V4L/DVB (6057): ivtv-fb: remove unused header includes
[linux-2.6] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slewing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *        - Maybe do a generic PID based on params used for
50  *          U3 and Drives ? Definitely need to factor code a bit
51  *          bettter... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *      - First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *      - Read fan speed from FCU, low level fan routines now deal
63  *        with errors & check fan status, though higher level don't
64  *        do much.
65  *      - Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *      - Fix build on ppc64 kernel
69  *      - Move back statics definitions to .c file
70  *      - Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *      - Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *      - Rework code accessing the ADC chips, make it more robust and
77  *        closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *      - Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *      - Enable driver for PowerMac7,3 machines
87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *      - Add new CPU cooling algorithm for machines with liquid cooling
89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *      - Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *      - Add basic support for Xserve G5
94  *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
95  *      - Use min/max macros here or there
96  *      - Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <asm/prom.h>
125 #include <asm/machdep.h>
126 #include <asm/io.h>
127 #include <asm/system.h>
128 #include <asm/sections.h>
129 #include <asm/of_device.h>
130 #include <asm/macio.h>
131 #include <asm/of_platform.h>
132
133 #include "therm_pm72.h"
134
135 #define VERSION "1.3"
136
137 #undef DEBUG
138
139 #ifdef DEBUG
140 #define DBG(args...)    printk(args)
141 #else
142 #define DBG(args...)    do { } while(0)
143 #endif
144
145
146 /*
147  * Driver statics
148  */
149
150 static struct of_device *               of_dev;
151 static struct i2c_adapter *             u3_0;
152 static struct i2c_adapter *             u3_1;
153 static struct i2c_adapter *             k2;
154 static struct i2c_client *              fcu;
155 static struct cpu_pid_state             cpu_state[2];
156 static struct basckside_pid_params      backside_params;
157 static struct backside_pid_state        backside_state;
158 static struct drives_pid_state          drives_state;
159 static struct dimm_pid_state            dimms_state;
160 static struct slots_pid_state           slots_state;
161 static int                              state;
162 static int                              cpu_count;
163 static int                              cpu_pid_type;
164 static pid_t                            ctrl_task;
165 static struct completion                ctrl_complete;
166 static int                              critical_state;
167 static int                              rackmac;
168 static s32                              dimm_output_clamp;
169 static int                              fcu_rpm_shift;
170 static int                              fcu_tickle_ticks;
171 static DECLARE_MUTEX(driver_lock);
172
173 /*
174  * We have 3 types of CPU PID control. One is "split" old style control
175  * for intake & exhaust fans, the other is "combined" control for both
176  * CPUs that also deals with the pumps when present. To be "compatible"
177  * with OS X at this point, we only use "COMBINED" on the machines that
178  * are identified as having the pumps (though that identification is at
179  * least dodgy). Ultimately, we could probably switch completely to this
180  * algorithm provided we hack it to deal with the UP case
181  */
182 #define CPU_PID_TYPE_SPLIT      0
183 #define CPU_PID_TYPE_COMBINED   1
184 #define CPU_PID_TYPE_RACKMAC    2
185
186 /*
187  * This table describes all fans in the FCU. The "id" and "type" values
188  * are defaults valid for all earlier machines. Newer machines will
189  * eventually override the table content based on the device-tree
190  */
191 struct fcu_fan_table
192 {
193         char*   loc;    /* location code */
194         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
195         int     id;     /* id or -1 */
196 };
197
198 #define FCU_FAN_RPM             0
199 #define FCU_FAN_PWM             1
200
201 #define FCU_FAN_ABSENT_ID       -1
202
203 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
204
205 struct fcu_fan_table    fcu_fans[] = {
206         [BACKSIDE_FAN_PWM_INDEX] = {
207                 .loc    = "BACKSIDE,SYS CTRLR FAN",
208                 .type   = FCU_FAN_PWM,
209                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
210         },
211         [DRIVES_FAN_RPM_INDEX] = {
212                 .loc    = "DRIVE BAY",
213                 .type   = FCU_FAN_RPM,
214                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
215         },
216         [SLOTS_FAN_PWM_INDEX] = {
217                 .loc    = "SLOT,PCI FAN",
218                 .type   = FCU_FAN_PWM,
219                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
220         },
221         [CPUA_INTAKE_FAN_RPM_INDEX] = {
222                 .loc    = "CPU A INTAKE",
223                 .type   = FCU_FAN_RPM,
224                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
225         },
226         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
227                 .loc    = "CPU A EXHAUST",
228                 .type   = FCU_FAN_RPM,
229                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
230         },
231         [CPUB_INTAKE_FAN_RPM_INDEX] = {
232                 .loc    = "CPU B INTAKE",
233                 .type   = FCU_FAN_RPM,
234                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
235         },
236         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
237                 .loc    = "CPU B EXHAUST",
238                 .type   = FCU_FAN_RPM,
239                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
240         },
241         /* pumps aren't present by default, have to be looked up in the
242          * device-tree
243          */
244         [CPUA_PUMP_RPM_INDEX] = {
245                 .loc    = "CPU A PUMP",
246                 .type   = FCU_FAN_RPM,          
247                 .id     = FCU_FAN_ABSENT_ID,
248         },
249         [CPUB_PUMP_RPM_INDEX] = {
250                 .loc    = "CPU B PUMP",
251                 .type   = FCU_FAN_RPM,
252                 .id     = FCU_FAN_ABSENT_ID,
253         },
254         /* Xserve fans */
255         [CPU_A1_FAN_RPM_INDEX] = {
256                 .loc    = "CPU A 1",
257                 .type   = FCU_FAN_RPM,
258                 .id     = FCU_FAN_ABSENT_ID,
259         },
260         [CPU_A2_FAN_RPM_INDEX] = {
261                 .loc    = "CPU A 2",
262                 .type   = FCU_FAN_RPM,
263                 .id     = FCU_FAN_ABSENT_ID,
264         },
265         [CPU_A3_FAN_RPM_INDEX] = {
266                 .loc    = "CPU A 3",
267                 .type   = FCU_FAN_RPM,
268                 .id     = FCU_FAN_ABSENT_ID,
269         },
270         [CPU_B1_FAN_RPM_INDEX] = {
271                 .loc    = "CPU B 1",
272                 .type   = FCU_FAN_RPM,
273                 .id     = FCU_FAN_ABSENT_ID,
274         },
275         [CPU_B2_FAN_RPM_INDEX] = {
276                 .loc    = "CPU B 2",
277                 .type   = FCU_FAN_RPM,
278                 .id     = FCU_FAN_ABSENT_ID,
279         },
280         [CPU_B3_FAN_RPM_INDEX] = {
281                 .loc    = "CPU B 3",
282                 .type   = FCU_FAN_RPM,
283                 .id     = FCU_FAN_ABSENT_ID,
284         },
285 };
286
287 /*
288  * i2c_driver structure to attach to the host i2c controller
289  */
290
291 static int therm_pm72_attach(struct i2c_adapter *adapter);
292 static int therm_pm72_detach(struct i2c_adapter *adapter);
293
294 static struct i2c_driver therm_pm72_driver =
295 {
296         .driver = {
297                 .name   = "therm_pm72",
298         },
299         .attach_adapter = therm_pm72_attach,
300         .detach_adapter = therm_pm72_detach,
301 };
302
303 /*
304  * Utility function to create an i2c_client structure and
305  * attach it to one of u3 adapters
306  */
307 static struct i2c_client *attach_i2c_chip(int id, const char *name)
308 {
309         struct i2c_client *clt;
310         struct i2c_adapter *adap;
311
312         if (id & 0x200)
313                 adap = k2;
314         else if (id & 0x100)
315                 adap = u3_1;
316         else
317                 adap = u3_0;
318         if (adap == NULL)
319                 return NULL;
320
321         clt = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
322         if (clt == NULL)
323                 return NULL;
324
325         clt->addr = (id >> 1) & 0x7f;
326         clt->adapter = adap;
327         clt->driver = &therm_pm72_driver;
328         strncpy(clt->name, name, I2C_NAME_SIZE-1);
329
330         if (i2c_attach_client(clt)) {
331                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
332                 kfree(clt);
333                 return NULL;
334         }
335         return clt;
336 }
337
338 /*
339  * Utility function to get rid of the i2c_client structure
340  * (will also detach from the adapter hopepfully)
341  */
342 static void detach_i2c_chip(struct i2c_client *clt)
343 {
344         i2c_detach_client(clt);
345         kfree(clt);
346 }
347
348 /*
349  * Here are the i2c chip access wrappers
350  */
351
352 static void initialize_adc(struct cpu_pid_state *state)
353 {
354         int rc;
355         u8 buf[2];
356
357         /* Read ADC the configuration register and cache it. We
358          * also make sure Config2 contains proper values, I've seen
359          * cases where we got stale grabage in there, thus preventing
360          * proper reading of conv. values
