Merge git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6] / arch / parisc / kernel / firmware.c
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *      PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22
23 /*      I think it would be in everyone's best interest to follow this
24  *      guidelines when writing PDC wrappers:
25  *
26  *       - the name of the pdc wrapper should match one of the macros
27  *         used for the first two arguments
28  *       - don't use caps for random parts of the name
29  *       - use the static PDC result buffers and "copyout" to structs
30  *         supplied by the caller to encapsulate alignment restrictions
31  *       - hold pdc_lock while in PDC or using static result buffers
32  *       - use __pa() to convert virtual (kernel) pointers to physical
33  *         ones.
34  *       - the name of the struct used for pdc return values should equal
35  *         one of the macros used for the first two arguments to the
36  *         corresponding PDC call
37  *       - keep the order of arguments
38  *       - don't be smart (setting trailing NUL bytes for strings, return
39  *         something useful even if the call failed) unless you are sure
40  *         it's not going to affect functionality or performance
41  *
42  *      Example:
43  *      int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *      {
45  *              int retval;
46  *
47  *              spin_lock_irq(&pdc_lock);
48  *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *              convert_to_wide(pdc_result);
50  *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *              spin_unlock_irq(&pdc_lock);
52  *
53  *              return retval;
54  *      }
55  *                                      prumpf  991016  
56  */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h>      /* for boot_cpu_data */
72
73 static DEFINE_SPINLOCK(pdc_lock);
74 static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77 #ifdef CONFIG_64BIT
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80
81 /* Firmware needs to be initially set to narrow to determine the 
82  * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87  * and MEM_PDC calls are always the same width as the OS.
88  * Some PAT boxes may have 64-bit IODC I/O.
89  *
90  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92  * This allowed wide kernels to run on Cxxx boxes.
93  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95  */
96
97 #ifdef CONFIG_64BIT
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101
102 #ifdef CONFIG_64BIT
103 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109
110
111 /**
112  * f_extend - Convert PDC addresses to kernel addresses.
113  * @address: Address returned from PDC.
114  *
115  * This function is used to convert PDC addresses into kernel addresses
116  * when the PDC address size and kernel address size are different.
117  */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef CONFIG_64BIT
121         if(unlikely(parisc_narrow_firmware)) {
122                 if((address & 0xff000000) == 0xf0000000)
123                         return 0xf0f0f0f000000000UL | (u32)address;
124
125                 if((address & 0xf0000000) == 0xf0000000)
126                         return 0xffffffff00000000UL | (u32)address;
127         }
128 #endif
129         return address;
130 }
131
132 /**
133  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134  * @address: The return buffer from PDC.
135  *
136  * This function is used to convert the return buffer addresses retrieved from PDC
137  * into kernel addresses when the PDC address size and kernel address size are
138  * different.
139  */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef CONFIG_64BIT
143         int i;
144         unsigned int *p = (unsigned int *)addr;
145
146         if(unlikely(parisc_narrow_firmware)) {
147                 for(i = 31; i >= 0; --i)
148                         addr[i] = p[i];
149         }
150 #endif
151 }
152
153 /**
154  * set_firmware_width - Determine if the firmware is wide or narrow.
155  * 
156  * This function must be called before any pdc_* function that uses the convert_to_wide
157  * function.
158  */
159 void __init set_firmware_width(void)
160 {
161 #ifdef CONFIG_64BIT
162         int retval;
163         unsigned long flags;
164
165         spin_lock_irqsave(&pdc_lock, flags);
166         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
167         convert_to_wide(pdc_result);
168         if(pdc_result[0] != NARROW_FIRMWARE)
169                 parisc_narrow_firmware = 0;
170         spin_unlock_irqrestore(&pdc_lock, flags);
171 #endif
172 }
173
174 /**
175  * pdc_emergency_unlock - Unlock the linux pdc lock
176  *
177  * This call unlocks the linux pdc lock in case we need some PDC functions
178  * (like pdc_add_valid) during kernel stack dump.
179  */
180 void pdc_emergency_unlock(void)
181 {
182         /* Spinlock DEBUG code freaks out if we unconditionally unlock */
183         if (spin_is_locked(&pdc_lock))
184                 spin_unlock(&pdc_lock);
185 }
186
187
188 /**
189  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
190  * @address: Address to be verified.
191  *
192  * This PDC call attempts to read from the specified address and verifies
193  * if the address is valid.
194  * 
195  * The return value is PDC_OK (0) in case accessing this address is valid.
196  */
197 int pdc_add_valid(unsigned long address)
198 {
199         int retval;
200         unsigned long flags;
201
202         spin_lock_irqsave(&pdc_lock, flags);
203         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
204         spin_unlock_irqrestore(&pdc_lock, flags);
205
206         return retval;
207 }
208 EXPORT_SYMBOL(pdc_add_valid);
209
210 /**
211  * pdc_chassis_info - Return chassis information.
212  * @result: The return buffer.
213  * @chassis_info: The memory buffer address.
214  * @len: The size of the memory buffer address.
215  *
216  * An HVERSION dependent call for returning the chassis information.
