1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
59 #include <asm/system.h>
61 #include <asm/byteorder.h>
62 #include <asm/uaccess.h>
66 #include <asm/idprom.h>
67 #include <asm/openprom.h>
68 #include <asm/oplib.h>
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
79 #include "sungem_phy.h"
82 /* Stripping FCS is causing problems, disabled for now */
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
93 #define DRV_NAME "sungem"
94 #define DRV_VERSION "0.98"
95 #define DRV_RELDATE "8/24/03"
96 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
98 static char version[] __devinitdata =
99 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
101 MODULE_AUTHOR(DRV_AUTHOR);
102 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
103 MODULE_LICENSE("GPL");
105 #define GEM_MODULE_NAME "gem"
106 #define PFX GEM_MODULE_NAME ": "
108 static struct pci_device_id gem_pci_tbl[] = {
109 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 /* These models only differ from the original GEM in
113 * that their tx/rx fifos are of a different size and
114 * they only support 10/100 speeds. -DaveM
116 * Apple's GMAC does support gigabit on machines with
117 * the BCM54xx PHYs. -BenH
119 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
120 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
121 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
122 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
123 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
124 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
125 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
126 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
127 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
129 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
136 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
143 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
144 cmd |= (reg << 18) & MIF_FRAME_REGAD;
145 cmd |= (MIF_FRAME_TAMSB);
146 writel(cmd, gp->regs + MIF_FRAME);
149 cmd = readl(gp->regs + MIF_FRAME);
150 if (cmd & MIF_FRAME_TALSB)
159 return cmd & MIF_FRAME_DATA;
162 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
164 struct gem *gp = dev->priv;
165 return __phy_read(gp, mii_id, reg);
168 static inline u16 phy_read(struct gem *gp, int reg)
170 return __phy_read(gp, gp->mii_phy_addr, reg);
173 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
180 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
181 cmd |= (reg << 18) & MIF_FRAME_REGAD;
182 cmd |= (MIF_FRAME_TAMSB);
183 cmd |= (val & MIF_FRAME_DATA);
184 writel(cmd, gp->regs + MIF_FRAME);
187 cmd = readl(gp->regs + MIF_FRAME);
188 if (cmd & MIF_FRAME_TALSB)
195 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
197 struct gem *gp = dev->priv;
198 __phy_write(gp, mii_id, reg, val & 0xffff);
201 static inline void phy_write(struct gem *gp, int reg, u16 val)
203 __phy_write(gp, gp->mii_phy_addr, reg, val);
206 static inline void gem_enable_ints(struct gem *gp)
208 /* Enable all interrupts but TXDONE */
209 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
212 static inline void gem_disable_ints(struct gem *gp)
214 /* Disable all interrupts, including TXDONE */
215 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
218 static void gem_get_cell(struct gem *gp)
220 BUG_ON(gp->cell_enabled < 0);
222 #ifdef CONFIG_PPC_PMAC
223 if (gp->cell_enabled == 1) {
225 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
228 #endif /* CONFIG_PPC_PMAC */
231 /* Turn off the chip's clock */
232 static void gem_put_cell(struct gem *gp)
234 BUG_ON(gp->cell_enabled <= 0);
236 #ifdef CONFIG_PPC_PMAC
237 if (gp->cell_enabled == 0) {
239 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
242 #endif /* CONFIG_PPC_PMAC */
245 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
247 if (netif_msg_intr(gp))
248 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
251 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
253 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
256 if (netif_msg_intr(gp))
257 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
258 gp->dev->name, pcs_istat);
260 if (!(pcs_istat & PCS_ISTAT_LSC)) {
261 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
266 /* The link status bit latches on zero, so you must
267 * read it twice in such a case to see a transition
268 * to the link being up.
270 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
271 if (!(pcs_miistat & PCS_MIISTAT_LS))
273 (readl(gp->regs + PCS_MIISTAT) &
276 if (pcs_miistat & PCS_MIISTAT_ANC) {
277 /* The remote-fault indication is only valid
278 * when autoneg has completed.
280 if (pcs_miistat & PCS_MIISTAT_RF)
281 printk(KERN_INFO "%s: PCS AutoNEG complete, "
282 "RemoteFault\n", dev->name);
284 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
288 if (pcs_miistat & PCS_MIISTAT_LS) {
289 printk(KERN_INFO "%s: PCS link is now up.\n",
291 netif_carrier_on(gp->dev);
293 printk(KERN_INFO "%s: PCS link is now down.\n",
295 netif_carrier_off(gp->dev);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp->link_timer))
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 if (netif_msg_intr(gp))
311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp->dev->name, txmac_stat);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 !(txmac_stat & ~MAC_TXSTAT_DTE))
321 if (txmac_stat & MAC_TXSTAT_URUN) {
322 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
324 gp->net_stats.tx_fifo_errors++;
327 if (txmac_stat & MAC_TXSTAT_MPE) {
328 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
330 gp->net_stats.tx_errors++;
333 /* The rest are all cases of one of the 16-bit TX
336 if (txmac_stat & MAC_TXSTAT_NCE)
337 gp->net_stats.collisions += 0x10000;
339 if (txmac_stat & MAC_TXSTAT_ECE) {
340 gp->net_stats.tx_aborted_errors += 0x10000;
341 gp->net_stats.collisions += 0x10000;
344 if (txmac_stat & MAC_TXSTAT_LCE) {
345 gp->net_stats.tx_aborted_errors += 0x10000;
346 gp->net_stats.collisions += 0x10000;
349 /* We do not keep track of MAC_TXSTAT_FCE and
350 * MAC_TXSTAT_PCE events.
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356 * so we do the following.
358 * If any part of the reset goes wrong, we return 1 and that causes the
359 * whole chip to be reset.
361 static int gem_rxmac_reset(struct gem *gp)
363 struct net_device *dev = gp->dev;
368 /* First, reset & disable MAC RX. */
369 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
370 for (limit = 0; limit < 5000; limit++) {
371 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
376 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
377 "chip.\n", dev->name);
381 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
382 gp->regs + MAC_RXCFG);
383 for (limit = 0; limit < 5000; limit++) {
384 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
389 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
390 "chip.\n", dev->name);
394 /* Second, disable RX DMA. */
395 writel(0, gp->regs + RXDMA_CFG);
396 for (limit = 0; limit < 5000; limit++) {
397 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
402 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
403 "chip.\n", dev->name);
409 /* Execute RX reset command. */
410 writel(gp->swrst_base | GREG_SWRST_RXRST,
411 gp->regs + GREG_SWRST);
412 for (limit = 0; limit < 5000; limit++) {
413 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
418 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
419 "whole chip.\n", dev->name);
423 /* Refresh the RX ring. */
424 for (i = 0; i < RX_RING_SIZE; i++) {
425 struct gem_rxd *rxd = &gp->init_block->rxd[i];
427 if (gp->rx_skbs[i] == NULL) {
428 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
429 "whole chip.\n", dev->name);
433 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
435 gp->rx_new = gp->rx_old = 0;
437 /* Now we must reprogram the rest of RX unit. */
438 desc_dma = (u64) gp->gblock_dvma;
439 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
440 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
441 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
442 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
443 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
444 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
445 writel(val, gp->regs + RXDMA_CFG);
446 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
447 writel(((5 & RXDMA_BLANK_IPKTS) |
448 ((8 << 12) & RXDMA_BLANK_ITIME)),
449 gp->regs + RXDMA_BLANK);
451 writel(((5 & RXDMA_BLANK_IPKTS) |
452 ((4 << 12) & RXDMA_BLANK_ITIME)),
453 gp->regs + RXDMA_BLANK);
454 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
455 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
456 writel(val, gp->regs + RXDMA_PTHRESH);
457 val = readl(gp->regs + RXDMA_CFG);
458 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
459 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
460 val = readl(gp->regs + MAC_RXCFG);
461 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
466 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
468 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
471 if (netif_msg_intr(gp))
472 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
473 gp->dev->name, rxmac_stat);
475 if (rxmac_stat & MAC_RXSTAT_OFLW) {
476 u32 smac = readl(gp->regs + MAC_SMACHINE);
478 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
480 gp->net_stats.rx_over_errors++;
481 gp->net_stats.rx_fifo_errors++;
483 ret = gem_rxmac_reset(gp);
486 if (rxmac_stat & MAC_RXSTAT_ACE)
487 gp->net_stats.rx_frame_errors += 0x10000;
489 if (rxmac_stat & MAC_RXSTAT_CCE)
490 gp->net_stats.rx_crc_errors += 0x10000;
492 if (rxmac_stat & MAC_RXSTAT_LCE)
493 gp->net_stats.rx_length_errors += 0x10000;
495 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
501 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
503 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
505 if (netif_msg_intr(gp))
506 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
507 gp->dev->name, mac_cstat);
509 /* This interrupt is just for pause frame and pause
510 * tracking. It is useful for diagnostics and debug
511 * but probably by default we will mask these events.