361          */
362
363         /* Clear Config2 */
364         buf[0] = 5;
365         buf[1] = 0;
366         i2c_master_send(state->monitor, buf, 2);
367
368         /* Read & cache Config1 */
369         buf[0] = 1;
370         rc = i2c_master_send(state->monitor, buf, 1);
371         if (rc > 0) {
372                 rc = i2c_master_recv(state->monitor, buf, 1);
373                 if (rc > 0) {
374                         state->adc_config = buf[0];
375                         DBG("ADC config reg: %02x\n", state->adc_config);
376                         /* Disable shutdown mode */
377                         state->adc_config &= 0xfe;
378                         buf[0] = 1;
379                         buf[1] = state->adc_config;
380                         rc = i2c_master_send(state->monitor, buf, 2);
381                 }
382         }
383         if (rc <= 0)
384                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
385                        " register !\n");
386 }
387
388 static int read_smon_adc(struct cpu_pid_state *state, int chan)
389 {
390         int rc, data, tries = 0;
391         u8 buf[2];
392
393         for (;;) {
394                 /* Set channel */
395                 buf[0] = 1;
396                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
397                 rc = i2c_master_send(state->monitor, buf, 2);
398                 if (rc <= 0)
399                         goto error;
400                 /* Wait for convertion */
401                 msleep(1);
402                 /* Switch to data register */
403                 buf[0] = 4;
404                 rc = i2c_master_send(state->monitor, buf, 1);
405                 if (rc <= 0)
406                         goto error;
407                 /* Read result */
408                 rc = i2c_master_recv(state->monitor, buf, 2);
409                 if (rc < 0)
410                         goto error;
411                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
412                 return data >> 6;
413         error:
414                 DBG("Error reading ADC, retrying...\n");
415                 if (++tries > 10) {
416                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
417                         return -1;
418                 }
419                 msleep(10);
420         }
421 }
422
423 static int read_lm87_reg(struct i2c_client * chip, int reg)
424 {
425         int rc, tries = 0;
426         u8 buf;
427
428         for (;;) {
429                 /* Set address */
430                 buf = (u8)reg;
431                 rc = i2c_master_send(chip, &buf, 1);
432                 if (rc <= 0)
433                         goto error;
434                 rc = i2c_master_recv(chip, &buf, 1);
435                 if (rc <= 0)
436                         goto error;
437                 return (int)buf;
438         error:
439                 DBG("Error reading LM87, retrying...\n");
440                 if (++tries > 10) {
441                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
442                         return -1;
443                 }
444                 msleep(10);
445         }
446 }
447
448 static int fan_read_reg(int reg, unsigned char *buf, int nb)
449 {
450         int tries, nr, nw;
451
452         buf[0] = reg;
453         tries = 0;
454         for (;;) {
455                 nw = i2c_master_send(fcu, buf, 1);
456                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
457                         break;
458                 msleep(10);
459                 ++tries;
460         }
461         if (nw <= 0) {
462                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
463                 return -EIO;
464         }
465         tries = 0;
466         for (;;) {
467                 nr = i2c_master_recv(fcu, buf, nb);
468                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
469                         break;
470                 msleep(10);
471                 ++tries;
472         }
473         if (nr <= 0)
474                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
475         return nr;
476 }
477
478 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
479 {
480         int tries, nw;
481         unsigned char buf[16];
482
483         buf[0] = reg;
484         memcpy(buf+1, ptr, nb);
485         ++nb;
486         tries = 0;
487         for (;;) {
488                 nw = i2c_master_send(fcu, buf, nb);
489                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
490                         break;
491                 msleep(10);
492                 ++tries;
493         }
494         if (nw < 0)
495                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
496         return nw;
497 }
498
499 static int start_fcu(void)
500 {
501         unsigned char buf = 0xff;
502         int rc;
503
504         rc = fan_write_reg(0xe, &buf, 1);
505         if (rc < 0)
506                 return -EIO;
507         rc = fan_write_reg(0x2e, &buf, 1);
508         if (rc < 0)
509                 return -EIO;
510         rc = fan_read_reg(0, &buf, 1);
511         if (rc < 0)
512                 return -EIO;
513         fcu_rpm_shift = (buf == 1) ? 2 : 3;
514         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
515                fcu_rpm_shift);
516
517         return 0;
518 }
519
520 static int set_rpm_fan(int fan_index, int rpm)
521 {
522         unsigned char buf[2];
523         int rc, id, min, max;
524
525         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
526                 return -EINVAL;
527         id = fcu_fans[fan_index].id; 
528         if (id == FCU_FAN_ABSENT_ID)
529                 return -EINVAL;
530
531         min = 2400 >> fcu_rpm_shift;
532         max = 56000 >> fcu_rpm_shift;
533
534         if (rpm < min)
535                 rpm = min;
536         else if (rpm > max)
537                 rpm = max;
538         buf[0] = rpm >> (8 - fcu_rpm_shift);
539         buf[1] = rpm << fcu_rpm_shift;
540         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
541         if (rc < 0)
542                 return -EIO;
543         return 0;
544 }
545
546 static int get_rpm_fan(int fan_index, int programmed)
547 {
548         unsigned char failure;
549         unsigned char active;
550         unsigned char buf[2];
551         int rc, id, reg_base;
552
553         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
554                 return -EINVAL;
555         id = fcu_fans[fan_index].id; 
556         if (id == FCU_FAN_ABSENT_ID)
557                 return -EINVAL;
558
559         rc = fan_read_reg(0xb, &failure, 1);
560         if (rc != 1)
561                 return -EIO;
562         if ((failure & (1 << id)) != 0)
563                 return -EFAULT;
564         rc = fan_read_reg(0xd, &active, 1);
565         if (rc != 1)
566                 return -EIO;
567         if ((active & (1 << id)) == 0)
568                 return -ENXIO;
569
570         /* Programmed value or real current speed */
571         reg_base = programmed ? 0x10 : 0x11;
572         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
573         if (rc != 2)
574                 return -EIO;
575
576         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
577 }
578
579 static int set_pwm_fan(int fan_index, int pwm)
580 {
581         unsigned char buf[2];
582         int rc, id;
583
584         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
585                 return -EINVAL;
586         id = fcu_fans[fan_index].id; 
587         if (id == FCU_FAN_ABSENT_ID)
588                 return -EINVAL;
589
590         if (pwm < 10)
591                 pwm = 10;
592         else if (pwm > 100)
593                 pwm = 100;
594         pwm = (pwm * 2559) / 1000;
595         buf[0] = pwm;
596         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
597         if (rc < 0)
598                 return rc;
599         return 0;
600 }
601
602 static int get_pwm_fan(int fan_index)
603 {
604         unsigned char failure;
605         unsigned char active;
606         unsigned char buf[2];
607         int rc, id;
608
609         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
610                 return -EINVAL;
611         id = fcu_fans[fan_index].id; 
612         if (id == FCU_FAN_ABSENT_ID)
613                 return -EINVAL;
614
615         rc = fan_read_reg(0x2b, &failure, 1);
616         if (rc != 1)
617                 return -EIO;
618         if ((failure & (1 << id)) != 0)
619                 return -EFAULT;
620         rc = fan_read_reg(0x2d, &active, 1);
621         if (rc != 1)
622                 return -EIO;
623         if ((active & (1 << id)) == 0)
624                 return -ENXIO;
625
626         /* Programmed value or real current speed */
627         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
628         if (rc != 1)
629                 return -EIO;
630
631         return (buf[0] * 1000) / 2559;
632 }
633
634 static void tickle_fcu(void)
635 {
636         int pwm;
637
638         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
639
640         DBG("FCU Tickle, slots fan is: %d\n", pwm);
641         if (pwm < 0)
642                 pwm = 100;
643
644         if (!rackmac) {
645                 pwm = SLOTS_FAN_DEFAULT_PWM;
646         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
647                 pwm = SLOTS_PID_OUTPUT_MIN;
648
649         /* That is hopefully enough to make the FCU happy */
650         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
651 }
652
653
654 /*
655  * Utility routine to read the CPU calibration EEPROM data
656  * from the device-tree
657  */
658 static int read_eeprom(int cpu, struct mpu_data *out)
659 {
660         struct device_node *np;
661         char nodename[64];
662         const u8 *data;
663         int len;
664
665         /* prom.c routine for finding a node by path is a bit brain dead
666          * and requires exact @xxx unit numbers. This is a bit ugly but
667          * will work for these machines