217  */
218 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
219 {
220         int retval;
221         unsigned long flags;
222
223         spin_lock_irqsave(&pdc_lock, flags);
224         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
225         memcpy(&pdc_result2, led_info, len);
226         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
227                               __pa(pdc_result), __pa(pdc_result2), len);
228         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
229         memcpy(led_info, pdc_result2, len);
230         spin_unlock_irqrestore(&pdc_lock, flags);
231
232         return retval;
233 }
234
235 /**
236  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
237  * @retval: -1 on error, 0 on success. Other value are PDC errors
238  * 
239  * Must be correctly formatted or expect system crash
240  */
241 #ifdef CONFIG_64BIT
242 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
243 {
244         int retval = 0;
245         unsigned long flags;
246         
247         if (!is_pdc_pat())
248                 return -1;
249
250         spin_lock_irqsave(&pdc_lock, flags);
251         retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
252         spin_unlock_irqrestore(&pdc_lock, flags);
253
254         return retval;
255 }
256 #endif
257
258 /**
259  * pdc_chassis_disp - Updates chassis code
260  * @retval: -1 on error, 0 on success
261  */
262 int pdc_chassis_disp(unsigned long disp)
263 {
264         int retval = 0;
265         unsigned long flags;
266
267         spin_lock_irqsave(&pdc_lock, flags);
268         retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
269         spin_unlock_irqrestore(&pdc_lock, flags);
270
271         return retval;
272 }
273
274 /**
275  * pdc_chassis_warn - Fetches chassis warnings
276  * @retval: -1 on error, 0 on success
277  */
278 int pdc_chassis_warn(unsigned long *warn)
279 {
280         int retval = 0;
281         unsigned long flags;
282
283         spin_lock_irqsave(&pdc_lock, flags);
284         retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
285         *warn = pdc_result[0];
286         spin_unlock_irqrestore(&pdc_lock, flags);
287
288         return retval;
289 }
290
291 /**
292  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
293  * @pdc_coproc_info: Return buffer address.
294  *
295  * This PDC call returns the presence and status of all the coprocessors
296  * attached to the processor.
297  */
298 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
299 {
300         int retval;
301         unsigned long flags;
302
303         spin_lock_irqsave(&pdc_lock, flags);
304         retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
305         convert_to_wide(pdc_result);
306         pdc_coproc_info->ccr_functional = pdc_result[0];
307         pdc_coproc_info->ccr_present = pdc_result[1];
308         pdc_coproc_info->revision = pdc_result[17];
309         pdc_coproc_info->model = pdc_result[18];
310         spin_unlock_irqrestore(&pdc_lock, flags);
311
312         return retval;
313 }
314
315 /**
316  * pdc_iodc_read - Read data from the modules IODC.
317  * @actcnt: The actual number of bytes.
318  * @hpa: The HPA of the module for the iodc read.
319  * @index: The iodc entry point.
320  * @iodc_data: A buffer memory for the iodc options.
321  * @iodc_data_size: Size of the memory buffer.
322  *
323  * This PDC call reads from the IODC of the module specified by the hpa
324  * argument.
325  */
326 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
327                   void *iodc_data, unsigned int iodc_data_size)
328 {
329         int retval;
330         unsigned long flags;
331
332         spin_lock_irqsave(&pdc_lock, flags);
333         retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
334                               index, __pa(pdc_result2), iodc_data_size);
335         convert_to_wide(pdc_result);
336         *actcnt = pdc_result[0];
337         memcpy(iodc_data, pdc_result2, iodc_data_size);
338         spin_unlock_irqrestore(&pdc_lock, flags);
339
340         return retval;
341 }
342 EXPORT_SYMBOL(pdc_iodc_read);
343
344 /**
345  * pdc_system_map_find_mods - Locate unarchitected modules.
346  * @pdc_mod_info: Return buffer address.
347  * @mod_path: pointer to dev path structure.
348  * @mod_index: fixed address module index.
349  *
350  * To locate and identify modules which reside at fixed I/O addresses, which
351  * do not self-identify via architected bus walks.
352  */
353 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
354                              struct pdc_module_path *mod_path, long mod_index)
355 {
356         int retval;
357         unsigned long flags;
358
359         spin_lock_irqsave(&pdc_lock, flags);
360         retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
361                               __pa(pdc_result2), mod_index);
362         convert_to_wide(pdc_result);
363         memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
364         memcpy(mod_path, pdc_result2, sizeof(*mod_path));
365         spin_unlock_irqrestore(&pdc_lock, flags);
366
367         pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
368         return retval;
369 }
370
371 /**
372  * pdc_system_map_find_addrs - Retrieve additional address ranges.
373  * @pdc_addr_info: Return buffer address.
374  * @mod_index: Fixed address module index.
375  * @addr_index: Address range index.
376  * 
377  * Retrieve additional information about subsequent address ranges for modules
378  * with multiple address ranges.  
379  */
380 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
381                               long mod_index, long addr_index)
382 {
383         int retval;
384         unsigned long flags;
385
386         spin_lock_irqsave(&pdc_lock, flags);
387         retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
388                               mod_index, addr_index);
389         convert_to_wide(pdc_result);
390         memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
391         spin_unlock_irqrestore(&pdc_lock, flags);
392
393         pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
394         return retval;
395 }
396
397 /**
398  * pdc_model_info - Return model information about the processor.
399  * @model: The return buffer.
400  *
401  * Returns the version numbers, identifiers, and capabilities from the processor module.
402  */
403 int pdc_model_info(struct pdc_model *model) 
404 {
405         int retval;
406         unsigned long flags;
407
408         spin_lock_irqsave(&pdc_lock, flags);
409         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
410         convert_to_wide(pdc_result);
411         memcpy(model, pdc_result, sizeof(*model));
412         spin_unlock_irqrestore(&pdc_lock, flags);
413
414         return retval;
415 }
416
417 /**
418  * pdc_model_sysmodel - Get the system model name.
419  * @name: A char array of at least 81 characters.
420  *
421  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
422  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
423  * on HP/UX.
424  */
425 int pdc_model_sysmodel(char *name)
426 {
427         int retval;
428         unsigned long flags;
429
430         spin_lock_irqsave(&pdc_lock, flags);
431         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
432                               OS_ID_HPUX, __pa(name));
433         convert_to_wide(pdc_result);
434
435         if (retval == PDC_OK) {
436                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
437         } else {
438                 name[0] = 0;
439         }
440         spin_unlock_irqrestore(&pdc_lock, flags);
441
442         return retval;
443 }
444
445 /**
446  * pdc_model_versions - Identify the version number of each processor.
447  * @cpu_id: The return buffer.
448  * @id: The id of the processor to check.
449  *
450  * Returns the version number for each processor component.
451  *
452  * This comment was here before, but I do not know what it means :( -RB
453  * id: 0 = cpu revision, 1 = boot-rom-version
454  */
455 int pdc_model_versions(unsigned long *versions, int id)
456 {
457         int retval;
458         unsigned long flags;
459
460         spin_lock_irqsave(&pdc_lock, flags);
461         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
462         convert_to_wide(pdc_result);
463         *versions = pdc_result[0];
464         spin_unlock_irqrestore(&pdc_lock, flags);
465
466         return retval;
467 }
468
469 /**
470  * pdc_model_cpuid - Returns the CPU_ID.
471  * @cpu_id: The return buffer.
472  *
473  * Returns the CPU_ID value which uniquely identifies the cpu portion of
474  * the processor module.
475  */
476 int pdc_model_cpuid(unsigned long *cpu_id)
477 {
478         int retval;
479         unsigned long flags;
480
481         spin_lock_irqsave(&pdc_lock, flags);
482         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
483         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
484         convert_to_wide(pdc_result);
485         *cpu_id = pdc_result[0];
486         spin_unlock_irqrestore(&pdc_lock, flags);
487
488         return retval;
489 }
490
491 /**
492  * pdc_model_capabilities - Returns the platform capabilities.
493  * @capabilities: The return buffer.
494  *
495  * Returns information about platform support for 32- and/or 64-bit
496  * OSes, IO-PDIR coherency, and virtual aliasing.
497  */
498 int pdc_model_capabilities(unsigned long *capabilities)
499 {
500         int retval;
501         unsigned long flags;
502
503         spin_lock_irqsave(&pdc_lock, flags);
504         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
506         convert_to_wide(pdc_result);
507         *capabilities = pdc_result[0];
508         spin_unlock_irqrestore(&pdc_lock, flags);
509
510         return retval;
511 }
512
513 /**
514  * pdc_cache_info - Return cache and TLB information.
515  * @cache_info: The return buffer.
516  *
517  * Returns information about the processor's cache and TLB.
518  */
519 int pdc_cache_info(struct pdc_cache_info *cache_info)
520 {
521         int retval;
522         unsigned long flags;
523
524         spin_lock_irqsave(&pdc_lock, flags);
525         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
526         convert_to_wide(pdc_result);
527         memcpy(cache_info, pdc_result, sizeof(*cache_info));
528         spin_unlock_irqrestore(&pdc_lock, flags);
529
530         return retval;
531 }
532
533 /**
534  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
535  * @space_bits: Should be 0, if not, bad mojo!
536  *
537  * Returns information about Space ID hashing.
538  */
539 int pdc_spaceid_bits(unsigned long *space_bits)
540 {
541         int retval;
542         unsigned long flags;
543
544         spin_lock_irqsave(&pdc_lock, flags);
545         pdc_result[0] = 0;
546         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
547         convert_to_wide(pdc_result);
548         *space_bits = pdc_result[0];
549         spin_unlock_irqrestore(&pdc_lock, flags);
550
551         return retval;
552 }
553
554 #ifndef CONFIG_PA20
555 /**
556  * pdc_btlb_info - Return block TLB information.
557  * @btlb: The return buffer.
558  *
559  * Returns information about the hardware Block TLB.
560  */
561 int pdc_btlb_info(struct pdc_btlb_info *btlb) 
562 {
563         int retval;
564         unsigned long flags;
565
566         spin_lock_irqsave(&pdc_lock, flags);
567         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
568         memcpy(btlb, pdc_result, sizeof(*btlb));
569         spin_unlock_irqrestore(&pdc_lock, flags);
570
571         if(retval < 0) {
572                 btlb->max_size = 0;
573         }
574         return retval;
575 }
576
577 /**
578  * pdc_mem_map_hpa - Find fixed module information.  
579  * @address: The return buffer
580  * @mod_path: pointer to dev path structure.
581  *
582  * This call was developed for S700 workstations to allow the kernel to find
583  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
584  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
585  * call.
586  *
587  * This call is supported by all existing S700 workstations (up to  Gecko).
588  */
589 int pdc_mem_map_hpa(struct pdc_memory_map *address,
590                 struct pdc_module_path *mod_path)
591 {
592         int retval;
593         unsigned long flags;
594
595         spin_lock_irqsave(&pdc_lock, flags);
596         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
597         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
598                                 __pa(pdc_result2));
599         memcpy(address, pdc_result, sizeof(*address));
600         spin_unlock_irqrestore(&pdc_lock, flags);
601
602         return retval;
603 }
604 #endif  /* !CONFIG_PA20 */
605
606 /**
607  * pdc_lan_station_id - Get the LAN address.
608  * @lan_addr: The return buffer.
609  * @hpa: The network device HPA.
