2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/delay.h>
18 #include <sound/core.h>
19 #include <sound/pcm.h>
20 #include <sound/pcm_params.h>
21 #include <sound/initval.h>
22 #include <sound/soc.h>
24 #include <asm/immap_86xx.h>
29 * FSLSSI_I2S_RATES: sample rates supported by the I2S
31 * This driver currently only supports the SSI running in I2S slave mode,
32 * which means the codec determines the sample rate. Therefore, we tell
33 * ALSA that we support all rates and let the codec driver decide what rates
34 * are really supported.
36 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
37 SNDRV_PCM_RATE_CONTINUOUS)
40 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
42 * This driver currently only supports the SSI running in I2S slave mode.
44 * The SSI has a limitation in that the samples must be in the same byte
45 * order as the host CPU. This is because when multiple bytes are written
46 * to the STX register, the bytes and bits must be written in the same
47 * order. The STX is a shift register, so all the bits need to be aligned
48 * (bit-endianness must match byte-endianness). Processors typically write
49 * the bits within a byte in the same order that the bytes of a word are
50 * written in. So if the host CPU is big-endian, then only big-endian
51 * samples will be written to STX properly.
54 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
55 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
56 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
59 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
60 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
64 * fsl_ssi_private: per-SSI private data
66 * @name: short name for this device ("SSI0", "SSI1", etc)
67 * @ssi: pointer to the SSI's registers
68 * @ssi_phys: physical address of the SSI registers
69 * @irq: IRQ of this SSI
70 * @first_stream: pointer to the stream that was opened first
71 * @second_stream: pointer to second stream
72 * @dev: struct device pointer
73 * @playback: the number of playback streams opened
74 * @capture: the number of capture streams opened
75 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
76 * @cpu_dai: the CPU DAI for this device
77 * @dev_attr: the sysfs device attribute structure
78 * @stats: SSI statistics
80 struct fsl_ssi_private {
82 struct ccsr_ssi __iomem *ssi;
85 struct snd_pcm_substream *first_stream;
86 struct snd_pcm_substream *second_stream;
88 unsigned int playback;
91 struct snd_soc_dai cpu_dai;
92 struct device_attribute dev_attr;
120 * fsl_ssi_isr: SSI interrupt handler
122 * Although it's possible to use the interrupt handler to send and receive
123 * data to/from the SSI, we use the DMA instead. Programming is more
124 * complicated, but the performance is much better.
126 * This interrupt handler is used only to gather statistics.
128 * @irq: IRQ of the SSI device
129 * @dev_id: pointer to the ssi_private structure for this SSI device
131 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
133 struct fsl_ssi_private *ssi_private = dev_id;
134 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
135 irqreturn_t ret = IRQ_NONE;
139 /* We got an interrupt, so read the status register to see what we
140 were interrupted for. We mask it with the Interrupt Enable register
141 so that we only check for events that we're interested in.
143 sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
145 if (sisr & CCSR_SSI_SISR_RFRC) {
146 ssi_private->stats.rfrc++;
147 sisr2 |= CCSR_SSI_SISR_RFRC;
151 if (sisr & CCSR_SSI_SISR_TFRC) {
152 ssi_private->stats.tfrc++;
153 sisr2 |= CCSR_SSI_SISR_TFRC;
157 if (sisr & CCSR_SSI_SISR_CMDAU) {
158 ssi_private->stats.cmdau++;
162 if (sisr & CCSR_SSI_SISR_CMDDU) {
163 ssi_private->stats.cmddu++;
167 if (sisr & CCSR_SSI_SISR_RXT) {
168 ssi_private->stats.rxt++;
172 if (sisr & CCSR_SSI_SISR_RDR1) {
173 ssi_private->stats.rdr1++;
177 if (sisr & CCSR_SSI_SISR_RDR0) {
178 ssi_private->stats.rdr0++;
182 if (sisr & CCSR_SSI_SISR_TDE1) {
183 ssi_private->stats.tde1++;
187 if (sisr & CCSR_SSI_SISR_TDE0) {
188 ssi_private->stats.tde0++;
192 if (sisr & CCSR_SSI_SISR_ROE1) {
193 ssi_private->stats.roe1++;
194 sisr2 |= CCSR_SSI_SISR_ROE1;
198 if (sisr & CCSR_SSI_SISR_ROE0) {
199 ssi_private->stats.roe0++;
200 sisr2 |= CCSR_SSI_SISR_ROE0;
204 if (sisr & CCSR_SSI_SISR_TUE1) {
205 ssi_private->stats.tue1++;
206 sisr2 |= CCSR_SSI_SISR_TUE1;