668          */
669         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
670         np = of_find_node_by_path(nodename);
671         if (np == NULL) {
672                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
673                 return -ENODEV;
674         }
675         data = of_get_property(np, "cpuid", &len);
676         if (data == NULL) {
677                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
678                 of_node_put(np);
679                 return -ENODEV;
680         }
681         memcpy(out, data, sizeof(struct mpu_data));
682         of_node_put(np);
683         
684         return 0;
685 }
686
687 static void fetch_cpu_pumps_minmax(void)
688 {
689         struct cpu_pid_state *state0 = &cpu_state[0];
690         struct cpu_pid_state *state1 = &cpu_state[1];
691         u16 pump_min = 0, pump_max = 0xffff;
692         u16 tmp[4];
693
694         /* Try to fetch pumps min/max infos from eeprom */
695
696         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
697         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
698                 pump_min = max(pump_min, tmp[0]);
699                 pump_max = min(pump_max, tmp[1]);
700         }
701         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
702                 pump_min = max(pump_min, tmp[2]);
703                 pump_max = min(pump_max, tmp[3]);
704         }
705
706         /* Double check the values, this _IS_ needed as the EEPROM on
707          * some dual 2.5Ghz G5s seem, at least, to have both min & max
708          * same to the same value ... (grrrr)
709          */
710         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
711                 pump_min = CPU_PUMP_OUTPUT_MIN;
712                 pump_max = CPU_PUMP_OUTPUT_MAX;
713         }
714
715         state0->pump_min = state1->pump_min = pump_min;
716         state0->pump_max = state1->pump_max = pump_max;
717 }
718
719 /* 
720  * Now, unfortunately, sysfs doesn't give us a nice void * we could
721  * pass around to the attribute functions, so we don't really have
722  * choice but implement a bunch of them...
723  *
724  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
725  * the input twice... I accept patches :)
726  */
727 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
728 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
729 {                                                               \
730         ssize_t r;                                              \
731         down(&driver_lock);                                     \
732         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
733         up(&driver_lock);                                       \
734         return r;                                               \
735 }
736 #define BUILD_SHOW_FUNC_INT(name, data)                         \
737 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
738 {                                                               \
739         return sprintf(buf, "%d", data);                        \
740 }
741
742 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
743 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
744 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
745 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
746 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
747
748 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
749 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
750 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
751 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
752 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
753
754 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
755 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
756
757 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
758 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
759
760 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
761 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
762
763 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
764
765 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
766 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
767 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
768 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
769 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
770
771 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
772 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
773 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
774 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
775 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
776
777 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
778 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
779
780 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
781 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
782
783 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
784 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
785
786 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
787
788 /*
789  * CPUs fans control loop
790  */
791
792 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
793 {
794         s32 ltemp, volts, amps;
795         int index, rc = 0;
796
797         /* Default (in case of error) */
798         *temp = state->cur_temp;
799         *power = state->cur_power;
800
801         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
802                 index = (state->index == 0) ?
803                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
804         else
805                 index = (state->index == 0) ?
806                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
807
808         /* Read current fan status */
809         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
810         if (rc < 0) {
811                 /* XXX What do we do now ? Nothing for now, keep old value, but
812                  * return error upstream
813                  */
814                 DBG("  cpu %d, fan reading error !\n", state->index);
815         } else {
816                 state->rpm = rc;
817                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
818         }
819
820         /* Get some sensor readings and scale it */
821         ltemp = read_smon_adc(state, 1);
822         if (ltemp == -1) {
823                 /* XXX What do we do now ? */
824                 state->overtemp++;
825                 if (rc == 0)
826                         rc = -EIO;
827                 DBG("  cpu %d, temp reading error !\n", state->index);
828         } else {
829                 /* Fixup temperature according to diode calibration
830                  */
831                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
832                     state->index,
833                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
834                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
835                 state->last_temp = *temp;
836                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
837         }
838
839         /*
840          * Read voltage & current and calculate power
841          */
842         volts = read_smon_adc(state, 3);
843         amps = read_smon_adc(state, 4);
844
845         /* Scale voltage and current raw sensor values according to fixed scales
846          * obtained in Darwin and calculate power from I and V
847          */
848         volts *= ADC_CPU_VOLTAGE_SCALE;
849         amps *= ADC_CPU_CURRENT_SCALE;
850         *power = (((u64)volts) * ((u64)amps)) >> 16;
851         state->voltage = volts;
852         state->current_a = amps;
853         state->last_power = *power;
854
855         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
856             state->index, FIX32TOPRINT(state->current_a),
857             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
858
859         return 0;
860 }
861
862 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
863 {
864         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
865         s64 integ_p, deriv_p, prop_p, sum; 
866         int i;
867
868         /* Calculate power target value (could be done once for all)
869          * and convert to a 16.16 fp number
870          */
871         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
872         DBG("  power target: %d.%03d, error: %d.%03d\n",
873             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
874
875         /* Store temperature and power in history array */
876         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
877         state->temp_history[state->cur_temp] = temp;
878         state->cur_power = (state->cur_power + 1) % state->count_power;
879         state->power_history[state->cur_power] = power;
880         state->error_history[state->cur_power] = power_target - power;
881         
882         /* If first loop, fill the history table */
883         if (state->first) {
884                 for (i = 0; i < (state->count_power - 1); i++) {
885                         state->cur_power = (state->cur_power + 1) % state->count_power;
886                         state->power_history[state->cur_power] = power;
887                         state->error_history[state->cur_power] = power_target - power;
888                 }
889                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
890                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
891                         state->temp_history[state->cur_temp] = temp;                    
892                 }
893                 state->first = 0;
894         }
895
896         /* Calculate the integral term normally based on the "power" values */
897         sum = 0;
898         integral = 0;
899         for (i = 0; i < state->count_power; i++)
900                 integral += state->error_history[i];
901         integral *= CPU_PID_INTERVAL;
902         DBG("  integral: %08x\n", integral);
903
904         /* Calculate the adjusted input (sense value).