610  *
611  * Get the LAN station address when it is not directly available from the LAN hardware.
612  */
613 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
614 {
615         int retval;
616         unsigned long flags;
617
618         spin_lock_irqsave(&pdc_lock, flags);
619         retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
620                         __pa(pdc_result), hpa);
621         if (retval < 0) {
622                 /* FIXME: else read MAC from NVRAM */
623                 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
624         } else {
625                 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
626         }
627         spin_unlock_irqrestore(&pdc_lock, flags);
628
629         return retval;
630 }
631 EXPORT_SYMBOL(pdc_lan_station_id);
632
633 /**
634  * pdc_stable_read - Read data from Stable Storage.
635  * @staddr: Stable Storage address to access.
636  * @memaddr: The memory address where Stable Storage data shall be copied.
637  * @count: number of bytes to transfert. count is multiple of 4.
638  *
639  * This PDC call reads from the Stable Storage address supplied in staddr
640  * and copies count bytes to the memory address memaddr.
641  * The call will fail if staddr+count > PDC_STABLE size.
642  */
643 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
644 {
645        int retval;
646         unsigned long flags;
647
648        spin_lock_irqsave(&pdc_lock, flags);
649        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
650                __pa(pdc_result), count);
651        convert_to_wide(pdc_result);
652        memcpy(memaddr, pdc_result, count);
653        spin_unlock_irqrestore(&pdc_lock, flags);
654
655        return retval;
656 }
657 EXPORT_SYMBOL(pdc_stable_read);
658
659 /**
660  * pdc_stable_write - Write data to Stable Storage.
661  * @staddr: Stable Storage address to access.
662  * @memaddr: The memory address where Stable Storage data shall be read from.
663  * @count: number of bytes to transfert. count is multiple of 4.
664  *
665  * This PDC call reads count bytes from the supplied memaddr address,
666  * and copies count bytes to the Stable Storage address staddr.
667  * The call will fail if staddr+count > PDC_STABLE size.
668  */
669 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
670 {
671        int retval;
672         unsigned long flags;
673
674        spin_lock_irqsave(&pdc_lock, flags);
675        memcpy(pdc_result, memaddr, count);
676        convert_to_wide(pdc_result);
677        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
678                __pa(pdc_result), count);
679        spin_unlock_irqrestore(&pdc_lock, flags);
680
681        return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_write);
684
685 /**
686  * pdc_stable_get_size - Get Stable Storage size in bytes.
687  * @size: pointer where the size will be stored.
688  *
689  * This PDC call returns the number of bytes in the processor's Stable
690  * Storage, which is the number of contiguous bytes implemented in Stable
691  * Storage starting from staddr=0. size in an unsigned 64-bit integer
692  * which is a multiple of four.
693  */
694 int pdc_stable_get_size(unsigned long *size)
695 {
696        int retval;
697         unsigned long flags;
698
699        spin_lock_irqsave(&pdc_lock, flags);
700        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
701        *size = pdc_result[0];
702        spin_unlock_irqrestore(&pdc_lock, flags);
703
704        return retval;
705 }
706 EXPORT_SYMBOL(pdc_stable_get_size);
707
708 /**
709  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
710  *
711  * This PDC call is meant to be used to check the integrity of the current
712  * contents of Stable Storage.
713  */
714 int pdc_stable_verify_contents(void)
715 {
716        int retval;
717         unsigned long flags;
718
719        spin_lock_irqsave(&pdc_lock, flags);
720        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
721        spin_unlock_irqrestore(&pdc_lock, flags);
722
723        return retval;
724 }
725 EXPORT_SYMBOL(pdc_stable_verify_contents);
726
727 /**
728  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
729  * the validity indicator.
730  *
731  * This PDC call will erase all contents of Stable Storage. Use with care!
732  */
733 int pdc_stable_initialize(void)
734 {
735        int retval;
736         unsigned long flags;
737
738        spin_lock_irqsave(&pdc_lock, flags);
739        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
740        spin_unlock_irqrestore(&pdc_lock, flags);
741
742        return retval;
743 }
744 EXPORT_SYMBOL(pdc_stable_initialize);
745
746 /**
747  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
748  * @hwpath: fully bc.mod style path to the device.
749  * @initiator: the array to return the result into
750  *
751  * Get the SCSI operational parameters from PDC.
752  * Needed since HPUX never used BIOS or symbios card NVRAM.
753  * Most ncr/sym cards won't have an entry and just use whatever
754  * capabilities of the card are (eg Ultra, LVD). But there are
755  * several cases where it's useful:
756  *    o set SCSI id for Multi-initiator clusters,
757  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
758  *    o bus width exported is less than what the interface chip supports.
759  */
760 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
761 {
762         int retval;
763         unsigned long flags;
764
765         spin_lock_irqsave(&pdc_lock, flags);
766
767 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
768 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
769         strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
770
771         retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
772                               __pa(pdc_result), __pa(hwpath));
773         if (retval < PDC_OK)
774                 goto out;
775
776         if (pdc_result[0] < 16) {
777                 initiator->host_id = pdc_result[0];
778         } else {
779                 initiator->host_id = -1;
780         }
781
782         /*
783          * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
784          * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
785          */
786         switch (pdc_result[1]) {
787                 case  1: initiator->factor = 50; break;
788                 case  2: initiator->factor = 25; break;
789                 case  5: initiator->factor = 12; break;
790                 case 25: initiator->factor = 10; break;
791                 case 20: initiator->factor = 12; break;
792                 case 40: initiator->factor = 10; break;
793                 default: initiator->factor = -1; break;
794         }
795
796         if (IS_SPROCKETS()) {
797                 initiator->width = pdc_result[4];
798                 initiator->mode = pdc_result[5];
799         } else {
800                 initiator->width = -1;
801                 initiator->mode = -1;
802         }
803
804  out:
805         spin_unlock_irqrestore(&pdc_lock, flags);
806
807         return (retval >= PDC_OK);
808 }
809 EXPORT_SYMBOL(pdc_get_initiator);
810
811
812 /**
813  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
814  * @num_entries: The return value.
