2 * Malta Platform-specific hooks for SMP operation
5 #include <linux/init.h>
7 #include <asm/mipsregs.h>
8 #include <asm/mipsmtregs.h>
10 #include <asm/smtc_ipi.h>
12 /* VPE/SMP Prototype implements platform interfaces directly */
15 * Cause the specified action to be performed on a targeted "CPU"
18 static void msmtc_send_ipi_single(int cpu, unsigned int action)
20 /* "CPU" may be TC of same VPE, VPE of same CPU, or different CPU */
21 smtc_send_ipi(cpu, LINUX_SMP_IPI, action);
24 static void msmtc_send_ipi_mask(cpumask_t mask, unsigned int action)
28 for_each_cpu_mask(i, mask)
29 msmtc_send_ipi_single(i, action);
33 * Post-config but pre-boot cleanup entry point
35 static void __cpuinit msmtc_init_secondary(void)
37 void smtc_init_secondary(void);
40 /* Don't enable Malta I/O interrupts (IP2) for secondary VPEs */
41 myvpe = read_c0_tcbind() & TCBIND_CURVPE;
43 /* Ideally, this should be done only once per VPE, but... */
44 clear_c0_status(ST0_IM);
45 set_c0_status((0x100 << cp0_compare_irq)
46 | (0x100 << MIPS_CPU_IPI_IRQ));
47 if (cp0_perfcount_irq >= 0)
48 set_c0_status(0x100 << cp0_perfcount_irq);
51 smtc_init_secondary();
55 * Platform "CPU" startup hook
57 static void __cpuinit msmtc_boot_secondary(int cpu, struct task_struct *idle)
59 smtc_boot_secondary(cpu, idle);
63 * SMP initialization finalization entry point
65 static void __cpuinit msmtc_smp_finish(void)
71 * Hook for after all CPUs are online
74 static void msmtc_cpus_done(void)
79 * Platform SMP pre-initialization
81 * As noted above, we can assume a single CPU for now
82 * but it may be multithreaded.
85 static void __init msmtc_smp_setup(void)
88 * we won't get the definitive value until
89 * we've run smtc_prepare_cpus later, but
90 * we would appear to need an upper bound now.
92 smp_num_siblings = smtc_build_cpu_map(0);
95 static void __init msmtc_prepare_cpus(unsigned int max_cpus)
97 smtc_prepare_cpus(max_cpus);
100 struct plat_smp_ops msmtc_smp_ops = {
101 .send_ipi_single = msmtc_send_ipi_single,
102 .send_ipi_mask = msmtc_send_ipi_mask,
103 .init_secondary = msmtc_init_secondary,
104 .smp_finish = msmtc_smp_finish,
105 .cpus_done = msmtc_cpus_done,
106 .boot_secondary = msmtc_boot_secondary,
107 .smp_setup = msmtc_smp_setup,
108 .prepare_cpus = msmtc_prepare_cpus,
111 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
117 void plat_set_irq_affinity(unsigned int irq, const struct cpumask *affinity)
121 void smtc_set_irq_affinity(unsigned int irq, cpumask_t aff);
124 * On the legacy Malta development board, all I/O interrupts
125 * are routed through the 8259 and combined in a single signal
126 * to the CPU daughterboard, and on the CoreFPGA2/3 34K models,
127 * that signal is brought to IP2 of both VPEs. To avoid racing
128 * concurrent interrupt service events, IP2 is enabled only on
129 * one VPE, by convention VPE0. So long as no bits are ever
130 * cleared in the affinity mask, there will never be any
131 * interrupt forwarding. But as soon as a program or operator
132 * sets affinity for one of the related IRQs, we need to make
133 * sure that we don't ever try to forward across the VPE boundry,
134 * at least not until we engineer a system where the interrupt
135 * _ack() or _end() function can somehow know that it corresponds
136 * to an interrupt taken on another VPE, and perform the appropriate
137 * restoration of Status.IM state using MFTR/MTTR instead of the
138 * normal local behavior. We also ensure that no attempt will
139 * be made to forward to an offline "CPU".
142 cpumask_copy(&tmask, affinity);
143 for_each_cpu(cpu, affinity) {
144 if ((cpu_data[cpu].vpe_id != 0) || !cpu_online(cpu))
145 cpu_clear(cpu, tmask);
147 cpumask_copy(irq_desc[irq].affinity, &tmask);
149 if (cpus_empty(tmask))
151 * We could restore a default mask here, but the
152 * runtime code can anyway deal with the null set
155 "IRQ affinity leaves no legal CPU for IRQ %d\n", irq);
157 /* Do any generic SMTC IRQ affinity setup */
158 smtc_set_irq_affinity(irq, tmask);
160 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */