_t last_page_bytes;
5749 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5750 BUG_ON(start > end);
5755 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
5756 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
5758 ret = ocfs2_extent_map_get_blocks(inode, start >> sb->s_blocksize_bits,
5759 phys, NULL, &ext_flags);
5765 /* Tail is a hole. */
5769 /* Tail is marked as unwritten, we can count on write to zero
5771 if (ext_flags & OCFS2_EXT_UNWRITTEN)
5774 last_page_bytes = PAGE_ALIGN(end);
5775 index = start >> PAGE_CACHE_SHIFT;
5777 pages[numpages] = grab_cache_page(mapping, index);
5778 if (!pages[numpages]) {
5786 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
5791 for (i = 0; i < numpages; i++) {
5793 unlock_page(pages[i]);
5794 page_cache_release(pages[i]);
5807 * Zero the area past i_size but still within an allocated
5808 * cluster. This avoids exposing nonzero data on subsequent file
5811 * We need to call this before i_size is updated on the inode because
5812 * otherwise block_write_full_page() will skip writeout of pages past
5813 * i_size. The new_i_size parameter is passed for this reason.
5815 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
5816 u64 range_start, u64 range_end)
5819 struct page **pages = NULL;
5823 * File systems which don't support sparse files zero on every
5826 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
5829 pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
5830 sizeof(struct page *), GFP_NOFS);
5831 if (pages == NULL) {
5837 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
5847 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
5848 numpages, phys, handle);
5851 * Initiate writeout of the pages we zero'd here. We don't
5852 * wait on them - the truncate_inode_pages() call later will
5855 ret = do_sync_mapping_range(inode->i_mapping, range_start,
5856 range_end - 1, SYNC_FILE_RANGE_WRITE);
5868 * It is expected, that by the time you call this function,
5869 * inode->i_size and fe->i_size have been adjusted.
5871 * WARNING: This will kfree the truncate context
5873 int ocfs2_commit_truncate(struct ocfs2_super *osb,
5874 struct inode *inode,
5875 struct buffer_head *fe_bh,
5876 struct ocfs2_truncate_context *tc)
5878 int status, i, credits, tl_sem = 0;
5879 u32 clusters_to_del, new_highest_cpos, range;
5880 struct ocfs2_extent_list *el;
5881 handle_t *handle = NULL;
5882 struct inode *tl_inode = osb->osb_tl_inode;
5883 struct ocfs2_path *path = NULL;
5887 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
5888 i_size_read(inode));
5890 path = ocfs2_new_inode_path(fe_bh);
5897 ocfs2_extent_map_trunc(inode, new_highest_cpos);
5901 * Check that we still have allocation to delete.
5903 if (OCFS2_I(inode)->ip_clusters == 0) {
5909 * Truncate always works against the rightmost tree branch.
5911 status = ocfs2_find_path(inode, path, UINT_MAX);
5917 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
5918 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
5921 * By now, el will point to the extent list on the bottom most
5922 * portion of this tree. Only the tail record is considered in
5925 * We handle the following cases, in order:
5926 * - empty extent: delete the remaining branch
5927 * - remove the entire record
5928 * - remove a partial record
5929 * - no record needs to be removed (truncate has completed)
5931 el = path_leaf_el(path);
5932 if (le16_to_cpu(el->l_next_free_rec) == 0) {
5933 ocfs2_error(inode->i_sb,
5934 "Inode %llu has empty extent block at %llu\n",
5935 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5936 (unsigned long long)path_leaf_bh(path)->b_blocknr);
5941 i = le16_to_cpu(el->l_next_free_rec) - 1;
5942 range = le32_to_cpu(el->l_recs[i].e_cpos) +
5943 ocfs2_rec_clusters(el, &el->l_recs[i]);
5944 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
5945 clusters_to_del = 0;
5946 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
5947 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
5948 } else if (range > new_highest_cpos) {
5949 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
5950 le32_to_cpu(el->l_recs[i].e_cpos)) -
5957 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
5958 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
5960 BUG_ON(clusters_to_del == 0);
5962 mutex_lock(&tl_inode->i_mutex);
5964 /* ocfs2_truncate_log_needs_flush guarantees us at least one
5965 * record is free for use. If there isn't any, we flush to get
5966 * an empty truncate log. */
5967 if (ocfs2_truncate_log_needs_flush(osb)) {
5968 status = __ocfs2_flush_truncate_log(osb);
5975 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
5976 (struct ocfs2_dinode *)fe_bh->b_data,
5978 handle = ocfs2_start_trans(osb, credits);
5979 if (IS_ERR(handle)) {
5980 status = PTR_ERR(handle);
5986 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
5993 mutex_unlock(&tl_inode->i_mutex);
5996 ocfs2_commit_trans(osb, handle);
5999 ocfs2_reinit_path(path, 1);
6002 * The check above will catch the case where we've truncated
6003 * away all allocation.
6009 ocfs2_schedule_truncate_log_flush(osb, 1);
6012 mutex_unlock(&tl_inode->i_mutex);
6015 ocfs2_commit_trans(osb, handle);
6017 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6019 ocfs2_free_path(path);
6021 /* This will drop the ext_alloc cluster lock for us */
6022 ocfs2_free_truncate_context(tc);
6029 * Expects the inode to already be locked.
6031 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6032 struct inode *inode,
6033 struct buffer_head *fe_bh,
6034 struct ocfs2_truncate_context **tc)
6037 unsigned int new_i_clusters;
6038 struct ocfs2_dinode *fe;
6039 struct ocfs2_extent_block *eb;
6040 struct buffer_head *last_eb_bh = NULL;
6046 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6047 i_size_read(inode));
6048 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6050 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6051 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6052 (unsigned long long)le64_to_cpu(fe->i_size));
6054 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6060 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6062 if (fe->id2.i_list.l_tree_depth) {
6063 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6064 &last_eb_bh, OCFS2_BH_CACHED, inode);
6069 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6070 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6071 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6079 (*tc)->tc_last_eb_bh = last_eb_bh;
6085 ocfs2_free_truncate_context(*tc);
6092 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6095 * The caller is responsible for completing deallocation
6096 * before freeing the context.
6098 if (tc->tc_dealloc.c_first_suballocator != NULL)
6100 "Truncate completion has non-empty dealloc context\n");
6102 if (tc->tc_last_eb_bh)
6103 brelse(tc->tc_last_eb_bh);