815  * @hpa: The HPA for the device.
816  *
817  * This PDC function returns the number of entries in the specified cell's
818  * interrupt table.
819  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
820  */ 
821 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
822 {
823         int retval;
824         unsigned long flags;
825
826         spin_lock_irqsave(&pdc_lock, flags);
827         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
828                               __pa(pdc_result), hpa);
829         convert_to_wide(pdc_result);
830         *num_entries = pdc_result[0];
831         spin_unlock_irqrestore(&pdc_lock, flags);
832
833         return retval;
834 }
835
836 /** 
837  * pdc_pci_irt - Get the PCI interrupt routing table.
838  * @num_entries: The number of entries in the table.
839  * @hpa: The Hard Physical Address of the device.
840  * @tbl: 
841  *
842  * Get the PCI interrupt routing table for the device at the given HPA.
843  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
844  */
845 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
846 {
847         int retval;
848         unsigned long flags;
849
850         BUG_ON((unsigned long)tbl & 0x7);
851
852         spin_lock_irqsave(&pdc_lock, flags);
853         pdc_result[0] = num_entries;
854         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
855                               __pa(pdc_result), hpa, __pa(tbl));
856         spin_unlock_irqrestore(&pdc_lock, flags);
857
858         return retval;
859 }
860
861
862 #if 0   /* UNTEST CODE - left here in case someone needs it */
863
864 /** 
865  * pdc_pci_config_read - read PCI config space.
866  * @hpa         token from PDC to indicate which PCI device
867  * @pci_addr    configuration space address to read from
868  *
869  * Read PCI Configuration space *before* linux PCI subsystem is running.
870  */
871 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
872 {
873         int retval;
874         unsigned long flags;
875
876         spin_lock_irqsave(&pdc_lock, flags);
877         pdc_result[0] = 0;
878         pdc_result[1] = 0;
879         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
880                               __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
881         spin_unlock_irqrestore(&pdc_lock, flags);
882
883         return retval ? ~0 : (unsigned int) pdc_result[0];
884 }
885
886
887 /** 
888  * pdc_pci_config_write - read PCI config space.
889  * @hpa         token from PDC to indicate which PCI device
890  * @pci_addr    configuration space address to write
891  * @val         value we want in the 32-bit register
892  *
893  * Write PCI Configuration space *before* linux PCI subsystem is running.
894  */
895 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
896 {
897         int retval;
898         unsigned long flags;
899
900         spin_lock_irqsave(&pdc_lock, flags);
901         pdc_result[0] = 0;
902         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
903                               __pa(pdc_result), hpa,
904                               cfg_addr&~3UL, 4UL, (unsigned long) val);
905         spin_unlock_irqrestore(&pdc_lock, flags);
906
907         return retval;
908 }
909 #endif /* UNTESTED CODE */
910
911 /**
912  * pdc_tod_read - Read the Time-Of-Day clock.
913  * @tod: The return buffer:
914  *
915  * Read the Time-Of-Day clock
916  */
917 int pdc_tod_read(struct pdc_tod *tod)
918 {
919         int retval;
920         unsigned long flags;
921
922         spin_lock_irqsave(&pdc_lock, flags);
923         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
924         convert_to_wide(pdc_result);
925         memcpy(tod, pdc_result, sizeof(*tod));
926         spin_unlock_irqrestore(&pdc_lock, flags);
927
928         return retval;
929 }
930 EXPORT_SYMBOL(pdc_tod_read);
931
932 /**
933  * pdc_tod_set - Set the Time-Of-Day clock.
934  * @sec: The number of seconds since epoch.
935  * @usec: The number of micro seconds.
936  *
937  * Set the Time-Of-Day clock.
938  */ 
939 int pdc_tod_set(unsigned long sec, unsigned long usec)
940 {
941         int retval;
942         unsigned long flags;
943
944         spin_lock_irqsave(&pdc_lock, flags);
945         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
946         spin_unlock_irqrestore(&pdc_lock, flags);
947
948         return retval;
949 }
950 EXPORT_SYMBOL(pdc_tod_set);
951
952 #ifdef CONFIG_64BIT
953 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
954                 struct pdc_memory_table *tbl, unsigned long entries)
955 {
956         int retval;
957         unsigned long flags;
958
959         spin_lock_irqsave(&pdc_lock, flags);
960         retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
961         convert_to_wide(pdc_result);
962         memcpy(r_addr, pdc_result, sizeof(*r_addr));
963         memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
964         spin_unlock_irqrestore(&pdc_lock, flags);
965
966         return retval;
967 }
968 #endif /* CONFIG_64BIT */
969
970 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
971  * so I guessed at unsigned long.  Someone who knows what this does, can fix
972  * it later. :)
973  */
974 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
975 {
976         int retval;
977         unsigned long flags;
978
979         spin_lock_irqsave(&pdc_lock, flags);
980         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
981                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
982         spin_unlock_irqrestore(&pdc_lock, flags);
983
984         return retval;
985 }
986
987 /*
988  * pdc_do_reset - Reset the system.