905          *   G_r is 12.20
906          *   integ is 16.16
907          *   so the result is 28.36
908          *
909          * input target is mpu.ttarget, input max is mpu.tmax
910          */
911         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
912         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
913         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
914         adj_in_target = (state->mpu.ttarget << 16);
915         if (adj_in_target > sval)
916                 adj_in_target = sval;
917         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
918             state->mpu.ttarget);
919
920         /* Calculate the derivative term */
921         derivative = state->temp_history[state->cur_temp] -
922                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
923                                     % CPU_TEMP_HISTORY_SIZE];
924         derivative /= CPU_PID_INTERVAL;
925         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
926         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
927         sum += deriv_p;
928
929         /* Calculate the proportional term */
930         proportional = temp - adj_in_target;
931         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
932         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
933         sum += prop_p;
934
935         /* Scale sum */
936         sum >>= 36;
937
938         DBG("   sum: %d\n", (int)sum);
939         state->rpm += (s32)sum;
940 }
941
942 static void do_monitor_cpu_combined(void)
943 {
944         struct cpu_pid_state *state0 = &cpu_state[0];
945         struct cpu_pid_state *state1 = &cpu_state[1];
946         s32 temp0, power0, temp1, power1;
947         s32 temp_combi, power_combi;
948         int rc, intake, pump;
949
950         rc = do_read_one_cpu_values(state0, &temp0, &power0);
951         if (rc < 0) {
952                 /* XXX What do we do now ? */
953         }
954         state1->overtemp = 0;
955         rc = do_read_one_cpu_values(state1, &temp1, &power1);
956         if (rc < 0) {
957                 /* XXX What do we do now ? */
958         }
959         if (state1->overtemp)
960                 state0->overtemp++;
961
962         temp_combi = max(temp0, temp1);
963         power_combi = max(power0, power1);
964
965         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
966          * full blown immediately and try to trigger a shutdown
967          */
968         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
969                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
970                        temp_combi >> 16);
971                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
972         } else if (temp_combi > (state0->mpu.tmax << 16))
973                 state0->overtemp++;
974         else
975                 state0->overtemp = 0;
976         if (state0->overtemp >= CPU_MAX_OVERTEMP)
977                 critical_state = 1;
978         if (state0->overtemp > 0) {
979                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
980                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
981                 pump = state0->pump_max;
982                 goto do_set_fans;
983         }
984
985         /* Do the PID */
986         do_cpu_pid(state0, temp_combi, power_combi);
987
988         /* Range check */
989         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
990         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
991
992         /* Calculate intake fan speed */
993         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
994         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
995         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
996         state0->intake_rpm = intake;
997
998         /* Calculate pump speed */
999         pump = (state0->rpm * state0->pump_max) /
1000                 state0->mpu.rmaxn_exhaust_fan;
1001         pump = min(pump, state0->pump_max);
1002         pump = max(pump, state0->pump_min);
1003         
1004  do_set_fans:
1005         /* We copy values from state 0 to state 1 for /sysfs */
1006         state1->rpm = state0->rpm;
1007         state1->intake_rpm = state0->intake_rpm;
1008
1009         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
1010             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
1011
1012         /* We should check for errors, shouldn't we ? But then, what
1013          * do we do once the error occurs ? For FCU notified fan
1014          * failures (-EFAULT) we probably want to notify userland
1015          * some way...
1016          */
1017         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1018         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1019         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1020         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1021
1022         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1023                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1024         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1025                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1026 }
1027
1028 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1029 {
1030         s32 temp, power;
1031         int rc, intake;
1032
1033         /* Read current fan status */
1034         rc = do_read_one_cpu_values(state, &temp, &power);
1035         if (rc < 0) {
1036                 /* XXX What do we do now ? */
1037         }
1038
1039         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1040          * full blown immediately and try to trigger a shutdown
1041          */
1042         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1043                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1044                        " (%d) !\n",
1045                        state->index, temp >> 16);
1046                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1047         } else if (temp > (state->mpu.tmax << 16))
1048                 state->overtemp++;
1049         else
1050                 state->overtemp = 0;
1051         if (state->overtemp >= CPU_MAX_OVERTEMP)
1052                 critical_state = 1;
1053         if (state->overtemp > 0) {
1054                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1055                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1056                 goto do_set_fans;
1057         }
1058
1059         /* Do the PID */
1060         do_cpu_pid(state, temp, power);
1061
1062         /* Range check */
1063         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1064         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1065
1066         /* Calculate intake fan */
1067         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1068         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1069         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1070         state->intake_rpm = intake;
1071
1072  do_set_fans:
1073         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1074             state->index, (int)state->rpm, intake, state->overtemp);
1075
1076         /* We should check for errors, shouldn't we ? But then, what
1077          * do we do once the error occurs ? For FCU notified fan
1078          * failures (-EFAULT) we probably want to notify userland
1079          * some way...
1080          */
1081         if (state->index == 0) {
1082                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1083                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1084         } else {
1085                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1086                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1087         }
1088 }
1089
1090 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1091 {
1092         s32 temp, power, fan_min;
1093         int rc;
1094
1095         /* Read current fan status */
1096         rc = do_read_one_cpu_values(state, &temp, &power);
1097         if (rc < 0) {
1098                 /* XXX What do we do now ? */
1099         }
1100
1101         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1102          * full blown immediately and try to trigger a shutdown
1103          */
1104         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1105                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1106                        " (%d) !\n",
1107                        state->index, temp >> 16);
1108                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1109         } else if (temp > (state->mpu.tmax << 16))
1110                 state->overtemp++;
1111         else
1112                 state->overtemp = 0;
1113         if (state->overtemp >= CPU_MAX_OVERTEMP)
1114                 critical_state = 1;
1115         if (state->overtemp > 0) {
1116                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1117                 goto do_set_fans;
1118         }
1119
1120         /* Do the PID */
1121         do_cpu_pid(state, temp, power);
1122
1123         /* Check clamp from dimms */
1124         fan_min = dimm_output_clamp;
1125         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1126
1127         DBG(" CPU min mpu = %d, min dimm = %d\n",
1128             state->mpu.rminn_intake_fan, dimm_output_clamp);
1129
1130         state->rpm = max(state->rpm, (int)fan_min);
1131         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1132         state->intake_rpm = state->rpm;
1133
1134  do_set_fans:
1135         DBG("** CPU %d RPM: %d overtemp: %d\n",
1136             state->index, (int)state->rpm, state->overtemp);
1137
1138         /* We should check for errors, shouldn't we ? But then, what
1139          * do we do once the error occurs ? For FCU notified fan
1140          * failures (-EFAULT) we probably want to notify userland
1141          * some way...
