Automerge with /usr/src/ntfs-2.6.git.
[linux-2.6] / arch / ppc64 / kernel / rtas-proc.c
1 /*
2  *   arch/ppc64/kernel/rtas-proc.c
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34 #include <asm/systemcfg.h>
35
36 /* Token for Sensors */
37 #define KEY_SWITCH              0x0001
38 #define ENCLOSURE_SWITCH        0x0002
39 #define THERMAL_SENSOR          0x0003
40 #define LID_STATUS              0x0004
41 #define POWER_SOURCE            0x0005
42 #define BATTERY_VOLTAGE         0x0006
43 #define BATTERY_REMAINING       0x0007
44 #define BATTERY_PERCENTAGE      0x0008
45 #define EPOW_SENSOR             0x0009
46 #define BATTERY_CYCLESTATE      0x000a
47 #define BATTERY_CHARGING        0x000b
48
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE        0x2328 /* 9000 */
51 #define IBM_FANRPM              0x2329 /* 9001 */
52 #define IBM_VOLTAGE             0x232a /* 9002 */
53 #define IBM_DRCONNECTOR         0x232b /* 9003 */
54 #define IBM_POWERSUPPLY         0x232c /* 9004 */
55
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH    13
58 #define SENSOR_WARNING_HIGH     12
59 #define SENSOR_NORMAL           11
60 #define SENSOR_WARNING_LOW      10
61 #define SENSOR_CRITICAL_LOW      9
62 #define SENSOR_SUCCESS           0
63 #define SENSOR_HW_ERROR         -1
64 #define SENSOR_BUSY             -2
65 #define SENSOR_NOT_EXIST        -3
66 #define SENSOR_DR_ENTITY        -9000
67
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR       'A'
70 #define LOC_SCSI_DEV_LOC        'B'
71 #define LOC_CPU                 'C'
72 #define LOC_DISKETTE            'D'
73 #define LOC_ETHERNET            'E'
74 #define LOC_FAN                 'F'
75 #define LOC_GRAPHICS            'G'
76 /* reserved / not used          'H' */
77 #define LOC_IO_ADAPTER          'I'
78 /* reserved / not used          'J' */
79 #define LOC_KEYBOARD            'K'
80 #define LOC_LCD                 'L'
81 #define LOC_MEMORY              'M'
82 #define LOC_NV_MEMORY           'N'
83 #define LOC_MOUSE               'O'
84 #define LOC_PLANAR              'P'
85 #define LOC_OTHER_IO            'Q'
86 #define LOC_PARALLEL            'R'
87 #define LOC_SERIAL              'S'
88 #define LOC_DEAD_RING           'T'
89 #define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE             'V'
91 #define LOC_SWITCH_ADAPTER      'W'
92 #define LOC_OTHER               'X'
93 #define LOC_FIRMWARE            'Y'
94 #define LOC_SCSI                'Z'
95
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE      0x0003 
100 #define WARNING_LIGHT           0x0004
101 #define DISK_ACTIVITY_LIGHT     0x0005
102 #define HEX_DISPLAY_UNIT        0x0006
103 #define BATTERY_WARNING_TIME    0x0007
104 #define CONDITION_CYCLE_REQUEST 0x0008
105 #define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
106 #define DR_ACTION               0x2329 /* 9001 */
107 #define DR_INDICATOR            0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110
111 /* other */
112 #define MAX_SENSORS              17  /* I only know of 17 sensors */    
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX           "ibm,sensor-"
115 #define cel_to_fahr(x)          ((x*9/5)+32)
116
117
118 /* Globals */
119 static struct rtas_sensors sensors;
120 static struct device_node *rtas_node = NULL;
121 static unsigned long power_on_time = 0; /* Save the time the user set */
122 static char progress_led[MAX_LINELENGTH];
123
124 static unsigned long rtas_tone_frequency = 1000;
125 static unsigned long rtas_tone_volume = 0;
126
127 /* ****************STRUCTS******************************************* */
128 struct individual_sensor {
129         unsigned int token;
130         unsigned int quant;
131 };
132
133 struct rtas_sensors {
134         struct individual_sensor sensor[MAX_SENSORS];
135         unsigned int quant;
136 };
137
138 /* ****************************************************************** */
139 /* Declarations */
140 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
141 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
142 static ssize_t ppc_rtas_clock_write(struct file *file,
143                 const char __user *buf, size_t count, loff_t *ppos);
144 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
145 static ssize_t ppc_rtas_progress_write(struct file *file,
146                 const char __user *buf, size_t count, loff_t *ppos);
147 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
148 static ssize_t ppc_rtas_poweron_write(struct file *file,
149                 const char __user *buf, size_t count, loff_t *ppos);
150
151 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
152                 const char __user *buf, size_t count, loff_t *ppos);
153 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
154 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
155                 const char __user *buf, size_t count, loff_t *ppos);
156 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
157 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
158
159 static int sensors_open(struct inode *inode, struct file *file)
160 {
161         return single_open(file, ppc_rtas_sensors_show, NULL);
162 }
163
164 struct file_operations ppc_rtas_sensors_operations = {
165         .open           = sensors_open,