513 if (mac_cstat & MAC_CSTAT_PS)
516 if (mac_cstat & MAC_CSTAT_PRCV)
517 gp->pause_last_time_recvd = (mac_cstat >> 16);
522 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
524 u32 mif_status = readl(gp->regs + MIF_STATUS);
525 u32 reg_val, changed_bits;
527 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
528 changed_bits = (mif_status & MIF_STATUS_STAT);
530 gem_handle_mif_event(gp, reg_val, changed_bits);
535 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
537 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
539 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
540 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
541 printk(KERN_ERR "%s: PCI error [%04x] ",
542 dev->name, pci_estat);
544 if (pci_estat & GREG_PCIESTAT_BADACK)
545 printk("<No ACK64# during ABS64 cycle> ");
546 if (pci_estat & GREG_PCIESTAT_DTRTO)
547 printk("<Delayed transaction timeout> ");
548 if (pci_estat & GREG_PCIESTAT_OTHER)
552 pci_estat |= GREG_PCIESTAT_OTHER;
553 printk(KERN_ERR "%s: PCI error\n", dev->name);
556 if (pci_estat & GREG_PCIESTAT_OTHER) {
559 /* Interrogate PCI config space for the
562 pci_read_config_word(gp->pdev, PCI_STATUS,
564 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
565 dev->name, pci_cfg_stat);
566 if (pci_cfg_stat & PCI_STATUS_PARITY)
567 printk(KERN_ERR "%s: PCI parity error detected.\n",
569 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
570 printk(KERN_ERR "%s: PCI target abort.\n",
572 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
573 printk(KERN_ERR "%s: PCI master acks target abort.\n",
575 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
576 printk(KERN_ERR "%s: PCI master abort.\n",
578 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
579 printk(KERN_ERR "%s: PCI system error SERR#.\n",
581 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
582 printk(KERN_ERR "%s: PCI parity error.\n",
585 /* Write the error bits back to clear them. */
586 pci_cfg_stat &= (PCI_STATUS_PARITY |
587 PCI_STATUS_SIG_TARGET_ABORT |
588 PCI_STATUS_REC_TARGET_ABORT |
589 PCI_STATUS_REC_MASTER_ABORT |
590 PCI_STATUS_SIG_SYSTEM_ERROR |
591 PCI_STATUS_DETECTED_PARITY);
592 pci_write_config_word(gp->pdev,
593 PCI_STATUS, pci_cfg_stat);
596 /* For all PCI errors, we should reset the chip. */
600 /* All non-normal interrupt conditions get serviced here.
601 * Returns non-zero if we should just exit the interrupt
602 * handler right now (ie. if we reset the card which invalidates
603 * all of the other original irq status bits).
605 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
607 if (gem_status & GREG_STAT_RXNOBUF) {
608 /* Frame arrived, no free RX buffers available. */
609 if (netif_msg_rx_err(gp))
610 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
612 gp->net_stats.rx_dropped++;
615 if (gem_status & GREG_STAT_RXTAGERR) {
616 /* corrupt RX tag framing */
617 if (netif_msg_rx_err(gp))
618 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
620 gp->net_stats.rx_errors++;
625 if (gem_status & GREG_STAT_PCS) {
626 if (gem_pcs_interrupt(dev, gp, gem_status))
630 if (gem_status & GREG_STAT_TXMAC) {
631 if (gem_txmac_interrupt(dev, gp, gem_status))
635 if (gem_status & GREG_STAT_RXMAC) {
636 if (gem_rxmac_interrupt(dev, gp, gem_status))
640 if (gem_status & GREG_STAT_MAC) {
641 if (gem_mac_interrupt(dev, gp, gem_status))
645 if (gem_status & GREG_STAT_MIF) {
646 if (gem_mif_interrupt(dev, gp, gem_status))
650 if (gem_status & GREG_STAT_PCIERR) {
651 if (gem_pci_interrupt(dev, gp, gem_status))
658 gp->reset_task_pending = 1;
659 schedule_work(&gp->reset_task);
664 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
668 if (netif_msg_intr(gp))
669 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
670 gp->dev->name, gem_status);
673 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
674 while (entry != limit) {
681 if (netif_msg_tx_done(gp))
682 printk(KERN_DEBUG "%s: tx done, slot %d\n",
683 gp->dev->name, entry);
684 skb = gp->tx_skbs[entry];
685 if (skb_shinfo(skb)->nr_frags) {
686 int last = entry + skb_shinfo(skb)->nr_frags;
690 last &= (TX_RING_SIZE - 1);
692 walk = NEXT_TX(walk);
701 gp->tx_skbs[entry] = NULL;
702 gp->net_stats.tx_bytes += skb->len;
704 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
705 txd = &gp->init_block->txd[entry];
707 dma_addr = le64_to_cpu(txd->buffer);
708 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
710 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
711 entry = NEXT_TX(entry);
714 gp->net_stats.tx_packets++;
715 dev_kfree_skb_irq(skb);
719 if (netif_queue_stopped(dev) &&
720 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
721 netif_wake_queue(dev);
724 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
726 int cluster_start, curr, count, kick;
728 cluster_start = curr = (gp->rx_new & ~(4 - 1));
732 while (curr != limit) {
733 curr = NEXT_RX(curr);
735 struct gem_rxd *rxd =
736 &gp->init_block->rxd[cluster_start];
738 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
740 cluster_start = NEXT_RX(cluster_start);
741 if (cluster_start == curr)
750 writel(kick, gp->regs + RXDMA_KICK);
754 static int gem_rx(struct gem *gp, int work_to_do)
756 int entry, drops, work_done = 0;
759 if (netif_msg_rx_status(gp))
760 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
761 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
765 done = readl(gp->regs + RXDMA_DONE);
767 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
769 u64 status = cpu_to_le64(rxd->status_word);
773 if ((status & RXDCTRL_OWN) != 0)
776 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
779 /* When writing back RX descriptor, GEM writes status
780 * then buffer address, possibly in seperate transactions.
781 * If we don't wait for the chip to write both, we could
782 * post a new buffer to this descriptor then have GEM spam
783 * on the buffer address. We sync on the RX completion
784 * register to prevent this from happening.
787 done = readl(gp->regs + RXDMA_DONE);
792 /* We can now account for the work we're about to do */
795 skb = gp->rx_skbs[entry];
797 len = (status & RXDCTRL_BUFSZ) >> 16;
798 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
799 gp->net_stats.rx_errors++;
801 gp->net_stats.rx_length_errors++;
802 if (len & RXDCTRL_BAD)
803 gp->net_stats.rx_crc_errors++;
805 /* We'll just return it to GEM. */
807 gp->net_stats.rx_dropped++;
811 dma_addr = cpu_to_le64(rxd->buffer);
812 if (len > RX_COPY_THRESHOLD) {
813 struct sk_buff *new_skb;
815 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
816 if (new_skb == NULL) {
820 pci_unmap_page(gp->pdev, dma_addr,
821 RX_BUF_ALLOC_SIZE(gp),
823 gp->rx_skbs[entry] = new_skb;
824 new_skb->dev = gp->dev;
825 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
826 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
827 virt_to_page(new_skb->data),
828 offset_in_page(new_skb->data),
829 RX_BUF_ALLOC_SIZE(gp),
830 PCI_DMA_FROMDEVICE));
831 skb_reserve(new_skb, RX_OFFSET);
833 /* Trim the original skb for the netif. */
836 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
838 if (copy_skb == NULL) {
843 copy_skb->dev = gp->dev;
844 skb_reserve(copy_skb, 2);
845 skb_put(copy_skb, len);
846 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
847 memcpy(copy_skb->data, skb->data, len);
848 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
850 /* We'll reuse the original ring buffer. */
854 skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
855 skb->ip_summed = CHECKSUM_HW;
856 skb->protocol = eth_type_trans(skb, gp->dev);
858 netif_receive_skb(skb);
860 gp->net_stats.rx_packets++;
861 gp->net_stats.rx_bytes += len;
862 gp->dev->last_rx = jiffies;
865 entry = NEXT_RX(entry);
868 gem_post_rxds(gp, entry);
873 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
879 static int gem_poll(struct net_device *dev, int *budget)
881 struct gem *gp = dev->priv;
885 * NAPI locking nightmare: See comment at head of driver
887 spin_lock_irqsave(&gp->lock, flags);
890 int work_to_do, work_done;
892 /* Handle anomalies */
893 if (gp->status & GREG_STAT_ABNORMAL) {
894 if (gem_abnormal_irq(dev, gp, gp->status))
898 /* Run TX completion thread */
899 spin_lock(&gp->tx_lock);
900 gem_tx(dev, gp, gp->status);
901 spin_unlock(&gp->tx_lock);
903 spin_unlock_irqrestore(&gp->lock, flags);
905 /* Run RX thread. We don't use any locking here,
906 * code willing to do bad things - like cleaning the
907 * rx ring - must call netif_poll_disable(), which
908 * schedule_timeout()'s if polling is already disabled.
910 work_to_do = min(*budget, dev->quota);
912 work_done = gem_rx(gp, work_to_do);
914 *budget -= work_done;
915 dev->quota -= work_done;
917 if (work_done >= work_to_do)
920 spin_lock_irqsave(&gp->lock, flags);
922 gp->status = readl(gp->regs + GREG_STAT);
923 } while (gp->status & GREG_STAT_NAPI);
925 __netif_rx_complete(dev);
928 spin_unlock_irqrestore(&gp->lock, flags);
932 static irqreturn_t gem_interrupt(int irq, void *dev_id, struct pt_regs *regs)
934 struct net_device *dev = dev_id;
935 struct gem *gp = dev->priv;
938 /* Swallow interrupts when shutting the chip down, though
939 * that shouldn't happen, we should have done free_irq() at
945 spin_lock_irqsave(&gp->lock, flags);
947 if (netif_rx_schedule_prep(dev)) {
948 u32 gem_status = readl(gp->regs + GREG_STAT);
950 if (gem_status == 0) {
951 netif_poll_enable(dev);
952 spin_unlock_irqrestore(&gp->lock, flags);
955 gp->status = gem_status;
956 gem_disable_ints(gp);
957 __netif_rx_schedule(dev);
960 spin_unlock_irqrestore(&gp->lock, flags);
962 /* If polling was disabled at the time we received that
963 * interrupt, we may return IRQ_HANDLED here while we
964 * should return IRQ_NONE. No big deal...