1142          */
1143         if (state->index == 0) {
1144                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1145                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1146                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1147         } else {
1148                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1149                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1150                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1151         }
1152 }
1153
1154 /*
1155  * Initialize the state structure for one CPU control loop
1156  */
1157 static int init_cpu_state(struct cpu_pid_state *state, int index)
1158 {
1159         state->index = index;
1160         state->first = 1;
1161         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1162         state->overtemp = 0;
1163         state->adc_config = 0x00;
1164
1165
1166         if (index == 0)
1167                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1168         else if (index == 1)
1169                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1170         if (state->monitor == NULL)
1171                 goto fail;
1172
1173         if (read_eeprom(index, &state->mpu))
1174                 goto fail;
1175
1176         state->count_power = state->mpu.tguardband;
1177         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1178                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1179                 state->count_power = CPU_POWER_HISTORY_SIZE;
1180         }
1181         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1182
1183         if (index == 0) {
1184                 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1185                 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1186                 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1187                 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1188                 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1189         } else {
1190                 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1191                 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1192                 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1193                 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1194                 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1195         }
1196
1197         return 0;
1198  fail:
1199         if (state->monitor)
1200                 detach_i2c_chip(state->monitor);
1201         state->monitor = NULL;
1202         
1203         return -ENODEV;
1204 }
1205
1206 /*
1207  * Dispose of the state data for one CPU control loop
1208  */
1209 static void dispose_cpu_state(struct cpu_pid_state *state)
1210 {
1211         if (state->monitor == NULL)
1212                 return;
1213
1214         if (state->index == 0) {
1215                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1216                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1217                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1218                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1219                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1220         } else {
1221                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1222                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1224                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1225                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1226         }
1227
1228         detach_i2c_chip(state->monitor);
1229         state->monitor = NULL;
1230 }
1231
1232 /*
1233  * Motherboard backside & U3 heatsink fan control loop
1234  */
1235 static void do_monitor_backside(struct backside_pid_state *state)
1236 {
1237         s32 temp, integral, derivative, fan_min;
1238         s64 integ_p, deriv_p, prop_p, sum; 
1239         int i, rc;
1240
1241         if (--state->ticks != 0)
1242                 return;
1243         state->ticks = backside_params.interval;
1244
1245         DBG("backside:\n");
1246
1247         /* Check fan status */
1248         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1249         if (rc < 0) {
1250                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1251                 /* XXX What do we do now ? */
1252         } else
1253                 state->pwm = rc;
1254         DBG("  current pwm: %d\n", state->pwm);
1255
1256         /* Get some sensor readings */
1257         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1258         state->last_temp = temp;
1259         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1260             FIX32TOPRINT(backside_params.input_target));
1261
1262         /* Store temperature and error in history array */
1263         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1264         state->sample_history[state->cur_sample] = temp;
1265         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1266         
1267         /* If first loop, fill the history table */
1268         if (state->first) {
1269                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1270                         state->cur_sample = (state->cur_sample + 1) %
1271                                 BACKSIDE_PID_HISTORY_SIZE;
1272                         state->sample_history[state->cur_sample] = temp;
1273                         state->error_history[state->cur_sample] =
1274                                 temp - backside_params.input_target;
1275                 }
1276                 state->first = 0;
1277         }
1278
1279         /* Calculate the integral term */
1280         sum = 0;
1281         integral = 0;
1282         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1283                 integral += state->error_history[i];
1284         integral *= backside_params.interval;
1285         DBG("  integral: %08x\n", integral);
1286         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1287         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1288         sum += integ_p;
1289
1290         /* Calculate the derivative term */
1291         derivative = state->error_history[state->cur_sample] -
1292                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1293                                     % BACKSIDE_PID_HISTORY_SIZE];
1294         derivative /= backside_params.interval;
1295         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1296         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1297         sum += deriv_p;
1298
1299         /* Calculate the proportional term */
1300         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1301         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1302         sum += prop_p;
1303
1304         /* Scale sum */
1305         sum >>= 36;
1306
1307         DBG("   sum: %d\n", (int)sum);
1308         if (backside_params.additive)
1309                 state->pwm += (s32)sum;
1310         else
1311                 state->pwm = sum;
1312
1313         /* Check for clamp */
1314         fan_min = (dimm_output_clamp * 100) / 14000;
1315         fan_min = max(fan_min, backside_params.output_min);
1316
1317         state->pwm = max(state->pwm, fan_min);
1318         state->pwm = min(state->pwm, backside_params.output_max);
1319
1320         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1321         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1322 }
1323
1324 /*
1325  * Initialize the state structure for the backside fan control loop
1326  */
1327 static int init_backside_state(struct backside_pid_state *state)
1328 {
1329         struct device_node *u3;
1330         int u3h = 1; /* conservative by default */
1331
1332         /*
1333          * There are different PID params for machines with U3 and machines
1334          * with U3H, pick the right ones now
1335          */
1336         u3 = of_find_node_by_path("/u3@0,f8000000");
1337         if (u3 != NULL) {
1338                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1339                 if (vers)
1340                         if (((*vers) & 0x3f) < 0x34)
1341                                 u3h = 0;
1342                 of_node_put(u3);
1343         }
1344
1345         if (rackmac) {
1346                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1347                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1348                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1349                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1350                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1351                 backside_params.G_r = BACKSIDE_PID_G_r;
1352                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1353                 backside_params.additive = 0;
1354         } else if (u3h) {
1355                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1356                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1357                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1358                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1359                 backside_params.G_p = BACKSIDE_PID_G_p;
1360                 backside_params.G_r = BACKSIDE_PID_G_r;
1361                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1362                 backside_params.additive = 1;
1363         } else {
1364                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1365                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1366                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1367                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1368                 backside_params.G_p = BACKSIDE_PID_G_p;
1369                 backside_params.G_r = BACKSIDE_PID_G_r;
1370                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1371                 backside_params.additive = 1;
1372         }
1373
1374         state->ticks = 1;
1375         state->first = 1;
1376         state->pwm = 50;
1377
1378         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1379         if (state->monitor == NULL)
1380                 return -ENODEV;
1381
1382         device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1383         device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1384
1385         return 0;
1386 }
1387
1388 /*
1389  * Dispose of the state data for the backside control loop
1390  */
1391 static void dispose_backside_state(struct backside_pid_state *state)
1392 {
1393         if (state->monitor == NULL)
1394                 return;
1395
1396         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1397         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1398
1399         detach_i2c_chip(state->monitor);
1400         state->monitor = NULL;
1401 }
1402  
1403 /*
1404  * Drives bay fan control loop
1405  */
1406 static void do_monitor_drives(struct drives_pid_state *state)
1407 {
1408         s32 temp, integral, derivative;
1409         s64 integ_p, deriv_p, prop_p, sum; 
1410         int i, rc;
1411
1412         if (--state->ticks != 0)
1413                 return;
1414         state->ticks = DRIVES_PID_INTERVAL;
1415
1416         DBG("drives:\n");
1417
1418         /* Check fan status */
1419         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420         if (rc < 0) {