166         .read           = seq_read,
167         .llseek         = seq_lseek,
168         .release        = single_release,
169 };
170
171 static int poweron_open(struct inode *inode, struct file *file)
172 {
173         return single_open(file, ppc_rtas_poweron_show, NULL);
174 }
175
176 struct file_operations ppc_rtas_poweron_operations = {
177         .open           = poweron_open,
178         .read           = seq_read,
179         .llseek         = seq_lseek,
180         .write          = ppc_rtas_poweron_write,
181         .release        = single_release,
182 };
183
184 static int progress_open(struct inode *inode, struct file *file)
185 {
186         return single_open(file, ppc_rtas_progress_show, NULL);
187 }
188
189 struct file_operations ppc_rtas_progress_operations = {
190         .open           = progress_open,
191         .read           = seq_read,
192         .llseek         = seq_lseek,
193         .write          = ppc_rtas_progress_write,
194         .release        = single_release,
195 };
196
197 static int clock_open(struct inode *inode, struct file *file)
198 {
199         return single_open(file, ppc_rtas_clock_show, NULL);
200 }
201
202 struct file_operations ppc_rtas_clock_operations = {
203         .open           = clock_open,
204         .read           = seq_read,
205         .llseek         = seq_lseek,
206         .write          = ppc_rtas_clock_write,
207         .release        = single_release,
208 };
209
210 static int tone_freq_open(struct inode *inode, struct file *file)
211 {
212         return single_open(file, ppc_rtas_tone_freq_show, NULL);
213 }
214
215 struct file_operations ppc_rtas_tone_freq_operations = {
216         .open           = tone_freq_open,
217         .read           = seq_read,
218         .llseek         = seq_lseek,
219         .write          = ppc_rtas_tone_freq_write,
220         .release        = single_release,
221 };
222
223 static int tone_volume_open(struct inode *inode, struct file *file)
224 {
225         return single_open(file, ppc_rtas_tone_volume_show, NULL);
226 }
227
228 struct file_operations ppc_rtas_tone_volume_operations = {
229         .open           = tone_volume_open,
230         .read           = seq_read,
231         .llseek         = seq_lseek,
232         .write          = ppc_rtas_tone_volume_write,
233         .release        = single_release,
234 };
235
236 static int rmo_buf_open(struct inode *inode, struct file *file)
237 {
238         return single_open(file, ppc_rtas_rmo_buf_show, NULL);
239 }
240
241 struct file_operations ppc_rtas_rmo_buf_ops = {
242         .open           = rmo_buf_open,
243         .read           = seq_read,
244         .llseek         = seq_lseek,
245         .release        = single_release,
246 };
247
248 static int ppc_rtas_find_all_sensors(void);
249 static void ppc_rtas_process_sensor(struct seq_file *m,
250         struct individual_sensor *s, int state, int error, char *loc);
251 static char *ppc_rtas_process_error(int error);
252 static void get_location_code(struct seq_file *m,
253         struct individual_sensor *s, char *loc);
254 static void check_location_string(struct seq_file *m, char *c);
255 static void check_location(struct seq_file *m, char *c);
256
257 static int __init proc_rtas_init(void)
258 {
259         struct proc_dir_entry *entry;
260
261         if (!(systemcfg->platform & PLATFORM_PSERIES))
262                 return 1;
263
264         rtas_node = of_find_node_by_name(NULL, "rtas");
265         if (rtas_node == NULL)
266                 return 1;
267
268         entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
269         if (entry)
270                 entry->proc_fops = &ppc_rtas_progress_operations;
271
272         entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
273         if (entry)
274                 entry->proc_fops = &ppc_rtas_clock_operations;
275
276         entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
277         if (entry)
278                 entry->proc_fops = &ppc_rtas_poweron_operations;
279
280         entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
281         if (entry)
282                 entry->proc_fops = &ppc_rtas_sensors_operations;
283
284         entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
285                                   NULL);
286         if (entry)
287                 entry->proc_fops = &ppc_rtas_tone_freq_operations;
288
289         entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
290         if (entry)
291                 entry->proc_fops = &ppc_rtas_tone_volume_operations;
292
293         entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
294         if (entry)
295                 entry->proc_fops = &ppc_rtas_rmo_buf_ops;
296
297         return 0;
298 }
299
300 __initcall(proc_rtas_init);
301
302 static int parse_number(const char __user *p, size_t count, unsigned long *val)
303 {
304         char buf[40];
305         char *end;
306
307         if (count > 39)
308                 return -EINVAL;
309
310         if (copy_from_user(buf, p, count))
311                 return -EFAULT;
312
313         buf[count] = 0;
314
315         *val = simple_strtoul(buf, &end, 10);
316         if (*end && *end != '\n')
317                 return -EINVAL;