989  *
990  * Reset the system.
991  */
992 int pdc_do_reset(void)
993 {
994         int retval;
995         unsigned long flags;
996
997         spin_lock_irqsave(&pdc_lock, flags);
998         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
999         spin_unlock_irqrestore(&pdc_lock, flags);
1000
1001         return retval;
1002 }
1003
1004 /*
1005  * pdc_soft_power_info - Enable soft power switch.
1006  * @power_reg: address of soft power register
1007  *
1008  * Return the absolute address of the soft power switch register
1009  */
1010 int __init pdc_soft_power_info(unsigned long *power_reg)
1011 {
1012         int retval;
1013         unsigned long flags;
1014
1015         *power_reg = (unsigned long) (-1);
1016         
1017         spin_lock_irqsave(&pdc_lock, flags);
1018         retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1019         if (retval == PDC_OK) {
1020                 convert_to_wide(pdc_result);
1021                 *power_reg = f_extend(pdc_result[0]);
1022         }
1023         spin_unlock_irqrestore(&pdc_lock, flags);
1024
1025         return retval;
1026 }
1027
1028 /*
1029  * pdc_soft_power_button - Control the soft power button behaviour
1030  * @sw_control: 0 for hardware control, 1 for software control 
1031  *
1032  *
1033  * This PDC function places the soft power button under software or
1034  * hardware control.
1035  * Under software control the OS may control to when to allow to shut 
1036  * down the system. Under hardware control pressing the power button 
1037  * powers off the system immediately.
1038  */
1039 int pdc_soft_power_button(int sw_control)
1040 {
1041         int retval;
1042         unsigned long flags;
1043
1044         spin_lock_irqsave(&pdc_lock, flags);
1045         retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1046         spin_unlock_irqrestore(&pdc_lock, flags);
1047
1048         return retval;
1049 }
1050
1051 /*
1052  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1053  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1054  * who knows what other platform firmware might do with this OS "hook".
1055  */
1056 void pdc_io_reset(void)
1057 {
1058         unsigned long flags;
1059
1060         spin_lock_irqsave(&pdc_lock, flags);
1061         mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1062         spin_unlock_irqrestore(&pdc_lock, flags);
1063 }
1064
1065 /*
1066  * pdc_io_reset_devices - Hack to Stop USB controller
1067  *
1068  * If PDC used the usb controller, the usb controller
1069  * is still running and will crash the machines during iommu 
1070  * setup, because of still running DMA. This PDC call
1071  * stops the USB controller.
1072  * Normally called after calling pdc_io_reset().
1073  */
1074 void pdc_io_reset_devices(void)
1075 {
1076         unsigned long flags;
1077
1078         spin_lock_irqsave(&pdc_lock, flags);
1079         mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1080         spin_unlock_irqrestore(&pdc_lock, flags);
1081 }
1082
1083
1084 /**
1085  * pdc_iodc_putc - Console character print using IODC.
1086  * @c: the character to output.
1087  *
1088  * Note that only these special chars are architected for console IODC io:
1089  * BEL, BS, CR, and LF. Others are passed through.
1090  * Since the HP console requires CR+LF to perform a 'newline', we translate
1091  * "\n" to "\r\n".
1092  */
1093 void pdc_iodc_putc(unsigned char c)
1094 {
1095         /* XXX Should we spinlock posx usage */
1096         static int posx;        /* for simple TAB-Simulation... */
1097         static int __attribute__((aligned(8)))   iodc_retbuf[32];
1098         static char __attribute__((aligned(64))) iodc_dbuf[4096];
1099         unsigned int n;
1100         unsigned long flags;
1101
1102         switch (c) {
1103         case '\n':
1104                 iodc_dbuf[0] = '\r';
1105                 iodc_dbuf[1] = '\n';
1106                 n = 2;
1107                 posx = 0;
1108                 break;
1109         case '\t':
1110                 pdc_iodc_putc(' ');
1111                 while (posx & 7)        /* expand TAB */
1112                         pdc_iodc_putc(' ');
1113                 return;         /* return since IODC can't handle this */
1114         case '\b':
1115                 posx-=2;                /* BS */
1116         default:
1117                 iodc_dbuf[0] = c;
1118                 n = 1;
1119                 posx++;
1120                 break;
1121         }
1122
1123         spin_lock_irqsave(&pdc_lock, flags);
1124         real32_call(PAGE0->mem_cons.iodc_io,
1125                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1126                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1127                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1128         spin_unlock_irqrestore(&pdc_lock, flags);
1129 }
1130
1131 /**
1132  * pdc_iodc_outc - Console character print using IODC (without conversions).
1133  * @c: the character to output.
1134  *
1135  * Write the character directly to the IODC console.
1136  */
1137 void pdc_iodc_outc(unsigned char c)
1138 {
1139         unsigned int n;
1140         unsigned long flags;
1141
1142         /* fill buffer with one caracter and print it */
1143         static int __attribute__((aligned(8)))   iodc_retbuf[32];
1144         static char __attribute__((aligned(64))) iodc_dbuf[4096];
1145
1146         n = 1;
1147         iodc_dbuf[0] = c;
1148
1149         spin_lock_irqsave(&pdc_lock, flags);
1150         real32_call(PAGE0->mem_cons.iodc_io,
1151                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1152                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1153                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1154         spin_unlock_irqrestore(&pdc_lock, flags);
1155 }
1156
1157 /**
1158  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1159  *
1160  * Read a character (non-blocking) from the PDC console, returns -1 if
1161  * key is not present.
1162  */
1163 int pdc_iodc_getc(void)
1164 {
1165         unsigned long flags;
1166         static int __attribute__((aligned(8)))   iodc_retbuf[32];
1167         static char __attribute__((aligned(64))) iodc_dbuf[4096];
1168         int ch;
1169         int status;
1170
1171         /* Bail if no console input device. */
1172         if (!PAGE0->mem_kbd.iodc_io)
1173                 return 0;
1174         
1175         /* wait for a keyboard (rs232)-input */
1176         spin_lock_irqsave(&pdc_lock, flags);
1177         real32_call(PAGE0->mem_kbd.iodc_io,
1178                     (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1179                     PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1180                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1181
1182         ch = *iodc_dbuf;
1183         status = *iodc_retbuf;
1184         spin_unlock_irqrestore(&pdc_lock, flags);
1185
1186         if (status == 0)
1187             return -1;
1188         
1189         return ch;
1190 }
1191
1192 int pdc_sti_call(unsigned long func, unsigned long flags,
1193                  unsigned long inptr, unsigned long outputr,
1194                  unsigned long glob_cfg)
1195 {
1196         int retval;
1197         unsigned long irqflags;
1198
1199         spin_lock_irqsave(&pdc_lock, irqflags);  
1200         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1201         spin_unlock_irqrestore(&pdc_lock, irqflags);
1202
1203         return retval;
1204 }
1205 EXPORT_SYMBOL(pdc_sti_call);
1206
1207 #ifdef CONFIG_64BIT
1208 /**
1209  * pdc_pat_cell_get_number - Returns the cell number.
1210  * @cell_info: The return buffer.
1211  *
1212  * This PDC call returns the cell number of the cell from which the call
1213  * is made.
1214  */
1215 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1216 {
1217         int retval;
1218         unsigned long flags;
1219
1220         spin_lock_irqsave(&pdc_lock, flags);
1221         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1222         memcpy(cell_info, pdc_result, sizeof(*cell_info));
1223         spin_unlock_irqrestore(&pdc_lock, flags);
1224
1225         return retval;
1226 }
1227
1228 /**
1229  * pdc_pat_cell_module - Retrieve the cell's module information.
1230  * @actcnt: The number of bytes written to mem_addr.
1231  * @ploc: The physical location.
1232  * @mod: The module index.
1233  * @view_type: The view of the address type.
1234  * @mem_addr: The return buffer.
1235  *
1236  * This PDC call returns information about each module attached to the cell
1237  * at the specified location.
1238  */
1239 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1240                         unsigned long view_type, void *mem_addr)
1241 {
1242         int retval;
1243         unsigned long flags;
1244         static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1245
1246         spin_lock_irqsave(&pdc_lock, flags);
1247         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1248                               ploc, mod, view_type, __pa(&result));
1249         if(!retval) {
1250                 *actcnt = pdc_result[0];
1251                 memcpy(mem_addr, &result, *actcnt);
1252         }
1253         spin_unlock_irqrestore(&pdc_lock, flags);
1254
1255         return retval;
1256 }
1257
1258 /**
1259  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1260  * @cpu_info: The return buffer.
1261  * @hpa: The Hard Physical Address of the CPU.
1262  *
1263  * Retrieve the cpu number for the cpu at the specified HPA.
1264  */
1265 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1266 {
1267         int retval;
1268         unsigned long flags;
1269
1270         spin_lock_irqsave(&pdc_lock, flags);
1271         retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1272                               __pa(&pdc_result), hpa);
1273         memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1274         spin_unlock_irqrestore(&pdc_lock, flags);
1275
1276         return retval;
1277 }
1278
1279 /**
1280  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1281  * @num_entries: The return value.
1282  * @cell_num: The target cell.
1283  *
1284  * This PDC function returns the number of entries in the specified cell's
1285  * interrupt table.
1286  */
1287 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1288 {
1289         int retval;
1290         unsigned long flags;
1291
1292         spin_lock_irqsave(&pdc_lock, flags);
1293         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1294                               __pa(pdc_result), cell_num);
1295         *num_entries = pdc_result[0];
1296         spin_unlock_irqrestore(&pdc_lock, flags);
1297
1298         return retval;
1299 }
1300
1301 /**
1302  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1303  * @r_addr: The return buffer.
1304  * @cell_num: The target cell.
1305  *
1306  * This PDC function returns the actual interrupt table for the specified cell.
1307  */
1308 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1309 {
1310         int retval;
1311         unsigned long flags;
1312
1313         spin_lock_irqsave(&pdc_lock, flags);
1314         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1315                               __pa(r_addr), cell_num);
1316         spin_unlock_irqrestore(&pdc_lock, flags);
1317
1318         return retval;
1319 }
1320
1321 /**
1322  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1323  * @actlen: The return buffer.
1324  * @mem_addr: Pointer to the memory buffer.
1325  * @count: The number of bytes to read from the buffer.
1326  * @offset: The offset with respect to the beginning of the buffer.
1327  *
1328  */
1329 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1330                             unsigned long count, unsigned long offset)
1331 {
1332         int retval;
1333         unsigned long flags;
1334
1335         spin_lock_irqsave(&pdc_lock, flags);
1336         retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1337                               __pa(pdc_result2), count, offset);
1338         *actual_len = pdc_result[0];
1339         memcpy(mem_addr, pdc_result2, *actual_len);
1340         spin_unlock_irqrestore(&pdc_lock, flags);
1341
1342         return retval;
1343 }
1344
1345 /**
1346  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1347  * @pci_addr: PCI configuration space address for which the read request is being made.