969 #ifdef CONFIG_NET_POLL_CONTROLLER
970 static void gem_poll_controller(struct net_device *dev)
972 /* gem_interrupt is safe to reentrance so no need
973 * to disable_irq here.
975 gem_interrupt(dev->irq, dev, NULL);
979 static void gem_tx_timeout(struct net_device *dev)
981 struct gem *gp = dev->priv;
983 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
985 printk("%s: hrm.. hw not running !\n", dev->name);
988 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
990 readl(gp->regs + TXDMA_CFG),
991 readl(gp->regs + MAC_TXSTAT),
992 readl(gp->regs + MAC_TXCFG));
993 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
995 readl(gp->regs + RXDMA_CFG),
996 readl(gp->regs + MAC_RXSTAT),
997 readl(gp->regs + MAC_RXCFG));
999 spin_lock_irq(&gp->lock);
1000 spin_lock(&gp->tx_lock);
1002 gp->reset_task_pending = 1;
1003 schedule_work(&gp->reset_task);
1005 spin_unlock(&gp->tx_lock);
1006 spin_unlock_irq(&gp->lock);
1009 static __inline__ int gem_intme(int entry)
1011 /* Algorithm: IRQ every 1/2 of descriptors. */
1012 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1018 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 struct gem *gp = dev->priv;
1023 unsigned long flags;
1026 if (skb->ip_summed == CHECKSUM_HW) {
1027 u64 csum_start_off, csum_stuff_off;
1029 csum_start_off = (u64) (skb->h.raw - skb->data);
1030 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
1032 ctrl = (TXDCTRL_CENAB |
1033 (csum_start_off << 15) |
1034 (csum_stuff_off << 21));
1037 local_irq_save(flags);
1038 if (!spin_trylock(&gp->tx_lock)) {
1039 /* Tell upper layer to requeue */
1040 local_irq_restore(flags);
1041 return NETDEV_TX_LOCKED;
1043 /* We raced with gem_do_stop() */
1045 spin_unlock_irqrestore(&gp->tx_lock, flags);
1046 return NETDEV_TX_BUSY;
1049 /* This is a hard error, log it. */
1050 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1051 netif_stop_queue(dev);
1052 spin_unlock_irqrestore(&gp->tx_lock, flags);
1053 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1055 return NETDEV_TX_BUSY;
1059 gp->tx_skbs[entry] = skb;
1061 if (skb_shinfo(skb)->nr_frags == 0) {
1062 struct gem_txd *txd = &gp->init_block->txd[entry];
1067 mapping = pci_map_page(gp->pdev,
1068 virt_to_page(skb->data),
1069 offset_in_page(skb->data),
1070 len, PCI_DMA_TODEVICE);
1071 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1072 if (gem_intme(entry))
1073 ctrl |= TXDCTRL_INTME;
1074 txd->buffer = cpu_to_le64(mapping);
1076 txd->control_word = cpu_to_le64(ctrl);
1077 entry = NEXT_TX(entry);
1079 struct gem_txd *txd;
1082 dma_addr_t first_mapping;
1083 int frag, first_entry = entry;
1086 if (gem_intme(entry))
1087 intme |= TXDCTRL_INTME;
1089 /* We must give this initial chunk to the device last.
1090 * Otherwise we could race with the device.
1092 first_len = skb_headlen(skb);
1093 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1094 offset_in_page(skb->data),
1095 first_len, PCI_DMA_TODEVICE);
1096 entry = NEXT_TX(entry);
1098 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1099 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1104 len = this_frag->size;
1105 mapping = pci_map_page(gp->pdev,
1107 this_frag->page_offset,
1108 len, PCI_DMA_TODEVICE);
1110 if (frag == skb_shinfo(skb)->nr_frags - 1)
1111 this_ctrl |= TXDCTRL_EOF;
1113 txd = &gp->init_block->txd[entry];
1114 txd->buffer = cpu_to_le64(mapping);
1116 txd->control_word = cpu_to_le64(this_ctrl | len);
1118 if (gem_intme(entry))
1119 intme |= TXDCTRL_INTME;
1121 entry = NEXT_TX(entry);
1123 txd = &gp->init_block->txd[first_entry];
1124 txd->buffer = cpu_to_le64(first_mapping);
1127 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1131 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1132 netif_stop_queue(dev);
1134 if (netif_msg_tx_queued(gp))
1135 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1136 dev->name, entry, skb->len);
1138 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1139 spin_unlock_irqrestore(&gp->tx_lock, flags);
1141 dev->trans_start = jiffies;
1143 return NETDEV_TX_OK;
1146 #define STOP_TRIES 32
1148 /* Must be invoked under gp->lock and gp->tx_lock. */
1149 static void gem_reset(struct gem *gp)
1154 /* Make sure we won't get any more interrupts */
1155 writel(0xffffffff, gp->regs + GREG_IMASK);
1157 /* Reset the chip */
1158 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1159 gp->regs + GREG_SWRST);
1165 val = readl(gp->regs + GREG_SWRST);
1168 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1171 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1174 /* Must be invoked under gp->lock and gp->tx_lock. */
1175 static void gem_start_dma(struct gem *gp)
1179 /* We are ready to rock, turn everything on. */
1180 val = readl(gp->regs + TXDMA_CFG);
1181 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1182 val = readl(gp->regs + RXDMA_CFG);
1183 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1184 val = readl(gp->regs + MAC_TXCFG);
1185 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1186 val = readl(gp->regs + MAC_RXCFG);
1187 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1189 (void) readl(gp->regs + MAC_RXCFG);
1192 gem_enable_ints(gp);
1194 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1197 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1198 * actually stopped before about 4ms tho ...
1200 static void gem_stop_dma(struct gem *gp)
1204 /* We are done rocking, turn everything off. */
1205 val = readl(gp->regs + TXDMA_CFG);
1206 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1207 val = readl(gp->regs + RXDMA_CFG);
1208 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1209 val = readl(gp->regs + MAC_TXCFG);
1210 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1211 val = readl(gp->regs + MAC_RXCFG);
1212 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1214 (void) readl(gp->regs + MAC_RXCFG);
1216 /* Need to wait a bit ... done by the caller */
1220 /* Must be invoked under gp->lock and gp->tx_lock. */
1221 // XXX dbl check what that function should do when called on PCS PHY
1222 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1224 u32 advertise, features;
1229 if (gp->phy_type != phy_mii_mdio0 &&
1230 gp->phy_type != phy_mii_mdio1)
1233 /* Setup advertise */
1234 if (found_mii_phy(gp))
1235 features = gp->phy_mii.def->features;
1239 advertise = features & ADVERTISE_MASK;
1240 if (gp->phy_mii.advertising != 0)
1241 advertise &= gp->phy_mii.advertising;
1243 autoneg = gp->want_autoneg;
1244 speed = gp->phy_mii.speed;
1245 duplex = gp->phy_mii.duplex;
1247 /* Setup link parameters */
1250 if (ep->autoneg == AUTONEG_ENABLE) {
1251 advertise = ep->advertising;
1256 duplex = ep->duplex;
1260 /* Sanitize settings based on PHY capabilities */
1261 if ((features & SUPPORTED_Autoneg) == 0)
1263 if (speed == SPEED_1000 &&
1264 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1266 if (speed == SPEED_100 &&
1267 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1269 if (duplex == DUPLEX_FULL &&
1270 !(features & (SUPPORTED_1000baseT_Full |
1271 SUPPORTED_100baseT_Full |
1272 SUPPORTED_10baseT_Full)))
1273 duplex = DUPLEX_HALF;
1277 /* If we are asleep, we don't try to actually setup the PHY, we
1278 * just store the settings
1281 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1282 gp->phy_mii.speed = speed;
1283 gp->phy_mii.duplex = duplex;
1287 /* Configure PHY & start aneg */
1288 gp->want_autoneg = autoneg;
1290 if (found_mii_phy(gp))
1291 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1292 gp->lstate = link_aneg;
1294 if (found_mii_phy(gp))
1295 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1296 gp->lstate = link_force_ok;
1300 gp->timer_ticks = 0;
1301 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1304 /* A link-up condition has occurred, initialize and enable the
1307 * Must be invoked under gp->lock and gp->tx_lock.