1421                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422                 /* XXX What do we do now ? */
1423         } else
1424                 state->rpm = rc;
1425         DBG("  current rpm: %d\n", state->rpm);
1426
1427         /* Get some sensor readings */
1428         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429                                                     DS1775_TEMP)) << 8;
1430         state->last_temp = temp;
1431         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1433
1434         /* Store temperature and error in history array */
1435         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436         state->sample_history[state->cur_sample] = temp;
1437         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1438         
1439         /* If first loop, fill the history table */
1440         if (state->first) {
1441                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442                         state->cur_sample = (state->cur_sample + 1) %
1443                                 DRIVES_PID_HISTORY_SIZE;
1444                         state->sample_history[state->cur_sample] = temp;
1445                         state->error_history[state->cur_sample] =
1446                                 temp - DRIVES_PID_INPUT_TARGET;
1447                 }
1448                 state->first = 0;
1449         }
1450
1451         /* Calculate the integral term */
1452         sum = 0;
1453         integral = 0;
1454         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455                 integral += state->error_history[i];
1456         integral *= DRIVES_PID_INTERVAL;
1457         DBG("  integral: %08x\n", integral);
1458         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1460         sum += integ_p;
1461
1462         /* Calculate the derivative term */
1463         derivative = state->error_history[state->cur_sample] -
1464                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465                                     % DRIVES_PID_HISTORY_SIZE];
1466         derivative /= DRIVES_PID_INTERVAL;
1467         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1469         sum += deriv_p;
1470
1471         /* Calculate the proportional term */
1472         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1474         sum += prop_p;
1475
1476         /* Scale sum */
1477         sum >>= 36;
1478
1479         DBG("   sum: %d\n", (int)sum);
1480         state->rpm += (s32)sum;
1481
1482         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1484
1485         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1487 }
1488
1489 /*
1490  * Initialize the state structure for the drives bay fan control loop
1491  */
1492 static int init_drives_state(struct drives_pid_state *state)
1493 {
1494         state->ticks = 1;
1495         state->first = 1;
1496         state->rpm = 1000;
1497
1498         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1499         if (state->monitor == NULL)
1500                 return -ENODEV;
1501
1502         device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1503         device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1504
1505         return 0;
1506 }
1507
1508 /*
1509  * Dispose of the state data for the drives control loop
1510  */
1511 static void dispose_drives_state(struct drives_pid_state *state)
1512 {
1513         if (state->monitor == NULL)
1514                 return;
1515
1516         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1517         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1518
1519         detach_i2c_chip(state->monitor);
1520         state->monitor = NULL;
1521 }
1522
1523 /*
1524  * DIMMs temp control loop
1525  */
1526 static void do_monitor_dimms(struct dimm_pid_state *state)
1527 {
1528         s32 temp, integral, derivative, fan_min;
1529         s64 integ_p, deriv_p, prop_p, sum;
1530         int i;
1531
1532         if (--state->ticks != 0)
1533                 return;
1534         state->ticks = DIMM_PID_INTERVAL;
1535
1536         DBG("DIMM:\n");
1537
1538         DBG("  current value: %d\n", state->output);
1539
1540         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1541         if (temp < 0)
1542                 return;
1543         temp <<= 16;
1544         state->last_temp = temp;
1545         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1546             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1547
1548         /* Store temperature and error in history array */
1549         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1550         state->sample_history[state->cur_sample] = temp;
1551         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1552
1553         /* If first loop, fill the history table */
1554         if (state->first) {
1555                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1556                         state->cur_sample = (state->cur_sample + 1) %
1557                                 DIMM_PID_HISTORY_SIZE;
1558                         state->sample_history[state->cur_sample] = temp;
1559                         state->error_history[state->cur_sample] =
1560                                 temp - DIMM_PID_INPUT_TARGET;
1561                 }
1562                 state->first = 0;
1563         }
1564
1565         /* Calculate the integral term */
1566         sum = 0;
1567         integral = 0;
1568         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1569                 integral += state->error_history[i];
1570         integral *= DIMM_PID_INTERVAL;
1571         DBG("  integral: %08x\n", integral);
1572         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1573         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1574         sum += integ_p;
1575
1576         /* Calculate the derivative term */
1577         derivative = state->error_history[state->cur_sample] -
1578                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1579                                     % DIMM_PID_HISTORY_SIZE];
1580         derivative /= DIMM_PID_INTERVAL;
1581         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1582         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1583         sum += deriv_p;
1584
1585         /* Calculate the proportional term */
1586         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1587         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1588         sum += prop_p;
1589
1590         /* Scale sum */
1591         sum >>= 36;
1592
1593         DBG("   sum: %d\n", (int)sum);
1594         state->output = (s32)sum;
1595         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1596         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1597         dimm_output_clamp = state->output;
1598
1599         DBG("** DIMM clamp value: %d\n", (int)state->output);
1600
1601         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1602         fan_min = (dimm_output_clamp * 100) / 14000;
1603         fan_min = max(fan_min, backside_params.output_min);
1604         if (backside_state.pwm < fan_min) {
1605                 backside_state.pwm = fan_min;
1606                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1607                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1608         }
1609 }
1610
1611 /*
1612  * Initialize the state structure for the DIMM temp control loop
1613  */
1614 static int init_dimms_state(struct dimm_pid_state *state)
1615 {
1616         state->ticks = 1;
1617         state->first = 1;
1618         state->output = 4000;
1619
1620         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1621         if (state->monitor == NULL)
1622                 return -ENODEV;
1623
1624         device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1625
1626         return 0;
1627 }
1628
1629 /*
1630  * Dispose of the state data for the DIMM control loop
1631  */
1632 static void dispose_dimms_state(struct dimm_pid_state *state)
1633 {
1634         if (state->monitor == NULL)
1635                 return;
1636
1637         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1638
1639         detach_i2c_chip(state->monitor);
1640         state->monitor = NULL;
1641 }
1642
1643 /*
1644  * Slots fan control loop
1645  */
1646 static void do_monitor_slots(struct slots_pid_state *state)
1647 {
1648         s32 temp, integral, derivative;
1649         s64 integ_p, deriv_p, prop_p, sum;
1650         int i, rc;
1651
1652         if (--state->ticks != 0)
1653                 return;
1654         state->ticks = SLOTS_PID_INTERVAL;
1655
1656         DBG("slots:\n");
1657
1658         /* Check fan status */
1659         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1660         if (rc < 0) {
1661                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1662                 /* XXX What do we do now ? */
1663         } else
1664                 state->pwm = rc;
1665         DBG("  current pwm: %d\n", state->pwm);
1666
1667         /* Get some sensor readings */
1668         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1669                                                     DS1775_TEMP)) << 8;
1670         state->last_temp = temp;
1671         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1672             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1673
1674         /* Store temperature and error in history array */
1675         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1676         state->sample_history[state->cur_sample] = temp;
1677         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1678
1679         /* If first loop, fill the history table */
1680         if (state->first) {
1681                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1682                         state->cur_sample = (state->cur_sample + 1) %
1683                                 SLOTS_PID_HISTORY_SIZE;
1684                         state->sample_history[state->cur_sample] = temp;
1685                         state->error_history[state->cur_sample] =
1686                                 temp - SLOTS_PID_INPUT_TARGET;
1687                 }
1688                 state->first = 0;
1689         }
1690
1691         /* Calculate the integral term */
1692         sum = 0;
1693         integral = 0;
1694         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1695                 integral += state->error_history[i];
1696         integral *= SLOTS_PID_INTERVAL;
1697         DBG("  integral: %08x\n", integral);
1698         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1699         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1700         sum += integ_p;
1701
1702         /* Calculate the derivative term */
1703         derivative = state->error_history[state->cur_sample] -
1704                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1705                                     % SLOTS_PID_HISTORY_SIZE];
1706         derivative /= SLOTS_PID_INTERVAL;
1707         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1708         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1709         sum += deriv_p;
1710
1711         /* Calculate the proportional term */
1712         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1713         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1714         sum += prop_p;
1715
1716         /* Scale sum */
1717         sum >>= 36;
1718
1719         DBG("   sum: %d\n", (int)sum);