318
319         return 0;
320 }
321
322 /* ****************************************************************** */
323 /* POWER-ON-TIME                                                      */
324 /* ****************************************************************** */
325 static ssize_t ppc_rtas_poweron_write(struct file *file,
326                 const char __user *buf, size_t count, loff_t *ppos)
327 {
328         struct rtc_time tm;
329         unsigned long nowtime;
330         int error = parse_number(buf, count, &nowtime);
331         if (error)
332                 return error;
333
334         power_on_time = nowtime; /* save the time */
335
336         to_tm(nowtime, &tm);
337
338         error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
339                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
340                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
341         if (error)
342                 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
343                                 ppc_rtas_process_error(error));
344         return count;
345 }
346 /* ****************************************************************** */
347 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
348 {
349         if (power_on_time == 0)
350                 seq_printf(m, "Power on time not set\n");
351         else
352                 seq_printf(m, "%lu\n",power_on_time);
353         return 0;
354 }
355
356 /* ****************************************************************** */
357 /* PROGRESS                                                           */
358 /* ****************************************************************** */
359 static ssize_t ppc_rtas_progress_write(struct file *file,
360                 const char __user *buf, size_t count, loff_t *ppos)
361 {
362         unsigned long hex;
363
364         if (count >= MAX_LINELENGTH)
365                 count = MAX_LINELENGTH -1;
366         if (copy_from_user(progress_led, buf, count)) { /* save the string */
367                 return -EFAULT;
368         }
369         progress_led[count] = 0;
370
371         /* Lets see if the user passed hexdigits */
372         hex = simple_strtoul(progress_led, NULL, 10);
373
374         rtas_progress ((char *)progress_led, hex);
375         return count;
376
377         /* clear the line */
378         /* rtas_progress("                   ", 0xffff);*/
379 }
380 /* ****************************************************************** */
381 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
382 {
383         if (progress_led)
384                 seq_printf(m, "%s\n", progress_led);
385         return 0;
386 }
387
388 /* ****************************************************************** */
389 /* CLOCK                                                              */
390 /* ****************************************************************** */
391 static ssize_t ppc_rtas_clock_write(struct file *file,
392                 const char __user *buf, size_t count, loff_t *ppos)
393 {
394         struct rtc_time tm;
395         unsigned long nowtime;
396         int error = parse_number(buf, count, &nowtime);
397         if (error)
398                 return error;
399
400         to_tm(nowtime, &tm);
401         error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
402                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
403                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
404         if (error)
405                 printk(KERN_WARNING "error: setting the clock returned: %s\n", 
406                                 ppc_rtas_process_error(error));
407         return count;
408 }
409 /* ****************************************************************** */
410 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
411 {
412         int ret[8];
413         int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
414
415         if (error) {
416                 printk(KERN_WARNING "error: reading the clock returned: %s\n", 
417                                 ppc_rtas_process_error(error));
418                 seq_printf(m, "0");
419         } else { 
420                 unsigned int year, mon, day, hour, min, sec;
421                 year = ret[0]; mon  = ret[1]; day  = ret[2];
422                 hour = ret[3]; min  = ret[4]; sec  = ret[5];
423                 seq_printf(m, "%lu\n",
424                                 mktime(year, mon, day, hour, min, sec));
425         }
426         return 0;
427 }
428
429 /* ****************************************************************** */
430 /* SENSOR STUFF                                                       */
431 /* ****************************************************************** */
432 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
433 {
434         int i,j;
435         int state, error;
436         int get_sensor_state = rtas_token("get-sensor-state");
437
438         seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
439         seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
440         seq_printf(m, "********************************************************\n");
441
442         if (ppc_rtas_find_all_sensors() != 0) {