210 if (sisr & CCSR_SSI_SISR_TUE0) {
211 ssi_private->stats.tue0++;
212 sisr2 |= CCSR_SSI_SISR_TUE0;
216 if (sisr & CCSR_SSI_SISR_TFS) {
217 ssi_private->stats.tfs++;
221 if (sisr & CCSR_SSI_SISR_RFS) {
222 ssi_private->stats.rfs++;
226 if (sisr & CCSR_SSI_SISR_TLS) {
227 ssi_private->stats.tls++;
231 if (sisr & CCSR_SSI_SISR_RLS) {
232 ssi_private->stats.rls++;
236 if (sisr & CCSR_SSI_SISR_RFF1) {
237 ssi_private->stats.rff1++;
241 if (sisr & CCSR_SSI_SISR_RFF0) {
242 ssi_private->stats.rff0++;
246 if (sisr & CCSR_SSI_SISR_TFE1) {
247 ssi_private->stats.tfe1++;
251 if (sisr & CCSR_SSI_SISR_TFE0) {
252 ssi_private->stats.tfe0++;
256 /* Clear the bits that we set */
258 out_be32(&ssi->sisr, sisr2);
264 * fsl_ssi_startup: create a new substream
266 * This is the first function called when a stream is opened.
268 * If this is the first stream open, then grab the IRQ and program most of
271 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
272 struct snd_soc_dai *dai)
274 struct snd_soc_pcm_runtime *rtd = substream->private_data;
275 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
278 * If this is the first stream opened, then request the IRQ
279 * and initialize the SSI registers.
281 if (!ssi_private->playback && !ssi_private->capture) {
282 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
285 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
286 ssi_private->name, ssi_private);
288 dev_err(substream->pcm->card->dev,
289 "could not claim irq %u\n", ssi_private->irq);
294 * Section 16.5 of the MPC8610 reference manual says that the
295 * SSI needs to be disabled before updating the registers we set
298 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
301 * Program the SSI into I2S Slave Non-Network Synchronous mode.
302 * Also enable the transmit and receive FIFO.
304 * FIXME: Little-endian samples require a different shift dir
306 clrsetbits_be32(&ssi->scr,
307 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
308 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
309 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
312 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
313 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
314 CCSR_SSI_STCR_TSCKP);
317 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
318 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
319 CCSR_SSI_SRCR_RSCKP);
322 * The DC and PM bits are only used if the SSI is the clock
326 /* 4. Enable the interrupts and DMA requests */
328 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
329 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
330 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
331 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
332 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
335 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
336 * don't use FIFO 1. Since the SSI only supports stereo, the
337 * watermark should never be an odd number.
339 out_be32(&ssi->sfcsr,
340 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
343 * We keep the SSI disabled because if we enable it, then the
344 * DMA controller will start. It's not supposed to start until
345 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
346 * DMA controller will transfer one "BWC" of data (i.e. the
347 * amount of data that the MR.BWC bits are set to). The reason
348 * this is bad is because at this point, the PCM driver has not
349 * finished initializing the DMA controller.
353 if (!ssi_private->first_stream)
354 ssi_private->first_stream = substream;
356 /* This is the second stream open, so we need to impose sample
357 * rate and maybe sample size constraints. Note that this can
358 * cause a race condition if the second stream is opened before
359 * the first stream is fully initialized.
361 * We provide some protection by checking to make sure the first
362 * stream is initialized, but it's not perfect. ALSA sometimes
363 * re-initializes the driver with a different sample rate or
364 * size. If the second stream is opened before the first stream
365 * has received its final parameters, then the second stream may
366 * be constrained to the wrong sample rate or size.
368 * FIXME: This code does not handle opening and closing streams
369 * repeatedly. If you open two streams and then close the first
370 * one, you may not be able to open another stream until you
371 * close the second one as well.