1720         state->pwm = (s32)sum;
1721
1722         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1723         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1724
1725         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1726         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1727 }
1728
1729 /*
1730  * Initialize the state structure for the slots bay fan control loop
1731  */
1732 static int init_slots_state(struct slots_pid_state *state)
1733 {
1734         state->ticks = 1;
1735         state->first = 1;
1736         state->pwm = 50;
1737
1738         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1739         if (state->monitor == NULL)
1740                 return -ENODEV;
1741
1742         device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1743         device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1744
1745         return 0;
1746 }
1747
1748 /*
1749  * Dispose of the state data for the slots control loop
1750  */
1751 static void dispose_slots_state(struct slots_pid_state *state)
1752 {
1753         if (state->monitor == NULL)
1754                 return;
1755
1756         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1757         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1758
1759         detach_i2c_chip(state->monitor);
1760         state->monitor = NULL;
1761 }
1762
1763
1764 static int call_critical_overtemp(void)
1765 {
1766         char *argv[] = { critical_overtemp_path, NULL };
1767         static char *envp[] = { "HOME=/",
1768                                 "TERM=linux",
1769                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1770                                 NULL };
1771
1772         return call_usermodehelper(critical_overtemp_path,
1773                                    argv, envp, UMH_WAIT_EXEC);
1774 }
1775
1776
1777 /*
1778  * Here's the kernel thread that calls the various control loops
1779  */
1780 static int main_control_loop(void *x)
1781 {
1782         daemonize("kfand");
1783
1784         DBG("main_control_loop started\n");
1785
1786         down(&driver_lock);
1787
1788         if (start_fcu() < 0) {
1789                 printk(KERN_ERR "kfand: failed to start FCU\n");
1790                 up(&driver_lock);
1791                 goto out;
1792         }
1793
1794         /* Set the PCI fan once for now on non-RackMac */
1795         if (!rackmac)
1796                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1797
1798         /* Initialize ADCs */
1799         initialize_adc(&cpu_state[0]);
1800         if (cpu_state[1].monitor != NULL)
1801                 initialize_adc(&cpu_state[1]);
1802
1803         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1804
1805         up(&driver_lock);
1806
1807         while (state == state_attached) {
1808                 unsigned long elapsed, start;
1809
1810                 start = jiffies;
1811
1812                 down(&driver_lock);
1813
1814                 /* Tickle the FCU just in case */
1815                 if (--fcu_tickle_ticks < 0) {
1816                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1817                         tickle_fcu();
1818                 }
1819
1820                 /* First, we always calculate the new DIMMs state on an Xserve */
1821                 if (rackmac)
1822                         do_monitor_dimms(&dimms_state);
1823
1824                 /* Then, the CPUs */
1825                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1826                         do_monitor_cpu_combined();
1827                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1828                         do_monitor_cpu_rack(&cpu_state[0]);
1829                         if (cpu_state[1].monitor != NULL)
1830                                 do_monitor_cpu_rack(&cpu_state[1]);
1831                         // better deal with UP
1832                 } else {
1833                         do_monitor_cpu_split(&cpu_state[0]);
1834                         if (cpu_state[1].monitor != NULL)
1835                                 do_monitor_cpu_split(&cpu_state[1]);
1836                         // better deal with UP
1837                 }
1838                 /* Then, the rest */
1839                 do_monitor_backside(&backside_state);
1840                 if (rackmac)
1841                         do_monitor_slots(&slots_state);
1842                 else
1843                         do_monitor_drives(&drives_state);
1844                 up(&driver_lock);
1845
1846                 if (critical_state == 1) {
1847                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1848                         printk(KERN_WARNING "Attempting to shut down...\n");
1849                         if (call_critical_overtemp()) {
1850                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1851                                        critical_overtemp_path);
1852                                 machine_power_off();
1853                         }
1854                 }
1855                 if (critical_state > 0)
1856                         critical_state++;
1857                 if (critical_state > MAX_CRITICAL_STATE) {
1858                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1859                         machine_power_off();
1860                 }
1861
1862                 // FIXME: Deal with signals
1863                 elapsed = jiffies - start;
1864                 if (elapsed < HZ)
1865                         schedule_timeout_interruptible(HZ - elapsed);
1866         }
1867
1868  out:
1869         DBG("main_control_loop ended\n");
1870
1871         ctrl_task = 0;
1872         complete_and_exit(&ctrl_complete, 0);
1873 }
1874
1875 /*
1876  * Dispose the control loops when tearing down
1877  */
1878 static void dispose_control_loops(void)
1879 {
1880         dispose_cpu_state(&cpu_state[0]);
1881         dispose_cpu_state(&cpu_state[1]);
1882         dispose_backside_state(&backside_state);
1883         dispose_drives_state(&drives_state);
1884         dispose_slots_state(&slots_state);
1885         dispose_dimms_state(&dimms_state);
1886 }
1887
1888 /*
1889  * Create the control loops. U3-0 i2c bus is up, so we can now
1890  * get to the various sensors
1891  */
1892 static int create_control_loops(void)
1893 {
1894         struct device_node *np;
1895
1896         /* Count CPUs from the device-tree, we don't care how many are
1897          * actually used by Linux
1898          */
1899         cpu_count = 0;
1900         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1901                 cpu_count++;
1902
1903         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1904
1905         /* Decide the type of PID algorithm to use based on the presence of
1906          * the pumps, though that may not be the best way, that is good enough
1907          * for now
1908          */
1909         if (rackmac)
1910                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1911         else if (machine_is_compatible("PowerMac7,3")
1912             && (cpu_count > 1)
1913             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1914             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1915                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1916                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1917         } else
1918                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1919
1920         /* Create control loops for everything. If any fail, everything
1921          * fails
1922          */
1923         if (init_cpu_state(&cpu_state[0], 0))
1924                 goto fail;
1925         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1926                 fetch_cpu_pumps_minmax();
1927
1928         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1929                 goto fail;
1930         if (init_backside_state(&backside_state))
1931                 goto fail;
1932         if (rackmac && init_dimms_state(&dimms_state))
1933                 goto fail;
1934         if (rackmac && init_slots_state(&slots_state))
1935                 goto fail;
1936         if (!rackmac && init_drives_state(&drives_state))
1937                 goto fail;
1938
1939         DBG("all control loops up !\n");
1940
1941         return 0;
1942         
1943  fail:
1944         DBG("failure creating control loops, disposing\n");
1945
1946         dispose_control_loops();
1947
1948         return -ENODEV;
1949 }
1950
1951 /*
1952  * Start the control loops after everything is up, that is create
1953  * the thread that will make them run
1954  */
1955 static void start_control_loops(void)
1956 {
1957         init_completion(&ctrl_complete);
1958
1959         ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1960 }
1961
1962 /*
1963  * Stop the control loops when tearing down
1964  */
1965 static void stop_control_loops(void)
1966 {
1967         if (ctrl_task != 0)
1968                 wait_for_completion(&ctrl_complete);
1969 }
1970
1971 /*
1972  * Attach to the i2c FCU after detecting U3-1 bus
1973  */
1974 static int attach_fcu(void)
1975 {
1976         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1977         if (fcu == NULL)
1978                 return -ENODEV;
1979
1980         DBG("FCU attached\n");
1981
1982         return 0;
1983 }
1984
1985 /*
1986  * Detach from the i2c FCU when tearing down
1987  */
1988 static void detach_fcu(void)
1989 {
1990         if (fcu)
1991                 detach_i2c_chip(fcu);
1992         fcu = NULL;
1993 }
1994
1995 /*
1996  * Attach to the i2c controller. We probe the various chips based
1997  * on the device-tree nodes and build everything for the driver to
1998  * run, we then kick the driver monitoring thread
1999  */
2000 static int therm_pm72_attach(struct i2c_adapter *adapter)
2001 {
2002         down(&driver_lock);
2003
2004         /* Check state */
2005         if (state == state_detached)
2006                 state = state_attaching;
2007         if (state != state_attaching) {
2008                 up(&driver_lock);
2009                 return 0;
2010         }
2011
2012         /* Check if we are looking for one of these */
2013         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2014                 u3_0 = adapter;
2015                 DBG("found U3-0\n");
2016                 if (k2 || !rackmac)
2017                         if (create_control_loops())
2018                                 u3_0 = NULL;
2019         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2020                 u3_1 = adapter;
2021                 DBG("found U3-1, attaching FCU\n");
2022                 if (attach_fcu())
2023                         u3_1 = NULL;
2024         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2025                 k2 = adapter;
2026                 DBG("Found K2\n");
2027                 if (u3_0 && rackmac)
2028                         if (create_control_loops())
2029                                 k2 = NULL;
2030         }
2031         /* We got all we need, start control loops */
2032         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2033                 DBG("everything up, starting control loops\n");
2034                 state = state_attached;
2035                 start_control_loops();
2036         }
2037         up(&driver_lock);
2038
2039         return 0;
2040 }
2041
2042 /*
2043  * Called on every adapter when the driver or the i2c controller
2044  * is going away.