443                 seq_printf(m, "\nNo sensors are available\n");
444                 return 0;
445         }
446
447         for (i=0; i<sensors.quant; i++) {
448                 struct individual_sensor *p = &sensors.sensor[i];
449                 char rstr[64];
450                 char *loc;
451                 int llen, offs;
452
453                 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
454                 loc = (char *) get_property(rtas_node, rstr, &llen);
455
456                 /* A sensor may have multiple instances */
457                 for (j = 0, offs = 0; j <= p->quant; j++) {
458                         error = rtas_call(get_sensor_state, 2, 2, &state, 
459                                           p->token, j);
460
461                         ppc_rtas_process_sensor(m, p, state, error, loc);
462                         seq_putc(m, '\n');
463                         if (loc) {
464                                 offs += strlen(loc) + 1;
465                                 loc += strlen(loc) + 1;
466                                 if (offs >= llen)
467                                         loc = NULL;
468                         }
469                 }
470         }
471         return 0;
472 }
473
474 /* ****************************************************************** */
475
476 static int ppc_rtas_find_all_sensors(void)
477 {
478         unsigned int *utmp;
479         int len, i;
480
481         utmp = (unsigned int *) get_property(rtas_node, "rtas-sensors", &len);
482         if (utmp == NULL) {
483                 printk (KERN_ERR "error: could not get rtas-sensors\n");
484                 return 1;
485         }
486
487         sensors.quant = len / 8;      /* int + int */
488
489         for (i=0; i<sensors.quant; i++) {
490                 sensors.sensor[i].token = *utmp++;
491                 sensors.sensor[i].quant = *utmp++;
492         }
493         return 0;
494 }
495
496 /* ****************************************************************** */
497 /*
498  * Builds a string of what rtas returned
499  */
500 static char *ppc_rtas_process_error(int error)
501 {
502         switch (error) {
503                 case SENSOR_CRITICAL_HIGH:
504                         return "(critical high)";
505                 case SENSOR_WARNING_HIGH:
506                         return "(warning high)";
507                 case SENSOR_NORMAL:
508                         return "(normal)";
509                 case SENSOR_WARNING_LOW:
510                         return "(warning low)";
511                 case SENSOR_CRITICAL_LOW:
512                         return "(critical low)";
513                 case SENSOR_SUCCESS:
514                         return "(read ok)";
515                 case SENSOR_HW_ERROR:
516                         return "(hardware error)";
517                 case SENSOR_BUSY:
518                         return "(busy)";
519                 case SENSOR_NOT_EXIST:
520                         return "(non existent)";
521                 case SENSOR_DR_ENTITY:
522                         return "(dr entity removed)";
523                 default:
524                         return "(UNKNOWN)";
525         }
526 }
527
528 /* ****************************************************************** */
529 /*
530  * Builds a string out of what the sensor said
531  */
532
533 static void ppc_rtas_process_sensor(struct seq_file *m,
534         struct individual_sensor *s, int state, int error, char *loc)
535 {
536         /* Defined return vales */
537         const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
538                                                 "Maintenance" };
539         const char * enclosure_switch[]  = { "Closed", "Open" };
540         const char * lid_status[]        = { " ", "Open", "Closed" };
541         const char * power_source[]      = { "AC\t", "Battery", 
542                                                 "AC & Battery" };
543         const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
544         const char * epow_sensor[]       = { 
545                 "EPOW Reset", "Cooling warning", "Power warning",
546                 "System shutdown", "System halt", "EPOW main enclosure",
547                 "EPOW power off" };
548         const char * battery_cyclestate[]  = { "None", "In progress", 
549                                                 "Requested" };
550         const char * battery_charging[]    = { "Charging", "Discharching", 
551                                                 "No current flow" };
552         const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
553                                                 "Exchange" };
554
555         int have_strings = 0;
556         int num_states = 0;
557         int temperature = 0;
558         int unknown = 0;
559
560         /* What kind of sensor do we have here? */
561         
562         switch (s->token) {
563                 case KEY_SWITCH:
564                         seq_printf(m, "Key switch:\t");
565                         num_states = sizeof(key_switch) / sizeof(char *);
566                         if (state < num_states) {
567                                 seq_printf(m, "%s\t", key_switch[state]);
568                                 have_strings = 1;