1309 static int gem_set_link_modes(struct gem *gp)
1312 int full_duplex, speed, pause;
1318 if (found_mii_phy(gp)) {
1319 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1321 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1322 speed = gp->phy_mii.speed;
1323 pause = gp->phy_mii.pause;
1324 } else if (gp->phy_type == phy_serialink ||
1325 gp->phy_type == phy_serdes) {
1326 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1328 if (pcs_lpa & PCS_MIIADV_FD)
1333 if (netif_msg_link(gp))
1334 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1335 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1340 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1342 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1344 /* MAC_TXCFG_NBO must be zero. */
1346 writel(val, gp->regs + MAC_TXCFG);
1348 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1350 (gp->phy_type == phy_mii_mdio0 ||
1351 gp->phy_type == phy_mii_mdio1)) {
1352 val |= MAC_XIFCFG_DISE;
1353 } else if (full_duplex) {
1354 val |= MAC_XIFCFG_FLED;
1357 if (speed == SPEED_1000)
1358 val |= (MAC_XIFCFG_GMII);
1360 writel(val, gp->regs + MAC_XIFCFG);
1362 /* If gigabit and half-duplex, enable carrier extension
1363 * mode. Else, disable it.
1365 if (speed == SPEED_1000 && !full_duplex) {
1366 val = readl(gp->regs + MAC_TXCFG);
1367 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1369 val = readl(gp->regs + MAC_RXCFG);
1370 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1372 val = readl(gp->regs + MAC_TXCFG);
1373 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1375 val = readl(gp->regs + MAC_RXCFG);
1376 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1379 if (gp->phy_type == phy_serialink ||
1380 gp->phy_type == phy_serdes) {
1381 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1383 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1387 if (netif_msg_link(gp)) {
1389 printk(KERN_INFO "%s: Pause is enabled "
1390 "(rxfifo: %d off: %d on: %d)\n",
1396 printk(KERN_INFO "%s: Pause is disabled\n",
1402 writel(512, gp->regs + MAC_STIME);
1404 writel(64, gp->regs + MAC_STIME);
1405 val = readl(gp->regs + MAC_MCCFG);
1407 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1409 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1410 writel(val, gp->regs + MAC_MCCFG);
1417 /* Must be invoked under gp->lock and gp->tx_lock. */
1418 static int gem_mdio_link_not_up(struct gem *gp)
1420 switch (gp->lstate) {
1421 case link_force_ret:
1422 if (netif_msg_link(gp))
1423 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1424 " forced mode\n", gp->dev->name);
1425 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1426 gp->last_forced_speed, DUPLEX_HALF);
1427 gp->timer_ticks = 5;
1428 gp->lstate = link_force_ok;
1431 /* We try forced modes after a failed aneg only on PHYs that don't
1432 * have "magic_aneg" bit set, which means they internally do the
1433 * while forced-mode thingy. On these, we just restart aneg
1435 if (gp->phy_mii.def->magic_aneg)
1437 if (netif_msg_link(gp))
1438 printk(KERN_INFO "%s: switching to forced 100bt\n",
1440 /* Try forced modes. */
1441 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1443 gp->timer_ticks = 5;
1444 gp->lstate = link_force_try;
1446 case link_force_try:
1447 /* Downgrade from 100 to 10 Mbps if necessary.
1448 * If already at 10Mbps, warn user about the
1449 * situation every 10 ticks.
1451 if (gp->phy_mii.speed == SPEED_100) {
1452 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1454 gp->timer_ticks = 5;
1455 if (netif_msg_link(gp))
1456 printk(KERN_INFO "%s: switching to forced 10bt\n",
1466 static void gem_link_timer(unsigned long data)
1468 struct gem *gp = (struct gem *) data;
1469 int restart_aneg = 0;
1474 spin_lock_irq(&gp->lock);
1475 spin_lock(&gp->tx_lock);
1478 /* If the reset task is still pending, we just
1479 * reschedule the link timer
1481 if (gp->reset_task_pending)
1484 if (gp->phy_type == phy_serialink ||
1485 gp->phy_type == phy_serdes) {
1486 u32 val = readl(gp->regs + PCS_MIISTAT);
1488 if (!(val & PCS_MIISTAT_LS))
1489 val = readl(gp->regs + PCS_MIISTAT);
1491 if ((val & PCS_MIISTAT_LS) != 0) {
1492 gp->lstate = link_up;
1493 netif_carrier_on(gp->dev);
1494 (void)gem_set_link_modes(gp);
1498 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1499 /* Ok, here we got a link. If we had it due to a forced
1500 * fallback, and we were configured for autoneg, we do
1501 * retry a short autoneg pass. If you know your hub is
1502 * broken, use ethtool ;)
1504 if (gp->lstate == link_force_try && gp->want_autoneg) {
1505 gp->lstate = link_force_ret;
1506 gp->last_forced_speed = gp->phy_mii.speed;
1507 gp->timer_ticks = 5;
1508 if (netif_msg_link(gp))
1509 printk(KERN_INFO "%s: Got link after fallback, retrying"
1510 " autoneg once...\n", gp->dev->name);
1511 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1512 } else if (gp->lstate != link_up) {
1513 gp->lstate = link_up;
1514 netif_carrier_on(gp->dev);
1515 if (gem_set_link_modes(gp))
1519 /* If the link was previously up, we restart the
1522 if (gp->lstate == link_up) {
1523 gp->lstate = link_down;
1524 if (netif_msg_link(gp))
1525 printk(KERN_INFO "%s: Link down\n",
1527 netif_carrier_off(gp->dev);
1528 gp->reset_task_pending = 1;
1529 schedule_work(&gp->reset_task);
1531 } else if (++gp->timer_ticks > 10) {
1532 if (found_mii_phy(gp))
1533 restart_aneg = gem_mdio_link_not_up(gp);
1539 gem_begin_auto_negotiation(gp, NULL);
1543 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1546 spin_unlock(&gp->tx_lock);
1547 spin_unlock_irq(&gp->lock);
1550 /* Must be invoked under gp->lock and gp->tx_lock. */
1551 static void gem_clean_rings(struct gem *gp)
1553 struct gem_init_block *gb = gp->init_block;
1554 struct sk_buff *skb;
1556 dma_addr_t dma_addr;
1558 for (i = 0; i < RX_RING_SIZE; i++) {
1559 struct gem_rxd *rxd;
1562 if (gp->rx_skbs[i] != NULL) {
1563 skb = gp->rx_skbs[i];
1564 dma_addr = le64_to_cpu(rxd->buffer);
1565 pci_unmap_page(gp->pdev, dma_addr,
1566 RX_BUF_ALLOC_SIZE(gp),
1567 PCI_DMA_FROMDEVICE);
1568 dev_kfree_skb_any(skb);
1569 gp->rx_skbs[i] = NULL;
1571 rxd->status_word = 0;
1576 for (i = 0; i < TX_RING_SIZE; i++) {
1577 if (gp->tx_skbs[i] != NULL) {
1578 struct gem_txd *txd;
1581 skb = gp->tx_skbs[i];
1582 gp->tx_skbs[i] = NULL;
1584 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1585 int ent = i & (TX_RING_SIZE - 1);
1587 txd = &gb->txd[ent];
1588 dma_addr = le64_to_cpu(txd->buffer);
1589 pci_unmap_page(gp->pdev, dma_addr,
1590 le64_to_cpu(txd->control_word) &
1591 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1593 if (frag != skb_shinfo(skb)->nr_frags)
1596 dev_kfree_skb_any(skb);
1601 /* Must be invoked under gp->lock and gp->tx_lock. */
1602 static void gem_init_rings(struct gem *gp)
1604 struct gem_init_block *gb = gp->init_block;
1605 struct net_device *dev = gp->dev;
1607 dma_addr_t dma_addr;
1609 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1611 gem_clean_rings(gp);
1613 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1614 (unsigned)VLAN_ETH_FRAME_LEN);
1616 for (i = 0; i < RX_RING_SIZE; i++) {
1617 struct sk_buff *skb;
1618 struct gem_rxd *rxd = &gb->rxd[i];
1620 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1623 rxd->status_word = 0;
1627 gp->rx_skbs[i] = skb;
1629 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1630 dma_addr = pci_map_page(gp->pdev,
1631 virt_to_page(skb->data),
1632 offset_in_page(skb->data),
1633 RX_BUF_ALLOC_SIZE(gp),
1634 PCI_DMA_FROMDEVICE);
1635 rxd->buffer = cpu_to_le64(dma_addr);
1637 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1638 skb_reserve(skb, RX_OFFSET);
1641 for (i = 0; i < TX_RING_SIZE; i++) {
1642 struct gem_txd *txd = &gb->txd[i];
1644 txd->control_word = 0;
1651 /* Init PHY interface and start link poll state machine */
1652 static void gem_init_phy(struct gem *gp)
1656 /* Revert MIF CFG setting done on stop_phy */
1657 mifcfg = readl(gp->regs + MIF_CFG);
1658 mifcfg &= ~MIF_CFG_BBMODE;
1659 writel(mifcfg, gp->regs + MIF_CFG);
1661 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1664 /* Those delay sucks, the HW seem to love them though, I'll
1665 * serisouly consider breaking some locks here to be able
1666 * to schedule instead
1668 for (i = 0; i < 3; i++) {
1669 #ifdef CONFIG_PPC_PMAC
1670 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1673 /* Some PHYs used by apple have problem getting back to us,
1674 * we do an additional reset here
1676 phy_write(gp, MII_BMCR, BMCR_RESET);
1678 if (phy_read(gp, MII_BMCR) != 0xffff)
1681 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1686 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1687 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1690 /* Init datapath mode register. */
1691 if (gp->phy_type == phy_mii_mdio0 ||
1692 gp->phy_type == phy_mii_mdio1) {
1693 val = PCS_DMODE_MGM;
1694 } else if (gp->phy_type == phy_serialink) {
1695 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1697 val = PCS_DMODE_ESM;
1700 writel(val, gp->regs + PCS_DMODE);
1703 if (gp->phy_type == phy_mii_mdio0 ||
1704 gp->phy_type == phy_mii_mdio1) {
1705 // XXX check for errors
1706 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1709 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1710 gp->phy_mii.def->ops->init(&gp->phy_mii);
1715 /* Reset PCS unit. */
1716 val = readl(gp->regs + PCS_MIICTRL);
1717 val |= PCS_MIICTRL_RST;
1718 writeb(val, gp->regs + PCS_MIICTRL);
1721 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1727 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1730 /* Make sure PCS is disabled while changing advertisement
1733 val = readl(gp->regs + PCS_CFG);
1734 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1735 writel(val, gp->regs + PCS_CFG);
1737 /* Advertise all capabilities except assymetric
1740 val = readl(gp->regs + PCS_MIIADV);
1741 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1742 PCS_MIIADV_SP | PCS_MIIADV_AP);
1743 writel(val, gp->regs + PCS_MIIADV);
1745 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1746 * and re-enable PCS.
