Merge branch 'hpet' into release
[linux-2.6] / arch / x86 / kernel / dumpstack_64.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/kexec.h>
14 #include <linux/bug.h>
15 #include <linux/nmi.h>
16 #include <linux/sysfs.h>
17
18 #include <asm/stacktrace.h>
19
20 #include "dumpstack.h"
21
22 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
23                                         unsigned *usedp, char **idp)
24 {
25         static char ids[][8] = {
26                 [DEBUG_STACK - 1] = "#DB",
27                 [NMI_STACK - 1] = "NMI",
28                 [DOUBLEFAULT_STACK - 1] = "#DF",
29                 [STACKFAULT_STACK - 1] = "#SS",
30                 [MCE_STACK - 1] = "#MC",
31 #if DEBUG_STKSZ > EXCEPTION_STKSZ
32                 [N_EXCEPTION_STACKS ...
33                         N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
34 #endif
35         };
36         unsigned k;
37
38         /*
39          * Iterate over all exception stacks, and figure out whether
40          * 'stack' is in one of them:
41          */
42         for (k = 0; k < N_EXCEPTION_STACKS; k++) {
43                 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
44                 /*
45                  * Is 'stack' above this exception frame's end?
46                  * If yes then skip to the next frame.
47                  */
48                 if (stack >= end)
49                         continue;
50                 /*
51                  * Is 'stack' above this exception frame's start address?
52                  * If yes then we found the right frame.
53                  */
54                 if (stack >= end - EXCEPTION_STKSZ) {
55                         /*
56                          * Make sure we only iterate through an exception
57                          * stack once. If it comes up for the second time
58                          * then there's something wrong going on - just
59                          * break out and return NULL:
60                          */
61                         if (*usedp & (1U << k))
62                                 break;
63                         *usedp |= 1U << k;
64                         *idp = ids[k];
65                         return (unsigned long *)end;
66                 }
67                 /*
68                  * If this is a debug stack, and if it has a larger size than
69                  * the usual exception stacks, then 'stack' might still
70                  * be within the lower portion of the debug stack:
71                  */
72 #if DEBUG_STKSZ > EXCEPTION_STKSZ
73                 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
74                         unsigned j = N_EXCEPTION_STACKS - 1;
75
76                         /*
77                          * Black magic. A large debug stack is composed of
78                          * multiple exception stack entries, which we
79                          * iterate through now. Dont look:
80                          */
81                         do {
82                                 ++j;
83                                 end -= EXCEPTION_STKSZ;
84                                 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
85                         } while (stack < end - EXCEPTION_STKSZ);
86                         if (*usedp & (1U << j))
87                                 break;
88                         *usedp |= 1U << j;
89                         *idp = ids[j];
90                         return (unsigned long *)end;
91                 }
92 #endif
93         }
94         return NULL;
95 }
96
97 /*
98  * x86-64 can have up to three kernel stacks:
99  * process stack
100  * interrupt stack
101  * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
102  */
103
104 void dump_trace(struct task_struct *task, struct pt_regs *regs,
105                 unsigned long *stack, unsigned long bp,
106                 const struct stacktrace_ops *ops, void *data)
107 {
108         const unsigned cpu = get_cpu();
109         unsigned long *irq_stack_end =
110                 (unsigned long *)per_cpu(irq_stack_ptr, cpu);
111         unsigned used = 0;
112         struct thread_info *tinfo;
113         int graph = 0;
114
115         if (!task)
116                 task = current;
117
118         if (!stack) {
119                 unsigned long dummy;
120                 stack = &dummy;
121                 if (task && task != current)
122                         stack = (unsigned long *)task->thread.sp;
123         }
124
125 #ifdef CONFIG_FRAME_POINTER
126         if (!bp) {
127                 if (task == current) {
128                         /* Grab bp right from our regs */
129                         get_bp(bp);
130                 } else {
131                         /* bp is the last reg pushed by switch_to */
132                         bp = *(unsigned long *) task->thread.sp;
133                 }
134         }
135 #endif
136
137         /*
138          * Print function call entries in all stacks, starting at the
139          * current stack address. If the stacks consist of nested
140          * exceptions
141          */
142         tinfo = task_thread_info(task);
143         for (;;) {
144                 char *id;
145                 unsigned long *estack_end;
146                 estack_end = in_exception_stack(cpu, (unsigned long)stack,
147                                                 &used, &id);
148
149                 if (estack_end) {
150                         if (ops->stack(data, id) < 0)
151                                 break;
152
153                         bp = print_context_stack(tinfo, stack, bp, ops,
154                                                  data, estack_end, &graph);
155                         ops->stack(data, "<EOE>");