569                         }
570                         break;
571                 case ENCLOSURE_SWITCH:
572                         seq_printf(m, "Enclosure switch:\t");
573                         num_states = sizeof(enclosure_switch) / sizeof(char *);
574                         if (state < num_states) {
575                                 seq_printf(m, "%s\t", 
576                                                 enclosure_switch[state]);
577                                 have_strings = 1;
578                         }
579                         break;
580                 case THERMAL_SENSOR:
581                         seq_printf(m, "Temp. (C/F):\t");
582                         temperature = 1;
583                         break;
584                 case LID_STATUS:
585                         seq_printf(m, "Lid status:\t");
586                         num_states = sizeof(lid_status) / sizeof(char *);
587                         if (state < num_states) {
588                                 seq_printf(m, "%s\t", lid_status[state]);
589                                 have_strings = 1;
590                         }
591                         break;
592                 case POWER_SOURCE:
593                         seq_printf(m, "Power source:\t");
594                         num_states = sizeof(power_source) / sizeof(char *);
595                         if (state < num_states) {
596                                 seq_printf(m, "%s\t", 
597                                                 power_source[state]);
598                                 have_strings = 1;
599                         }
600                         break;
601                 case BATTERY_VOLTAGE:
602                         seq_printf(m, "Battery voltage:\t");
603                         break;
604                 case BATTERY_REMAINING:
605                         seq_printf(m, "Battery remaining:\t");
606                         num_states = sizeof(battery_remaining) / sizeof(char *);
607                         if (state < num_states)
608                         {
609                                 seq_printf(m, "%s\t", 
610                                                 battery_remaining[state]);
611                                 have_strings = 1;
612                         }
613                         break;
614                 case BATTERY_PERCENTAGE:
615                         seq_printf(m, "Battery percentage:\t");
616                         break;
617                 case EPOW_SENSOR:
618                         seq_printf(m, "EPOW Sensor:\t");
619                         num_states = sizeof(epow_sensor) / sizeof(char *);
620                         if (state < num_states) {
621                                 seq_printf(m, "%s\t", epow_sensor[state]);
622                                 have_strings = 1;
623                         }
624                         break;
625                 case BATTERY_CYCLESTATE:
626                         seq_printf(m, "Battery cyclestate:\t");
627                         num_states = sizeof(battery_cyclestate) / 
628                                         sizeof(char *);
629                         if (state < num_states) {
630                                 seq_printf(m, "%s\t", 
631                                                 battery_cyclestate[state]);
632                                 have_strings = 1;
633                         }
634                         break;
635                 case BATTERY_CHARGING:
636                         seq_printf(m, "Battery Charging:\t");
637                         num_states = sizeof(battery_charging) / sizeof(char *);
638                         if (state < num_states) {
639                                 seq_printf(m, "%s\t", 
640                                                 battery_charging[state]);
641                                 have_strings = 1;
642                         }
643                         break;
644                 case IBM_SURVEILLANCE:
645                         seq_printf(m, "Surveillance:\t");
646                         break;
647                 case IBM_FANRPM:
648                         seq_printf(m, "Fan (rpm):\t");
649                         break;
650                 case IBM_VOLTAGE:
651                         seq_printf(m, "Voltage (mv):\t");
652                         break;
653                 case IBM_DRCONNECTOR:
654                         seq_printf(m, "DR connector:\t");
655                         num_states = sizeof(ibm_drconnector) / sizeof(char *);
656                         if (state < num_states) {
657                                 seq_printf(m, "%s\t", 
658                                                 ibm_drconnector[state]);
659                                 have_strings = 1;
660                         }
661                         break;
662                 case IBM_POWERSUPPLY:
663                         seq_printf(m, "Powersupply:\t");
664                         break;
665                 default:
666                         seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
667                                         s->token);
668                         unknown = 1;
669                         have_strings = 1;