2045  */
2046 static int therm_pm72_detach(struct i2c_adapter *adapter)
2047 {
2048         down(&driver_lock);
2049
2050         if (state != state_detached)
2051                 state = state_detaching;
2052
2053         /* Stop control loops if any */
2054         DBG("stopping control loops\n");
2055         up(&driver_lock);
2056         stop_control_loops();
2057         down(&driver_lock);
2058
2059         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2060                 DBG("lost U3-0, disposing control loops\n");
2061                 dispose_control_loops();
2062                 u3_0 = NULL;
2063         }
2064         
2065         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2066                 DBG("lost U3-1, detaching FCU\n");
2067                 detach_fcu();
2068                 u3_1 = NULL;
2069         }
2070         if (u3_0 == NULL && u3_1 == NULL)
2071                 state = state_detached;
2072
2073         up(&driver_lock);
2074
2075         return 0;
2076 }
2077
2078 static int fan_check_loc_match(const char *loc, int fan)
2079 {
2080         char    tmp[64];
2081         char    *c, *e;
2082
2083         strlcpy(tmp, fcu_fans[fan].loc, 64);
2084
2085         c = tmp;
2086         for (;;) {
2087                 e = strchr(c, ',');
2088                 if (e)
2089                         *e = 0;
2090                 if (strcmp(loc, c) == 0)
2091                         return 1;
2092                 if (e == NULL)
2093                         break;
2094                 c = e + 1;
2095         }
2096         return 0;
2097 }
2098
2099 static void fcu_lookup_fans(struct device_node *fcu_node)
2100 {
2101         struct device_node *np = NULL;
2102         int i;
2103
2104         /* The table is filled by default with values that are suitable
2105          * for the old machines without device-tree informations. We scan
2106          * the device-tree and override those values with whatever is
2107          * there
2108          */
2109
2110         DBG("Looking up FCU controls in device-tree...\n");
2111
2112         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2113                 int type = -1;
2114                 const char *loc;
2115                 const u32 *reg;
2116
2117                 DBG(" control: %s, type: %s\n", np->name, np->type);
2118
2119                 /* Detect control type */
2120                 if (!strcmp(np->type, "fan-rpm-control") ||
2121                     !strcmp(np->type, "fan-rpm"))
2122                         type = FCU_FAN_RPM;
2123                 if (!strcmp(np->type, "fan-pwm-control") ||
2124                     !strcmp(np->type, "fan-pwm"))
2125                         type = FCU_FAN_PWM;
2126                 /* Only care about fans for now */
2127                 if (type == -1)
2128                         continue;
2129
2130                 /* Lookup for a matching location */
2131                 loc = of_get_property(np, "location", NULL);
2132                 reg = of_get_property(np, "reg", NULL);
2133                 if (loc == NULL || reg == NULL)
2134                         continue;
2135                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2136
2137                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2138                         int fan_id;
2139
2140                         if (!fan_check_loc_match(loc, i))
2141                                 continue;
2142                         DBG(" location match, index: %d\n", i);
2143                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2144                         if (type != fcu_fans[i].type) {
2145                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2146                                        "in device-tree for %s\n", np->full_name);
2147                                 break;
2148                         }
2149                         if (type == FCU_FAN_RPM)
2150                                 fan_id = ((*reg) - 0x10) / 2;
2151                         else
2152                                 fan_id = ((*reg) - 0x30) / 2;
2153                         if (fan_id > 7) {
2154                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2155                                        "fan ID in device-tree for %s\n", np->full_name);
2156                                 break;
2157                         }
2158                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2159                         fcu_fans[i].id = fan_id;
2160                 }
2161         }
2162
2163         /* Now dump the array */
2164         printk(KERN_INFO "Detected fan controls:\n");
2165         for (i = 0; i < FCU_FAN_COUNT; i++) {
2166                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2167                         continue;
2168                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2169                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2170                        fcu_fans[i].id, fcu_fans[i].loc);
2171         }
2172 }
2173
2174 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2175 {
2176         state = state_detached;
2177
2178         /* Lookup the fans in the device tree */
2179         fcu_lookup_fans(dev->node);
2180
2181         /* Add the driver */
2182         return i2c_add_driver(&therm_pm72_driver);
2183 }
2184
2185 static int fcu_of_remove(struct of_device* dev)
2186 {
2187         i2c_del_driver(&therm_pm72_driver);
2188
2189         return 0;
2190 }
2191
2192 static struct of_device_id fcu_match[] = 
2193 {
2194         {
2195         .type           = "fcu",
2196         },
2197         {},
2198 };
2199
2200 static struct of_platform_driver fcu_of_platform_driver = 
2201 {
2202         .name           = "temperature",
2203         .match_table    = fcu_match,
2204         .probe          = fcu_of_probe,
2205         .remove         = fcu_of_remove
2206 };
2207
2208 /*
2209  * Check machine type, attach to i2c controller
2210  */
2211 static int __init therm_pm72_init(void)
2212 {
2213         struct device_node *np;
2214
2215         rackmac = machine_is_compatible("RackMac3,1");
2216
2217         if (!machine_is_compatible("PowerMac7,2") &&
2218             !machine_is_compatible("PowerMac7,3") &&
2219             !rackmac)
2220                 return -ENODEV;
2221
2222         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2223
2224         np = of_find_node_by_type(NULL, "fcu");
2225         if (np == NULL) {
2226                 /* Some machines have strangely broken device-tree */
2227                 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2228                 if (np == NULL) {
2229                             printk(KERN_ERR "Can't find FCU in device-tree !\n");
2230                             return -ENODEV;
2231                 }
2232         }
2233         of_dev = of_platform_device_create(np, "temperature", NULL);
2234         if (of_dev == NULL) {
2235                 printk(KERN_ERR "Can't register FCU platform device !\n");
2236                 return -ENODEV;
2237         }
2238
2239         of_register_platform_driver(&fcu_of_platform_driver);
2240         
2241         return 0;
2242 }
2243
2244 static void __exit therm_pm72_exit(void)
2245 {
2246         of_unregister_platform_driver(&fcu_of_platform_driver);
2247
2248         if (of_dev)
2249                 of_device_unregister(of_dev);
2250 }
2251
2252 module_init(therm_pm72_init);
2253 module_exit(therm_pm72_exit);
2254
2255 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2256 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2257 MODULE_LICENSE("GPL");
2258