1 /* irq.c: UltraSparc IRQ handling/init/registry.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
32 #include <asm/iommu.h>
34 #include <asm/oplib.h>
36 #include <asm/timer.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
49 #define NUM_IVECS (IMAP_INR + 1)
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
62 __asm__ __volatile__("ldxa [%1] %2, %0"
65 offsetof(struct ino_bucket,
67 "i" (ASI_PHYS_USE_EC));
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
77 offsetof(struct ino_bucket,
79 "i" (ASI_PHYS_USE_EC));
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
86 __asm__ __volatile__("lduwa [%1] %2, %0"
89 offsetof(struct ino_bucket,
91 "i" (ASI_PHYS_USE_EC));
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 unsigned int virt_irq)
99 __asm__ __volatile__("stwa %0, [%1] %2"
103 offsetof(struct ino_bucket,
105 "i" (ASI_PHYS_USE_EC));
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
111 unsigned int dev_handle;
112 unsigned int dev_ino;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 unsigned int dev_ino)
123 BUILD_BUG_ON(NR_IRQS >= 256);
125 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
127 for (ent = 1; ent < NR_IRQS; ent++) {
128 if (!virt_irq_table[ent].in_use)
131 if (ent >= NR_IRQS) {
132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
135 virt_irq_table[ent].dev_handle = dev_handle;
136 virt_irq_table[ent].dev_ino = dev_ino;
137 virt_irq_table[ent].in_use = 1;
140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
150 if (virt_irq >= NR_IRQS)
153 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
155 virt_irq_table[virt_irq].in_use = 0;
157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
162 * /proc/interrupts printing:
165 int show_interrupts(struct seq_file *p, void *v)
167 int i = *(loff_t *) v, j;
168 struct irqaction * action;
173 for_each_online_cpu(j)
174 seq_printf(p, "CPU%d ",j);
179 spin_lock_irqsave(&irq_desc[i].lock, flags);
180 action = irq_desc[i].action;
183 seq_printf(p, "%3d: ",i);
185 seq_printf(p, "%10u ", kstat_irqs(i));
187 for_each_online_cpu(j)
188 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
190 seq_printf(p, " %9s", irq_desc[i].chip->typename);
191 seq_printf(p, " %s", action->name);
193 for (action=action->next; action; action = action->next)
194 seq_printf(p, ", %s", action->name);
198 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 } else if (i == NR_IRQS) {
200 seq_printf(p, "NMI: ");
201 for_each_online_cpu(j)
202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 seq_printf(p, " Non-maskable interrupts\n");
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
212 if (this_is_starfire) {
213 tid = starfire_translate(imap, cpuid);
214 tid <<= IMAP_TID_SHIFT;
217 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
220 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 if ((ver >> 32UL) == __JALAPENO_ID ||
222 (ver >> 32UL) == __SERRANO_ID) {
223 tid = cpuid << IMAP_TID_SHIFT;
224 tid &= IMAP_TID_JBUS;
226 unsigned int a = cpuid & 0x1f;
227 unsigned int n = (cpuid >> 5) & 0x1f;
229 tid = ((a << IMAP_AID_SHIFT) |
230 (n << IMAP_NID_SHIFT));
231 tid &= (IMAP_AID_SAFARI |
235 tid = cpuid << IMAP_TID_SHIFT;
243 struct irq_handler_data {
247 void (*pre_handler)(unsigned int, void *, void *);
253 static int irq_choose_cpu(unsigned int virt_irq)
258 cpumask_copy(&mask, irq_desc[virt_irq].affinity);
259 if (cpus_equal(mask, CPU_MASK_ALL)) {
260 static int irq_rover;
261 static DEFINE_SPINLOCK(irq_rover_lock);
264 /* Round-robin distribution... */
266 spin_lock_irqsave(&irq_rover_lock, flags);
268 while (!cpu_online(irq_rover)) {
269 if (++irq_rover >= nr_cpu_ids)
274 if (++irq_rover >= nr_cpu_ids)
276 } while (!cpu_online(irq_rover));
278 spin_unlock_irqrestore(&irq_rover_lock, flags);
282 cpus_and(tmp, cpu_online_map, mask);
287 cpuid = first_cpu(tmp);
293 static int irq_choose_cpu(unsigned int virt_irq)
295 return real_hard_smp_processor_id();
299 static void sun4u_irq_enable(unsigned int virt_irq)
301 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
304 unsigned long cpuid, imap, val;
307 cpuid = irq_choose_cpu(virt_irq);
310 tid = sun4u_compute_tid(imap, cpuid);
312 val = upa_readq(imap);
313 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
314 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
315 val |= tid | IMAP_VALID;
316 upa_writeq(val, imap);
317 upa_writeq(ICLR_IDLE, data->iclr);
321 static void sun4u_set_affinity(unsigned int virt_irq,
322 const struct cpumask *mask)
324 sun4u_irq_enable(virt_irq);
327 /* Don't do anything. The desc->status check for IRQ_DISABLED in
328 * handler_irq() will skip the handler call and that will leave the
329 * interrupt in the sent state. The next ->enable() call will hit the
330 * ICLR register to reset the state machine.