373 struct snd_pcm_runtime *first_runtime =
374 ssi_private->first_stream->runtime;
376 if (!first_runtime->rate || !first_runtime->sample_bits) {
377 dev_err(substream->pcm->card->dev,
378 "set sample rate and size in %s stream first\n",
379 substream->stream == SNDRV_PCM_STREAM_PLAYBACK
380 ? "capture" : "playback");
384 snd_pcm_hw_constraint_minmax(substream->runtime,
385 SNDRV_PCM_HW_PARAM_RATE,
386 first_runtime->rate, first_runtime->rate);
388 /* If we're in synchronous mode, then we need to constrain
389 * the sample size as well. We don't support independent sample
390 * rates in asynchronous mode.
392 if (!ssi_private->asynchronous)
393 snd_pcm_hw_constraint_minmax(substream->runtime,
394 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
395 first_runtime->sample_bits,
396 first_runtime->sample_bits);
398 ssi_private->second_stream = substream;
401 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
402 ssi_private->playback++;
404 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
405 ssi_private->capture++;
411 * fsl_ssi_hw_params - program the sample size
413 * Most of the SSI registers have been programmed in the startup function,
414 * but the word length must be programmed here. Unfortunately, programming
415 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
416 * cause a problem with supporting simultaneous playback and capture. If
417 * the SSI is already playing a stream, then that stream may be temporarily
418 * stopped when you start capture.
420 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
423 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
424 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
426 struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
428 if (substream == ssi_private->first_stream) {
429 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
430 unsigned int sample_size =
431 snd_pcm_format_width(params_format(hw_params));
432 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
434 /* The SSI should always be disabled at this points (SSIEN=0) */
436 /* In synchronous mode, the SSI uses STCCR for capture */
437 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
438 !ssi_private->asynchronous)
439 clrsetbits_be32(&ssi->stccr,
440 CCSR_SSI_SxCCR_WL_MASK, wl);
442 clrsetbits_be32(&ssi->srccr,
443 CCSR_SSI_SxCCR_WL_MASK, wl);
450 * fsl_ssi_trigger: start and stop the DMA transfer.
452 * This function is called by ALSA to start, stop, pause, and resume the DMA
455 * The DMA channel is in external master start and pause mode, which
456 * means the SSI completely controls the flow of data.
458 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
459 struct snd_soc_dai *dai)
461 struct snd_soc_pcm_runtime *rtd = substream->private_data;
462 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
463 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
466 case SNDRV_PCM_TRIGGER_START:
467 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
468 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
469 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
471 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
473 long timeout = jiffies + 10;
476 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
478 /* Wait until the SSI has filled its FIFO. Without this
479 * delay, ALSA complains about overruns. When the FIFO
480 * is full, the DMA controller initiates its first
481 * transfer. Until then, however, the DMA's DAR
482 * register is zero, which translates to an
483 * out-of-bounds pointer. This makes ALSA think an
484 * overrun has occurred.
486 while (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0) &&
487 (jiffies < timeout));
488 if (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0))
493 case SNDRV_PCM_TRIGGER_STOP:
494 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
495 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
496 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
498 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
509 * fsl_ssi_shutdown: shutdown the SSI
511 * Shutdown the SSI if there are no other substreams open.
513 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
514 struct snd_soc_dai *dai)
516 struct snd_soc_pcm_runtime *rtd = substream->private_data;
517 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
519 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
520 ssi_private->playback--;
522 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
523 ssi_private->capture--;
525 if (ssi_private->first_stream == substream)
526 ssi_private->first_stream = ssi_private->second_stream;
528 ssi_private->second_stream = NULL;
531 * If this is the last active substream, disable the SSI and release
534 if (!ssi_private->playback && !ssi_private->capture) {
535 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
537 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
539 free_irq(ssi_private->irq, ssi_private);
544 * fsl_ssi_set_sysclk: set the clock frequency and direction
546 * This function is called by the machine driver to tell us what the clock
547 * frequency and direction are.
549 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
550 * and we don't care about the frequency. Return an error if the direction
551 * is not SND_SOC_CLOCK_IN.