670                         break;
671         }
672         if (have_strings == 0) {
673                 if (temperature) {
674                         seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
675                 } else
676                         seq_printf(m, "%10d\t", state);
677         }
678         if (unknown == 0) {
679                 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
680                 get_location_code(m, s, loc);
681         }
682 }
683
684 /* ****************************************************************** */
685
686 static void check_location(struct seq_file *m, char *c)
687 {
688         switch (c[0]) {
689                 case LOC_PLANAR:
690                         seq_printf(m, "Planar #%c", c[1]);
691                         break;
692                 case LOC_CPU:
693                         seq_printf(m, "CPU #%c", c[1]);
694                         break;
695                 case LOC_FAN:
696                         seq_printf(m, "Fan #%c", c[1]);
697                         break;
698                 case LOC_RACKMOUNTED:
699                         seq_printf(m, "Rack #%c", c[1]);
700                         break;
701                 case LOC_VOLTAGE:
702                         seq_printf(m, "Voltage #%c", c[1]);
703                         break;
704                 case LOC_LCD:
705                         seq_printf(m, "LCD #%c", c[1]);
706                         break;
707                 case '.':
708                         seq_printf(m, "- %c", c[1]);
709                         break;
710                 default:
711                         seq_printf(m, "Unknown location");
712                         break;
713         }
714 }
715
716
717 /* ****************************************************************** */
718 /* 
719  * Format: 
720  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
721  * the '.' may be an abbrevation
722  */
723 static void check_location_string(struct seq_file *m, char *c)
724 {
725         while (*c) {
726                 if (isalpha(*c) || *c == '.')
727                         check_location(m, c);
728                 else if (*c == '/' || *c == '-')
729                         seq_printf(m, " at ");
730                 c++;
731         }
732 }
733
734
735 /* ****************************************************************** */
736
737 static void get_location_code(struct seq_file *m, struct individual_sensor *s, char *loc)
738 {
739         if (!loc || !*loc) {
740                 seq_printf(m, "---");/* does not have a location */
741         } else {
742                 check_location_string(m, loc);
743         }
744         seq_putc(m, ' ');
745 }
746 /* ****************************************************************** */
747 /* INDICATORS - Tone Frequency                                        */
748 /* ****************************************************************** */
749 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
750                 const char __user *buf, size_t count, loff_t *ppos)
751 {
752         unsigned long freq;
753         int error = parse_number(buf, count, &freq);
754         if (error)
755                 return error;
756
757         rtas_tone_frequency = freq; /* save it for later */
758         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
759                         TONE_FREQUENCY, 0, freq);
760         if (error)
761                 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
762                                 ppc_rtas_process_error(error));
763         return count;
764 }
765 /* ****************************************************************** */
766 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
767 {
768         seq_printf(m, "%lu\n", rtas_tone_frequency);
769         return 0;
770 }
771 /* ****************************************************************** */
772 /* INDICATORS - Tone Volume                                           */
773 /* ****************************************************************** */
774 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
775                 const char __user *buf, size_t count, loff_t *ppos)
776 {
777         unsigned long volume;
778         int error = parse_number(buf, count, &volume);
779         if (error)
780                 return error;
781
782         if (volume > 100)
783                 volume = 100;
784         
785         rtas_tone_volume = volume; /* save it for later */
786         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
787                         TONE_VOLUME, 0, volume);
788         if (error)
789                 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
790                                 ppc_rtas_process_error(error));
791         return count;
792 }
793 /* ****************************************************************** */
794 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
795 {
796         seq_printf(m, "%lu\n", rtas_tone_volume);
797         return 0;
798 }
799
800 #define RMO_READ_BUF_MAX 30
801
802 /* RTAS Userspace access */
803 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
804 {
805         seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
806         return 0;
807 }