156                         /*
157                          * We link to the next stack via the
158                          * second-to-last pointer (index -2 to end) in the
159                          * exception stack:
160                          */
161                         stack = (unsigned long *) estack_end[-2];
162                         continue;
163                 }
164                 if (irq_stack_end) {
165                         unsigned long *irq_stack;
166                         irq_stack = irq_stack_end -
167                                 (IRQ_STACK_SIZE - 64) / sizeof(*irq_stack);
168
169                         if (stack >= irq_stack && stack < irq_stack_end) {
170                                 if (ops->stack(data, "IRQ") < 0)
171                                         break;
172                                 bp = print_context_stack(tinfo, stack, bp,
173                                         ops, data, irq_stack_end, &graph);
174                                 /*
175                                  * We link to the next stack (which would be
176                                  * the process stack normally) the last
177                                  * pointer (index -1 to end) in the IRQ stack:
178                                  */
179                                 stack = (unsigned long *) (irq_stack_end[-1]);
180                                 irq_stack_end = NULL;
181                                 ops->stack(data, "EOI");
182                                 continue;
183                         }
184                 }
185                 break;
186         }
187
188         /*
189          * This handles the process stack:
190          */
191         bp = print_context_stack(tinfo, stack, bp, ops, data, NULL, &graph);
192         put_cpu();
193 }
194 EXPORT_SYMBOL(dump_trace);
195
196 void
197 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
198                 unsigned long *sp, unsigned long bp, char *log_lvl)
199 {
200         unsigned long *stack;
201         int i;
202         const int cpu = smp_processor_id();
203         unsigned long *irq_stack_end =
204                 (unsigned long *)(per_cpu(irq_stack_ptr, cpu));
205         unsigned long *irq_stack =
206                 (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE);
207
208         /*
209          * debugging aid: "show_stack(NULL, NULL);" prints the
210          * back trace for this cpu.
211          */
212
213         if (sp == NULL) {
214                 if (task)
215                         sp = (unsigned long *)task->thread.sp;
216                 else
217                         sp = (unsigned long *)&sp;
218         }
219
220         stack = sp;
221         for (i = 0; i < kstack_depth_to_print; i++) {
222                 if (stack >= irq_stack && stack <= irq_stack_end) {
223                         if (stack == irq_stack_end) {
224                                 stack = (unsigned long *) (irq_stack_end[-1]);
225                                 printk(" <EOI> ");
226                         }
227                 } else {
228                 if (((long) stack & (THREAD_SIZE-1)) == 0)
229                         break;
230                 }
231                 if (i && ((i % STACKSLOTS_PER_LINE) == 0))
232                         printk("\n%s", log_lvl);
233                 printk(" %016lx", *stack++);
234                 touch_nmi_watchdog();
235         }
236         printk("\n");
237         show_trace_log_lvl(task, regs, sp, bp, log_lvl);
238 }
239
240 void show_registers(struct pt_regs *regs)
241 {
242         int i;
243         unsigned long sp;
244         const int cpu = smp_processor_id();
245         struct task_struct *cur = current;
246
247         sp = regs->sp;
248         printk("CPU %d ", cpu);
249         __show_regs(regs, 1);
250         printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
251                 cur->comm, cur->pid, task_thread_info(cur), cur);
252
253         /*
254          * When in-kernel, we also print out the stack and code at the
255          * time of the fault..
256          */
257         if (!user_mode(regs)) {
258                 unsigned int code_prologue = code_bytes * 43 / 64;
259                 unsigned int code_len = code_bytes;
260                 unsigned char c;
261                 u8 *ip;
262
263                 printk(KERN_EMERG "Stack:\n");
264                 show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
265                                 regs->bp, KERN_EMERG);
266
267                 printk(KERN_EMERG "Code: ");
268
269                 ip = (u8 *)regs->ip - code_prologue;
270                 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
271                         /* try starting at IP */
272                         ip = (u8 *)regs->ip;
273                         code_len = code_len - code_prologue + 1;
274                 }
275                 for (i = 0; i < code_len; i++, ip++) {
276                         if (ip < (u8 *)PAGE_OFFSET ||
277                                         probe_kernel_address(ip, c)) {
278                                 printk(" Bad RIP value.");
279                                 break;
280                         }
281                         if (ip == (u8 *)regs->ip)
282                                 printk("<%02x> ", c);
283                         else
284                                 printk("%02x ", c);
285                 }
286         }
287         printk("\n");
288 }
289
290 int is_valid_bugaddr(unsigned long ip)
291 {
292         unsigned short ud2;
293
294         if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
295                 return 0;
296
297         return ud2 == 0x0b0f;
298 }
299