1748 val = readl(gp->regs + PCS_MIICTRL);
1749 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1750 val &= ~PCS_MIICTRL_WB;
1751 writel(val, gp->regs + PCS_MIICTRL);
1753 val = readl(gp->regs + PCS_CFG);
1754 val |= PCS_CFG_ENABLE;
1755 writel(val, gp->regs + PCS_CFG);
1757 /* Make sure serialink loopback is off. The meaning
1758 * of this bit is logically inverted based upon whether
1759 * you are in Serialink or SERDES mode.
1761 val = readl(gp->regs + PCS_SCTRL);
1762 if (gp->phy_type == phy_serialink)
1763 val &= ~PCS_SCTRL_LOOP;
1765 val |= PCS_SCTRL_LOOP;
1766 writel(val, gp->regs + PCS_SCTRL);
1769 /* Default aneg parameters */
1770 gp->timer_ticks = 0;
1771 gp->lstate = link_down;
1772 netif_carrier_off(gp->dev);
1774 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1775 spin_lock_irq(&gp->lock);
1776 gem_begin_auto_negotiation(gp, NULL);
1777 spin_unlock_irq(&gp->lock);
1780 /* Must be invoked under gp->lock and gp->tx_lock. */
1781 static void gem_init_dma(struct gem *gp)
1783 u64 desc_dma = (u64) gp->gblock_dvma;
1786 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1787 writel(val, gp->regs + TXDMA_CFG);
1789 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1790 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1791 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1793 writel(0, gp->regs + TXDMA_KICK);
1795 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1796 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1797 writel(val, gp->regs + RXDMA_CFG);
1799 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1800 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1802 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1804 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1805 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1806 writel(val, gp->regs + RXDMA_PTHRESH);
1808 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1809 writel(((5 & RXDMA_BLANK_IPKTS) |
1810 ((8 << 12) & RXDMA_BLANK_ITIME)),
1811 gp->regs + RXDMA_BLANK);
1813 writel(((5 & RXDMA_BLANK_IPKTS) |
1814 ((4 << 12) & RXDMA_BLANK_ITIME)),
1815 gp->regs + RXDMA_BLANK);
1818 /* Must be invoked under gp->lock and gp->tx_lock. */
1819 static u32 gem_setup_multicast(struct gem *gp)
1824 if ((gp->dev->flags & IFF_ALLMULTI) ||
1825 (gp->dev->mc_count > 256)) {
1826 for (i=0; i<16; i++)
1827 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1828 rxcfg |= MAC_RXCFG_HFE;
1829 } else if (gp->dev->flags & IFF_PROMISC) {
1830 rxcfg |= MAC_RXCFG_PROM;
1834 struct dev_mc_list *dmi = gp->dev->mc_list;
1837 for (i = 0; i < 16; i++)
1840 for (i = 0; i < gp->dev->mc_count; i++) {
1841 char *addrs = dmi->dmi_addr;
1848 crc = ether_crc_le(6, addrs);
1850 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1852 for (i=0; i<16; i++)
1853 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1854 rxcfg |= MAC_RXCFG_HFE;
1860 /* Must be invoked under gp->lock and gp->tx_lock. */
1861 static void gem_init_mac(struct gem *gp)
1863 unsigned char *e = &gp->dev->dev_addr[0];
1865 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1867 writel(0x00, gp->regs + MAC_IPG0);
1868 writel(0x08, gp->regs + MAC_IPG1);
1869 writel(0x04, gp->regs + MAC_IPG2);
1870 writel(0x40, gp->regs + MAC_STIME);
1871 writel(0x40, gp->regs + MAC_MINFSZ);
1873 /* Ethernet payload + header + FCS + optional VLAN tag. */
1874 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1876 writel(0x07, gp->regs + MAC_PASIZE);
1877 writel(0x04, gp->regs + MAC_JAMSIZE);
1878 writel(0x10, gp->regs + MAC_ATTLIM);
1879 writel(0x8808, gp->regs + MAC_MCTYPE);
1881 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1883 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1884 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1885 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1887 writel(0, gp->regs + MAC_ADDR3);
1888 writel(0, gp->regs + MAC_ADDR4);
1889 writel(0, gp->regs + MAC_ADDR5);
1891 writel(0x0001, gp->regs + MAC_ADDR6);
1892 writel(0xc200, gp->regs + MAC_ADDR7);
1893 writel(0x0180, gp->regs + MAC_ADDR8);
1895 writel(0, gp->regs + MAC_AFILT0);
1896 writel(0, gp->regs + MAC_AFILT1);
1897 writel(0, gp->regs + MAC_AFILT2);
1898 writel(0, gp->regs + MAC_AF21MSK);
1899 writel(0, gp->regs + MAC_AF0MSK);
1901 gp->mac_rx_cfg = gem_setup_multicast(gp);
1903 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1905 writel(0, gp->regs + MAC_NCOLL);
1906 writel(0, gp->regs + MAC_FASUCC);
1907 writel(0, gp->regs + MAC_ECOLL);
1908 writel(0, gp->regs + MAC_LCOLL);
1909 writel(0, gp->regs + MAC_DTIMER);
1910 writel(0, gp->regs + MAC_PATMPS);
1911 writel(0, gp->regs + MAC_RFCTR);
1912 writel(0, gp->regs + MAC_LERR);
1913 writel(0, gp->regs + MAC_AERR);
1914 writel(0, gp->regs + MAC_FCSERR);
1915 writel(0, gp->regs + MAC_RXCVERR);
1917 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1918 * them once a link is established.
1920 writel(0, gp->regs + MAC_TXCFG);
1921 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1922 writel(0, gp->regs + MAC_MCCFG);
1923 writel(0, gp->regs + MAC_XIFCFG);
1925 /* Setup MAC interrupts. We want to get all of the interesting
1926 * counter expiration events, but we do not want to hear about
1927 * normal rx/tx as the DMA engine tells us that.
1929 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1930 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1932 /* Don't enable even the PAUSE interrupts for now, we
1933 * make no use of those events other than to record them.
1935 writel(0xffffffff, gp->regs + MAC_MCMASK);
1937 /* Don't enable GEM's WOL in normal operations
1940 writel(0, gp->regs + WOL_WAKECSR);
1943 /* Must be invoked under gp->lock and gp->tx_lock. */
1944 static void gem_init_pause_thresholds(struct gem *gp)
1948 /* Calculate pause thresholds. Setting the OFF threshold to the
1949 * full RX fifo size effectively disables PAUSE generation which
1950 * is what we do for 10/100 only GEMs which have FIFOs too small
1951 * to make real gains from PAUSE.
1953 if (gp->rx_fifo_sz <= (2 * 1024)) {
1954 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1956 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1957 int off = (gp->rx_fifo_sz - (max_frame * 2));
1958 int on = off - max_frame;
1960 gp->rx_pause_off = off;
1961 gp->rx_pause_on = on;
1965 /* Configure the chip "burst" DMA mode & enable some
1966 * HW bug fixes on Apple version
1969 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1970 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1971 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1972 cfg |= GREG_CFG_IBURST;
1974 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1975 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1976 writel(cfg, gp->regs + GREG_CFG);
1978 /* If Infinite Burst didn't stick, then use different
1979 * thresholds (and Apple bug fixes don't exist)
1981 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1982 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1983 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1984 writel(cfg, gp->regs + GREG_CFG);
1988 static int gem_check_invariants(struct gem *gp)
1990 struct pci_dev *pdev = gp->pdev;
1993 /* On Apple's sungem, we can't rely on registers as the chip
1994 * was been powered down by the firmware. The PHY is looked
1997 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1998 gp->phy_type = phy_mii_mdio0;
1999 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2000 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2003 mif_cfg = readl(gp->regs + MIF_CFG);
2004 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2005 mif_cfg |= MIF_CFG_MDI0;
2006 writel(mif_cfg, gp->regs + MIF_CFG);
2007 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2008 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2010 /* We hard-code the PHY address so we can properly bring it out of
2011 * reset later on, we can't really probe it at this point, though
2012 * that isn't an issue.
2014 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2015 gp->mii_phy_addr = 1;
2017 gp->mii_phy_addr = 0;
2022 mif_cfg = readl(gp->regs + MIF_CFG);
2024 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2025 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2026 /* One of the MII PHYs _must_ be present
2027 * as this chip has no gigabit PHY.
2029 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2030 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2036 /* Determine initial PHY interface type guess. MDIO1 is the
2037 * external PHY and thus takes precedence over MDIO0.
2040 if (mif_cfg & MIF_CFG_MDI1) {
2041 gp->phy_type = phy_mii_mdio1;
2042 mif_cfg |= MIF_CFG_PSELECT;
2043 writel(mif_cfg, gp->regs + MIF_CFG);
2044 } else if (mif_cfg & MIF_CFG_MDI0) {
2045 gp->phy_type = phy_mii_mdio0;
2046 mif_cfg &= ~MIF_CFG_PSELECT;
2047 writel(mif_cfg, gp->regs + MIF_CFG);
2049 gp->phy_type = phy_serialink;
2051 if (gp->phy_type == phy_mii_mdio1 ||
2052 gp->phy_type == phy_mii_mdio0) {
2055 for (i = 0; i < 32; i++) {
2056 gp->mii_phy_addr = i;
2057 if (phy_read(gp, MII_BMCR) != 0xffff)
2061 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2062 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2065 gp->phy_type = phy_serdes;
2069 /* Fetch the FIFO configurations now too. */
2070 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2071 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2073 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2074 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2075 if (gp->tx_fifo_sz != (9 * 1024) ||
2076 gp->rx_fifo_sz != (20 * 1024)) {
2077 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2078 gp->tx_fifo_sz, gp->rx_fifo_sz);
2083 if (gp->tx_fifo_sz != (2 * 1024) ||
2084 gp->rx_fifo_sz != (2 * 1024)) {
2085 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2086 gp->tx_fifo_sz, gp->rx_fifo_sz);
2089 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2096 /* Must be invoked under gp->lock and gp->tx_lock. */
2097 static void gem_reinit_chip(struct gem *gp)
2099 /* Reset the chip */
2102 /* Make sure ints are disabled */
2103 gem_disable_ints(gp);
2105 /* Allocate & setup ring buffers */
2108 /* Configure pause thresholds */
2109 gem_init_pause_thresholds(gp);
2111 /* Init DMA & MAC engines */
2117 /* Must be invoked with no lock held. */
2118 static void gem_stop_phy(struct gem *gp, int wol)
2121 unsigned long flags;
2123 /* Let the chip settle down a bit, it seems that helps
2124 * for sleep mode on some models
2128 /* Make sure we aren't polling PHY status change. We
2129 * don't currently use that feature though
2131 mifcfg = readl(gp->regs + MIF_CFG);
2132 mifcfg &= ~MIF_CFG_POLL;
2133 writel(mifcfg, gp->regs + MIF_CFG);
2135 if (wol && gp->has_wol) {
2136 unsigned char *e = &gp->dev->dev_addr[0];
2139 /* Setup wake-on-lan for MAGIC packet */
2140 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2141 gp->regs + MAC_RXCFG);
2142 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2143 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2144 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2146 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2147 csr = WOL_WAKECSR_ENABLE;
2148 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2149 csr |= WOL_WAKECSR_MII;
2150 writel(csr, gp->regs + WOL_WAKECSR);
2152 writel(0, gp->regs + MAC_RXCFG);
2153 (void)readl(gp->regs + MAC_RXCFG);
2154 /* Machine sleep will die in strange ways if we
2155 * dont wait a bit here, looks like the chip takes
2156 * some time to really shut down
2161 writel(0, gp->regs + MAC_TXCFG);
2162 writel(0, gp->regs + MAC_XIFCFG);
2163 writel(0, gp->regs + TXDMA_CFG);
2164 writel(0, gp->regs + RXDMA_CFG);
2167 spin_lock_irqsave(&gp->lock, flags);
2168 spin_lock(&gp->tx_lock);
2170 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2171 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2172 spin_unlock(&gp->tx_lock);
2173 spin_unlock_irqrestore(&gp->lock, flags);
2175 /* No need to take the lock here */
2177 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2178 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2180 /* According to Apple, we must set the MDIO pins to this begnign
2181 * state or we may 1) eat more current, 2) damage some PHYs
2183 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2184 writel(0, gp->regs + MIF_BBCLK);
2185 writel(0, gp->regs + MIF_BBDATA);
2186 writel(0, gp->regs + MIF_BBOENAB);
2187 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2188 (void) readl(gp->regs + MAC_XIFCFG);
2193 static int gem_do_start(struct net_device *dev)
2195 struct gem *gp = dev->priv;
2196 unsigned long flags;
2198 spin_lock_irqsave(&gp->lock, flags);
2199 spin_lock(&gp->tx_lock);
2201 /* Enable the cell */
2204 /* Init & setup chip hardware */
2205 gem_reinit_chip(gp);
2209 if (gp->lstate == link_up) {
2210 netif_carrier_on(gp->dev);
2211 gem_set_link_modes(gp);
2214 netif_wake_queue(gp->dev);
2216 spin_unlock(&gp->tx_lock);
2217 spin_unlock_irqrestore(&gp->lock, flags);
2219 if (request_irq(gp->pdev->irq, gem_interrupt,
2220 SA_SHIRQ, dev->name, (void *)dev)) {
2221 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2223 spin_lock_irqsave(&gp->lock, flags);
2224 spin_lock(&gp->tx_lock);
2228 gem_clean_rings(gp);
2231 spin_unlock(&gp->tx_lock);
2232 spin_unlock_irqrestore(&gp->lock, flags);
2240 static void gem_do_stop(struct net_device *dev, int wol)
2242 struct gem *gp = dev->priv;
2243 unsigned long flags;
2245 spin_lock_irqsave(&gp->lock, flags);
2246 spin_lock(&gp->tx_lock);
2250 /* Stop netif queue */
2251 netif_stop_queue(dev);
2253 /* Make sure ints are disabled */
2254 gem_disable_ints(gp);
2256 /* We can drop the lock now */
2257 spin_unlock(&gp->tx_lock);
2258 spin_unlock_irqrestore(&gp->lock, flags);
2260 /* If we are going to sleep with WOL */
2267 /* Get rid of rings */
2268 gem_clean_rings(gp);
2270 /* No irq needed anymore */
2271 free_irq(gp->pdev->irq, (void *) dev);
2273 /* Cell not needed neither if no WOL */
2275 spin_lock_irqsave(&gp->lock, flags);
2277 spin_unlock_irqrestore(&gp->lock, flags);
2281 static void gem_reset_task(void *data)
2283 struct gem *gp = (struct gem *) data;
2287 netif_poll_disable(gp->dev);
2289 spin_lock_irq(&gp->lock);
2290 spin_lock(&gp->tx_lock);
2292 if (gp->running == 0)
2296 netif_stop_queue(gp->dev);
2298 /* Reset the chip & rings */
2299 gem_reinit_chip(gp);
2300 if (gp->lstate == link_up)
2301 gem_set_link_modes(gp);
2302 netif_wake_queue(gp->dev);
2305 gp->reset_task_pending = 0;
2307 spin_unlock(&gp->tx_lock);
2308 spin_unlock_irq(&gp->lock);
2310 netif_poll_enable(gp->dev);
2316 static int gem_open(struct net_device *dev)
2318 struct gem *gp = dev->priv;
2323 /* We need the cell enabled */
2325 rc = gem_do_start(dev);
2326 gp->opened = (rc == 0);
2333 static int gem_close(struct net_device *dev)
2335 struct gem *gp = dev->priv;
2337 /* Note: we don't need to call netif_poll_disable() here because
2338 * our caller (dev_close) already did it for us
2345 gem_do_stop(dev, 0);
2353 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2355 struct net_device *dev = pci_get_drvdata(pdev);
2356 struct gem *gp = dev->priv;
2357 unsigned long flags;
2361 netif_poll_disable(dev);
2363 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2365 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2367 /* Keep the cell enabled during the entire operation */
2368 spin_lock_irqsave(&gp->lock, flags);
2369 spin_lock(&gp->tx_lock);
2371 spin_unlock(&gp->tx_lock);
2372 spin_unlock_irqrestore(&gp->lock, flags);
2374 /* If the driver is opened, we stop the MAC */
2376 /* Stop traffic, mark us closed */
2377 netif_device_detach(dev);
2379 /* Switch off MAC, remember WOL setting */
2380 gp->asleep_wol = gp->wake_on_lan;
2381 gem_do_stop(dev, gp->asleep_wol);
2385 /* Mark us asleep */
2389 /* Stop the link timer */
2390 del_timer_sync(&gp->link_timer);
2392 /* Now we release the semaphore to not block the reset task who
2393 * can take it too. We are marked asleep, so there will be no
2398 /* Wait for a pending reset task to complete */
2399 while (gp->reset_task_pending)
2401 flush_scheduled_work();
2403 /* Shut the PHY down eventually and setup WOL */
2404 gem_stop_phy(gp, gp->asleep_wol);
2406 /* Make sure bus master is disabled */
2407 pci_disable_device(gp->pdev);
2409 /* Release the cell, no need to take a lock at this point since
2410 * nothing else can happen now
2417 static int gem_resume(struct pci_dev *pdev)
2419 struct net_device *dev = pci_get_drvdata(pdev);
2420 struct gem *gp = dev->priv;
2421 unsigned long flags;
2423 printk(KERN_INFO "%s: resuming\n", dev->name);
2427 /* Keep the cell enabled during the entire operation, no need to
2428 * take a lock here tho since nothing else can happen while we are
2433 /* Make sure PCI access and bus master are enabled */
2434 if (pci_enable_device(gp->pdev)) {
2435 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2437 /* Put cell and forget it for now, it will be considered as
2438 * still asleep, a new sleep cycle may bring it back
2444 pci_set_master(gp->pdev);
2446 /* Reset everything */
2449 /* Mark us woken up */
2453 /* Bring the PHY back. Again, lock is useless at this point as
2454 * nothing can be happening until we restart the whole thing
2458 /* If we were opened, bring everything back */
2463 /* Re-attach net device */
2464 netif_device_attach(dev);
2468 spin_lock_irqsave(&gp->lock, flags);
2469 spin_lock(&gp->tx_lock);
2471 /* If we had WOL enabled, the cell clock was never turned off during
2472 * sleep, so we end up beeing unbalanced. Fix that here
2477 /* This function doesn't need to hold the cell, it will be held if the
2478 * driver is open by gem_do_start().
2482 spin_unlock(&gp->tx_lock);
2483 spin_unlock_irqrestore(&gp->lock, flags);
2485 netif_poll_enable(dev);
2491 #endif /* CONFIG_PM */
2493 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2495 struct gem *gp = dev->priv;
2496 struct net_device_stats *stats = &gp->net_stats;
2498 spin_lock_irq(&gp->lock);
2499 spin_lock(&gp->tx_lock);
2501 /* I have seen this being called while the PM was in progress,
2502 * so we shield against this
2505 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2506 writel(0, gp->regs + MAC_FCSERR);
2508 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2509 writel(0, gp->regs + MAC_AERR);
2511 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2512 writel(0, gp->regs + MAC_LERR);
2514 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2515 stats->collisions +=
2516 (readl(gp->regs + MAC_ECOLL) +
2517 readl(gp->regs + MAC_LCOLL));
2518 writel(0, gp->regs + MAC_ECOLL);
2519 writel(0, gp->regs + MAC_LCOLL);
2522 spin_unlock(&gp->tx_lock);
2523 spin_unlock_irq(&gp->lock);
2525 return &gp->net_stats;
2528 static void gem_set_multicast(struct net_device *dev)
2530 struct gem *gp = dev->priv;
2531 u32 rxcfg, rxcfg_new;
2535 spin_lock_irq(&gp->lock);
2536 spin_lock(&gp->tx_lock);
2541 netif_stop_queue(dev);
2543 rxcfg = readl(gp->regs + MAC_RXCFG);
2544 rxcfg_new = gem_setup_multicast(gp);
2546 rxcfg_new |= MAC_RXCFG_SFCS;
2548 gp->mac_rx_cfg = rxcfg_new;
2550 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2551 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2557 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2560 writel(rxcfg, gp->regs + MAC_RXCFG);
2562 netif_wake_queue(dev);
2565 spin_unlock(&gp->tx_lock);
2566 spin_unlock_irq(&gp->lock);
2569 /* Jumbo-grams don't seem to work :-( */
2570 #define GEM_MIN_MTU 68
2572 #define GEM_MAX_MTU 1500
2574 #define GEM_MAX_MTU 9000
2577 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2579 struct gem *gp = dev->priv;
2581 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2584 if (!netif_running(dev) || !netif_device_present(dev)) {
2585 /* We'll just catch it later when the
2586 * device is up'd or resumed.
2593 spin_lock_irq(&gp->lock);
2594 spin_lock(&gp->tx_lock);
2597 gem_reinit_chip(gp);
2598 if (gp->lstate == link_up)
2599 gem_set_link_modes(gp);
2601 spin_unlock(&gp->tx_lock);
2602 spin_unlock_irq(&gp->lock);
2608 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2610 struct gem *gp = dev->priv;
2612 strcpy(info->driver, DRV_NAME);
2613 strcpy(info->version, DRV_VERSION);
2614 strcpy(info->bus_info, pci_name(gp->pdev));
2617 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2619 struct gem *gp = dev->priv;
2621 if (gp->phy_type == phy_mii_mdio0 ||
2622 gp->phy_type == phy_mii_mdio1) {
2623 if (gp->phy_mii.def)
2624 cmd->supported = gp->phy_mii.def->features;
2626 cmd->supported = (SUPPORTED_10baseT_Half |
2627 SUPPORTED_10baseT_Full);
2629 /* XXX hardcoded stuff for now */
2630 cmd->port = PORT_MII;
2631 cmd->transceiver = XCVR_EXTERNAL;
2632 cmd->phy_address = 0; /* XXX fixed PHYAD */
2634 /* Return current PHY settings */
2635 spin_lock_irq(&gp->lock);
2636 cmd->autoneg = gp->want_autoneg;
2637 cmd->speed = gp->phy_mii.speed;
2638 cmd->duplex = gp->phy_mii.duplex;
2639 cmd->advertising = gp->phy_mii.advertising;
2641 /* If we started with a forced mode, we don't have a default
2642 * advertise set, we need to return something sensible so
2643 * userland can re-enable autoneg properly.
2645 if (cmd->advertising == 0)
2646 cmd->advertising = cmd->supported;
2647 spin_unlock_irq(&gp->lock);
2648 } else { // XXX PCS ?
2650 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2651 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2653 cmd->advertising = cmd->supported;
2655 cmd->duplex = cmd->port = cmd->phy_address =
2656 cmd->transceiver = cmd->autoneg = 0;
2658 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2663 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2665 struct gem *gp = dev->priv;
2667 /* Verify the settings we care about. */
2668 if (cmd->autoneg != AUTONEG_ENABLE &&
2669 cmd->autoneg != AUTONEG_DISABLE)
2672 if (cmd->autoneg == AUTONEG_ENABLE &&
2673 cmd->advertising == 0)
2676 if (cmd->autoneg == AUTONEG_DISABLE &&
2677 ((cmd->speed != SPEED_1000 &&
2678 cmd->speed != SPEED_100 &&
2679 cmd->speed != SPEED_10) ||
2680 (cmd->duplex != DUPLEX_HALF &&
2681 cmd->duplex != DUPLEX_FULL)))
2684 /* Apply settings and restart link process. */
2685 spin_lock_irq(&gp->lock);
2687 gem_begin_auto_negotiation(gp, cmd);
2689 spin_unlock_irq(&gp->lock);
2694 static int gem_nway_reset(struct net_device *dev)
2696 struct gem *gp = dev->priv;
2698 if (!gp->want_autoneg)
2701 /* Restart link process. */
2702 spin_lock_irq(&gp->lock);
2704 gem_begin_auto_negotiation(gp, NULL);
2706 spin_unlock_irq(&gp->lock);
2711 static u32 gem_get_msglevel(struct net_device *dev)
2713 struct gem *gp = dev->priv;
2714 return gp->msg_enable;
2717 static void gem_set_msglevel(struct net_device *dev, u32 value)
2719 struct gem *gp = dev->priv;
2720 gp->msg_enable = value;
2724 /* Add more when I understand how to program the chip */
2725 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2727 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2729 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2731 struct gem *gp = dev->priv;
2733 /* Add more when I understand how to program the chip */
2735 wol->supported = WOL_SUPPORTED_MASK;
2736 wol->wolopts = gp->wake_on_lan;
2743 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2745 struct gem *gp = dev->priv;
2749 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2753 static struct ethtool_ops gem_ethtool_ops = {
2754 .get_drvinfo = gem_get_drvinfo,
2755 .get_link = ethtool_op_get_link,
2756 .get_settings = gem_get_settings,
2757 .set_settings = gem_set_settings,
2758 .nway_reset = gem_nway_reset,
2759 .get_msglevel = gem_get_msglevel,
2760 .set_msglevel = gem_set_msglevel,
2761 .get_wol = gem_get_wol,
2762 .set_wol = gem_set_wol,
2765 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2767 struct gem *gp = dev->priv;
2768 struct mii_ioctl_data *data = if_mii(ifr);
2769 int rc = -EOPNOTSUPP;
2770 unsigned long flags;
2772 /* Hold the PM semaphore while doing ioctl's or we may collide
2773 * with power management.