1348  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1349  * @mem_addr: Pointer to return memory buffer.
1350  *
1351  */
1352 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1353 {
1354         int retval;
1355         unsigned long flags;
1356
1357         spin_lock_irqsave(&pdc_lock, flags);
1358         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1359                                         __pa(pdc_result), pci_addr, pci_size);
1360         switch(pci_size) {
1361                 case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1362                 case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1363                 case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1364         }
1365         spin_unlock_irqrestore(&pdc_lock, flags);
1366
1367         return retval;
1368 }
1369
1370 /**
1371  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1372  * @pci_addr: PCI configuration space address for which the write  request is being made.
1373  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1374  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1375  *         written to PCI Config space.
1376  *
1377  */
1378 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1379 {
1380         int retval;
1381         unsigned long flags;
1382
1383         spin_lock_irqsave(&pdc_lock, flags);
1384         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1385                                 pci_addr, pci_size, val);
1386         spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388         return retval;
1389 }
1390 #endif /* CONFIG_64BIT */
1391
1392
1393 /***************** 32-bit real-mode calls ***********/
1394 /* The struct below is used
1395  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1396  * real32_call_asm() then uses this stack in narrow real mode
1397  */
1398
1399 struct narrow_stack {
1400         /* use int, not long which is 64 bits */
1401         unsigned int arg13;
1402         unsigned int arg12;
1403         unsigned int arg11;
1404         unsigned int arg10;
1405         unsigned int arg9;
1406         unsigned int arg8;
1407         unsigned int arg7;
1408         unsigned int arg6;
1409         unsigned int arg5;
1410         unsigned int arg4;
1411         unsigned int arg3;
1412         unsigned int arg2;
1413         unsigned int arg1;
1414         unsigned int arg0;
1415         unsigned int frame_marker[8];
1416         unsigned int sp;
1417         /* in reality, there's nearly 8k of stack after this */
1418 };
1419
1420 long real32_call(unsigned long fn, ...)
1421 {
1422         va_list args;
1423         extern struct narrow_stack real_stack;
1424         extern unsigned long real32_call_asm(unsigned int *,
1425                                              unsigned int *, 
1426                                              unsigned int);
1427         
1428         va_start(args, fn);
1429         real_stack.arg0 = va_arg(args, unsigned int);
1430         real_stack.arg1 = va_arg(args, unsigned int);
1431         real_stack.arg2 = va_arg(args, unsigned int);
1432         real_stack.arg3 = va_arg(args, unsigned int);
1433         real_stack.arg4 = va_arg(args, unsigned int);
1434         real_stack.arg5 = va_arg(args, unsigned int);
1435         real_stack.arg6 = va_arg(args, unsigned int);
1436         real_stack.arg7 = va_arg(args, unsigned int);
1437         real_stack.arg8 = va_arg(args, unsigned int);
1438         real_stack.arg9 = va_arg(args, unsigned int);
1439         real_stack.arg10 = va_arg(args, unsigned int);
1440         real_stack.arg11 = va_arg(args, unsigned int);
1441         real_stack.arg12 = va_arg(args, unsigned int);
1442         real_stack.arg13 = va_arg(args, unsigned int);
1443         va_end(args);
1444         
1445         return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1446 }
1447
1448 #ifdef CONFIG_64BIT
1449 /***************** 64-bit real-mode calls ***********/
1450
1451 struct wide_stack {
1452         unsigned long arg0;
1453         unsigned long arg1;
1454         unsigned long arg2;
1455         unsigned long arg3;
1456         unsigned long arg4;
1457         unsigned long arg5;
1458         unsigned long arg6;
1459         unsigned long arg7;
1460         unsigned long arg8;
1461         unsigned long arg9;
1462         unsigned long arg10;
1463         unsigned long arg11;
1464         unsigned long arg12;
1465         unsigned long arg13;
1466         unsigned long frame_marker[2];  /* rp, previous sp */
1467         unsigned long sp;
1468         /* in reality, there's nearly 8k of stack after this */
1469 };
1470
1471 long real64_call(unsigned long fn, ...)
1472 {
1473         va_list args;
1474         extern struct wide_stack real64_stack;
1475         extern unsigned long real64_call_asm(unsigned long *,
1476                                              unsigned long *, 
1477                                              unsigned long);
1478     
1479         va_start(args, fn);
1480         real64_stack.arg0 = va_arg(args, unsigned long);
1481         real64_stack.arg1 = va_arg(args, unsigned long);
1482         real64_stack.arg2 = va_arg(args, unsigned long);
1483         real64_stack.arg3 = va_arg(args, unsigned long);
1484         real64_stack.arg4 = va_arg(args, unsigned long);
1485         real64_stack.arg5 = va_arg(args, unsigned long);
1486         real64_stack.arg6 = va_arg(args, unsigned long);
1487         real64_stack.arg7 = va_arg(args, unsigned long);
1488         real64_stack.arg8 = va_arg(args, unsigned long);
1489         real64_stack.arg9 = va_arg(args, unsigned long);
1490         real64_stack.arg10 = va_arg(args, unsigned long);
1491         real64_stack.arg11 = va_arg(args, unsigned long);
1492         real64_stack.arg12 = va_arg(args, unsigned long);
1493         real64_stack.arg13 = va_arg(args, unsigned long);
1494         va_end(args);
1495         
1496         return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1497 }
1498
1499 #endif /* CONFIG_64BIT */
1500