553 * @clk_id: reserved, should be zero
554 * @freq: the frequency of the given clock ID, currently ignored
555 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
557 static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
558 int clk_id, unsigned int freq, int dir)
561 return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
565 * fsl_ssi_set_fmt: set the serial format.
567 * This function is called by the machine driver to tell us what serial
570 * Currently, we only support I2S mode. Return an error if the format is
571 * not SND_SOC_DAIFMT_I2S.
573 * @format: one of SND_SOC_DAIFMT_xxx
575 static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
577 return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
581 * fsl_ssi_dai_template: template CPU DAI for the SSI
583 static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
584 .startup = fsl_ssi_startup,
585 .hw_params = fsl_ssi_hw_params,
586 .shutdown = fsl_ssi_shutdown,
587 .trigger = fsl_ssi_trigger,
588 .set_sysclk = fsl_ssi_set_sysclk,
589 .set_fmt = fsl_ssi_set_fmt,
592 static struct snd_soc_dai fsl_ssi_dai_template = {
594 /* The SSI does not support monaural audio. */
597 .rates = FSLSSI_I2S_RATES,
598 .formats = FSLSSI_I2S_FORMATS,
603 .rates = FSLSSI_I2S_RATES,
604 .formats = FSLSSI_I2S_FORMATS,
606 .ops = &fsl_ssi_dai_ops,
610 * fsl_sysfs_ssi_show: display SSI statistics
612 * Display the statistics for the current SSI device.
614 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
615 struct device_attribute *attr, char *buf)
617 struct fsl_ssi_private *ssi_private =
618 container_of(attr, struct fsl_ssi_private, dev_attr);
621 length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
622 length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
623 length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
624 length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
625 length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
626 length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
627 length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
628 length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
629 length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
630 length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
631 length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
632 length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
633 length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
634 length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
635 length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
636 length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
637 length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
638 length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
639 length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
640 length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
641 length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
647 * fsl_ssi_create_dai: create a snd_soc_dai structure
649 * This function is called by the machine driver to create a snd_soc_dai
650 * structure. The function creates an ssi_private object, which contains
651 * the snd_soc_dai. It also creates the sysfs statistics device.
653 struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
655 struct snd_soc_dai *fsl_ssi_dai;
656 struct fsl_ssi_private *ssi_private;
658 struct device_attribute *dev_attr;
660 ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
662 dev_err(ssi_info->dev, "could not allocate DAI object\n");
665 memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
666 sizeof(struct snd_soc_dai));
668 fsl_ssi_dai = &ssi_private->cpu_dai;
669 dev_attr = &ssi_private->dev_attr;
671 sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
672 ssi_private->ssi = ssi_info->ssi;
673 ssi_private->ssi_phys = ssi_info->ssi_phys;
674 ssi_private->irq = ssi_info->irq;
675 ssi_private->dev = ssi_info->dev;
676 ssi_private->asynchronous = ssi_info->asynchronous;
678 ssi_private->dev->driver_data = fsl_ssi_dai;
680 /* Initialize the the device_attribute structure */
681 dev_attr->attr.name = "ssi-stats";
682 dev_attr->attr.mode = S_IRUGO;
683 dev_attr->show = fsl_sysfs_ssi_show;
685 ret = device_create_file(ssi_private->dev, dev_attr);
687 dev_err(ssi_info->dev, "could not create sysfs %s file\n",
688 ssi_private->dev_attr.attr.name);
693 fsl_ssi_dai->private_data = ssi_private;
694 fsl_ssi_dai->name = ssi_private->name;
695 fsl_ssi_dai->id = ssi_info->id;
696 fsl_ssi_dai->dev = ssi_info->dev;
698 ret = snd_soc_register_dai(fsl_ssi_dai);
700 dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret);
707 EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
710 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
712 * This function undoes the operations of fsl_ssi_create_dai()
714 void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
716 struct fsl_ssi_private *ssi_private =
717 container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
719 device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
721 snd_soc_unregister_dai(&ssi_private->cpu_dai);
725 EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
727 static int __init fsl_ssi_init(void)
729 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
733 module_init(fsl_ssi_init);
735 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
736 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
737 MODULE_LICENSE("GPL");