2777 spin_lock_irqsave(&gp->lock, flags);
2779 spin_unlock_irqrestore(&gp->lock, flags);
2782 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2783 data->phy_id = gp->mii_phy_addr;
2784 /* Fallthrough... */
2786 case SIOCGMIIREG: /* Read MII PHY register. */
2790 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2791 data->reg_num & 0x1f);
2796 case SIOCSMIIREG: /* Write MII PHY register. */
2797 if (!capable(CAP_NET_ADMIN))
2799 else if (!gp->running)
2802 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2809 spin_lock_irqsave(&gp->lock, flags);
2811 spin_unlock_irqrestore(&gp->lock, flags);
2818 #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2819 /* Fetch MAC address from vital product data of PCI ROM. */
2820 static void find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2824 for (this_offset = 0x20; this_offset < len; this_offset++) {
2825 void __iomem *p = rom_base + this_offset;
2828 if (readb(p + 0) != 0x90 ||
2829 readb(p + 1) != 0x00 ||
2830 readb(p + 2) != 0x09 ||
2831 readb(p + 3) != 0x4e ||
2832 readb(p + 4) != 0x41 ||
2833 readb(p + 5) != 0x06)
2839 for (i = 0; i < 6; i++)
2840 dev_addr[i] = readb(p + i);
2845 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2850 if (pdev->resource[PCI_ROM_RESOURCE].parent == NULL) {
2851 if (pci_assign_resource(pdev, PCI_ROM_RESOURCE) < 0)
2855 pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_reg_orig);
2856 pci_write_config_dword(pdev, pdev->rom_base_reg,
2857 rom_reg_orig | PCI_ROM_ADDRESS_ENABLE);
2859 p = ioremap(pci_resource_start(pdev, PCI_ROM_RESOURCE), (64 * 1024));
2860 if (p != NULL && readb(p) == 0x55 && readb(p + 1) == 0xaa)
2861 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2866 pci_write_config_dword(pdev, pdev->rom_base_reg, rom_reg_orig);
2870 /* Sun MAC prefix then 3 random bytes. */
2874 get_random_bytes(dev_addr + 3, 3);
2877 #endif /* not Sparc and not PPC */
2879 static int __devinit gem_get_device_address(struct gem *gp)
2881 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2882 struct net_device *dev = gp->dev;
2885 #if defined(__sparc__)
2886 struct pci_dev *pdev = gp->pdev;
2887 struct pcidev_cookie *pcp = pdev->sysdata;
2891 node = pcp->prom_node;
2892 if (prom_getproplen(node, "local-mac-address") == 6)
2893 prom_getproperty(node, "local-mac-address",
2899 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2900 #elif defined(CONFIG_PPC_PMAC)
2901 unsigned char *addr;
2903 addr = get_property(gp->of_node, "local-mac-address", NULL);
2906 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2909 memcpy(dev->dev_addr, addr, 6);
2911 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2916 static void __devexit gem_remove_one(struct pci_dev *pdev)
2918 struct net_device *dev = pci_get_drvdata(pdev);
2921 struct gem *gp = dev->priv;
2923 unregister_netdev(dev);
2925 /* Stop the link timer */
2926 del_timer_sync(&gp->link_timer);
2928 /* We shouldn't need any locking here */
2931 /* Wait for a pending reset task to complete */
2932 while (gp->reset_task_pending)
2934 flush_scheduled_work();
2936 /* Shut the PHY down */
2937 gem_stop_phy(gp, 0);
2941 /* Make sure bus master is disabled */
2942 pci_disable_device(gp->pdev);
2944 /* Free resources */
2945 pci_free_consistent(pdev,
2946 sizeof(struct gem_init_block),
2950 pci_release_regions(pdev);
2953 pci_set_drvdata(pdev, NULL);
2957 static int __devinit gem_init_one(struct pci_dev *pdev,
2958 const struct pci_device_id *ent)
2960 static int gem_version_printed = 0;
2961 unsigned long gemreg_base, gemreg_len;
2962 struct net_device *dev;
2964 int i, err, pci_using_dac;
2966 if (gem_version_printed++ == 0)
2967 printk(KERN_INFO "%s", version);
2969 /* Apple gmac note: during probe, the chip is powered up by
2970 * the arch code to allow the code below to work (and to let
2971 * the chip be probed on the config space. It won't stay powered
2972 * up until the interface is brought up however, so we can't rely
2973 * on register configuration done at this point.
2975 err = pci_enable_device(pdev);
2977 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2981 pci_set_master(pdev);
2983 /* Configure DMA attributes. */
2985 /* All of the GEM documentation states that 64-bit DMA addressing
2986 * is fully supported and should work just fine. However the
2987 * front end for RIO based GEMs is different and only supports
2988 * 32-bit addressing.
2990 * For now we assume the various PPC GEMs are 32-bit only as well.
2992 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2993 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2994 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2997 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2999 printk(KERN_ERR PFX "No usable DMA configuration, "
3001 goto err_disable_device;
3006 gemreg_base = pci_resource_start(pdev, 0);
3007 gemreg_len = pci_resource_len(pdev, 0);
3009 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3010 printk(KERN_ERR PFX "Cannot find proper PCI device "
3011 "base address, aborting.\n");
3013 goto err_disable_device;
3016 dev = alloc_etherdev(sizeof(*gp));
3018 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3020 goto err_disable_device;
3022 SET_MODULE_OWNER(dev);
3023 SET_NETDEV_DEV(dev, &pdev->dev);
3027 err = pci_request_regions(pdev, DRV_NAME);
3029 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3031 goto err_out_free_netdev;
3035 dev->base_addr = (long) pdev;
3038 gp->msg_enable = DEFAULT_MSG;
3040 spin_lock_init(&gp->lock);
3041 spin_lock_init(&gp->tx_lock);
3042 init_MUTEX(&gp->pm_sem);
3044 init_timer(&gp->link_timer);
3045 gp->link_timer.function = gem_link_timer;
3046 gp->link_timer.data = (unsigned long) gp;
3048 INIT_WORK(&gp->reset_task, gem_reset_task, gp);
3050 gp->lstate = link_down;
3051 gp->timer_ticks = 0;
3052 netif_carrier_off(dev);
3054 gp->regs = ioremap(gemreg_base, gemreg_len);
3055 if (gp->regs == 0UL) {
3056 printk(KERN_ERR PFX "Cannot map device registers, "
3059 goto err_out_free_res;
3062 /* On Apple, we want a reference to the Open Firmware device-tree
3063 * node. We use it for clock control.
3065 #ifdef CONFIG_PPC_PMAC
3066 gp->of_node = pci_device_to_OF_node(pdev);
3069 /* Only Apple version supports WOL afaik */
3070 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3073 /* Make sure cell is enabled */
3076 /* Make sure everything is stopped and in init state */
3079 /* Fill up the mii_phy structure (even if we won't use it) */
3080 gp->phy_mii.dev = dev;
3081 gp->phy_mii.mdio_read = _phy_read;
3082 gp->phy_mii.mdio_write = _phy_write;
3083 #ifdef CONFIG_PPC_PMAC
3084 gp->phy_mii.platform_data = gp->of_node;
3086 /* By default, we start with autoneg */
3087 gp->want_autoneg = 1;
3089 /* Check fifo sizes, PHY type, etc... */
3090 if (gem_check_invariants(gp)) {
3092 goto err_out_iounmap;
3095 /* It is guaranteed that the returned buffer will be at least
3096 * PAGE_SIZE aligned.
3098 gp->init_block = (struct gem_init_block *)
3099 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3101 if (!gp->init_block) {
3102 printk(KERN_ERR PFX "Cannot allocate init block, "
3105 goto err_out_iounmap;
3108 if (gem_get_device_address(gp))
3109 goto err_out_free_consistent;
3111 dev->open = gem_open;
3112 dev->stop = gem_close;
3113 dev->hard_start_xmit = gem_start_xmit;
3114 dev->get_stats = gem_get_stats;
3115 dev->set_multicast_list = gem_set_multicast;
3116 dev->do_ioctl = gem_ioctl;
3117 dev->poll = gem_poll;
3119 dev->ethtool_ops = &gem_ethtool_ops;
3120 dev->tx_timeout = gem_tx_timeout;
3121 dev->watchdog_timeo = 5 * HZ;
3122 dev->change_mtu = gem_change_mtu;
3123 dev->irq = pdev->irq;
3125 #ifdef CONFIG_NET_POLL_CONTROLLER
3126 dev->poll_controller = gem_poll_controller;
3129 /* Set that now, in case PM kicks in now */
3130 pci_set_drvdata(pdev, dev);
3132 /* Detect & init PHY, start autoneg, we release the cell now
3133 * too, it will be managed by whoever needs it
3137 spin_lock_irq(&gp->lock);
3139 spin_unlock_irq(&gp->lock);
3141 /* Register with kernel */
3142 if (register_netdev(dev)) {
3143 printk(KERN_ERR PFX "Cannot register net device, "
3146 goto err_out_free_consistent;
3149 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3151 for (i = 0; i < 6; i++)
3152 printk("%2.2x%c", dev->dev_addr[i],
3153 i == 5 ? ' ' : ':');
3156 if (gp->phy_type == phy_mii_mdio0 ||
3157 gp->phy_type == phy_mii_mdio1)
3158 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3159 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3161 /* GEM can do it all... */
3162 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3164 dev->features |= NETIF_F_HIGHDMA;
3168 err_out_free_consistent:
3169 gem_remove_one(pdev);
3175 pci_release_regions(pdev);
3177 err_out_free_netdev:
3180 pci_disable_device(pdev);
3186 static struct pci_driver gem_driver = {
3187 .name = GEM_MODULE_NAME,
3188 .id_table = gem_pci_tbl,
3189 .probe = gem_init_one,
3190 .remove = __devexit_p(gem_remove_one),
3192 .suspend = gem_suspend,
3193 .resume = gem_resume,
3194 #endif /* CONFIG_PM */
3197 static int __init gem_init(void)
3199 return pci_module_init(&gem_driver);
3202 static void __exit gem_cleanup(void)
3204 pci_unregister_driver(&gem_driver);
3207 module_init(gem_init);
3208 module_exit(gem_cleanup);