332 * This scheme is necessary, instead of clearing the Valid bit in the
333 * IMAP register, to handle the case of IMAP registers being shared by
334 * multiple INOs (and thus ICLR registers). Since we use a different
335 * virtual IRQ for each shared IMAP instance, the generic code thinks
336 * there is only one user so it prematurely calls ->disable() on
339 * We have to provide an explicit ->disable() method instead of using
340 * NULL to get the default. The reason is that if the generic code
341 * sees that, it also hooks up a default ->shutdown method which
342 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
344 static void sun4u_irq_disable(unsigned int virt_irq)
348 static void sun4u_irq_eoi(unsigned int virt_irq)
350 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
351 struct irq_desc *desc = irq_desc + virt_irq;
353 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
357 upa_writeq(ICLR_IDLE, data->iclr);
360 static void sun4v_irq_enable(unsigned int virt_irq)
362 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
363 unsigned long cpuid = irq_choose_cpu(virt_irq);
366 err = sun4v_intr_settarget(ino, cpuid);
368 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
369 "err(%d)\n", ino, cpuid, err);
370 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
372 printk(KERN_ERR "sun4v_intr_setstate(%x): "
373 "err(%d)\n", ino, err);
374 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
376 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
380 static void sun4v_set_affinity(unsigned int virt_irq,
381 const struct cpumask *mask)
383 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
384 unsigned long cpuid = irq_choose_cpu(virt_irq);
387 err = sun4v_intr_settarget(ino, cpuid);
389 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
390 "err(%d)\n", ino, cpuid, err);
393 static void sun4v_irq_disable(unsigned int virt_irq)
395 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
398 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
400 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
401 "err(%d)\n", ino, err);
404 static void sun4v_irq_eoi(unsigned int virt_irq)
406 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
407 struct irq_desc *desc = irq_desc + virt_irq;
410 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
413 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
415 printk(KERN_ERR "sun4v_intr_setstate(%x): "
416 "err(%d)\n", ino, err);
419 static void sun4v_virq_enable(unsigned int virt_irq)
421 unsigned long cpuid, dev_handle, dev_ino;
424 cpuid = irq_choose_cpu(virt_irq);
426 dev_handle = virt_irq_table[virt_irq].dev_handle;
427 dev_ino = virt_irq_table[virt_irq].dev_ino;
429 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
431 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
433 dev_handle, dev_ino, cpuid, err);
434 err = sun4v_vintr_set_state(dev_handle, dev_ino,
437 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
438 "HV_INTR_STATE_IDLE): err(%d)\n",
439 dev_handle, dev_ino, err);
440 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
443 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
444 "HV_INTR_ENABLED): err(%d)\n",
445 dev_handle, dev_ino, err);
448 static void sun4v_virt_set_affinity(unsigned int virt_irq,
449 const struct cpumask *mask)
451 unsigned long cpuid, dev_handle, dev_ino;
454 cpuid = irq_choose_cpu(virt_irq);
456 dev_handle = virt_irq_table[virt_irq].dev_handle;
457 dev_ino = virt_irq_table[virt_irq].dev_ino;
459 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
461 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
463 dev_handle, dev_ino, cpuid, err);
466 static void sun4v_virq_disable(unsigned int virt_irq)
468 unsigned long dev_handle, dev_ino;
471 dev_handle = virt_irq_table[virt_irq].dev_handle;
472 dev_ino = virt_irq_table[virt_irq].dev_ino;
474 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
477 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
478 "HV_INTR_DISABLED): err(%d)\n",
479 dev_handle, dev_ino, err);
482 static void sun4v_virq_eoi(unsigned int virt_irq)
484 struct irq_desc *desc = irq_desc + virt_irq;
485 unsigned long dev_handle, dev_ino;
488 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
491 dev_handle = virt_irq_table[virt_irq].dev_handle;
492 dev_ino = virt_irq_table[virt_irq].dev_ino;
494 err = sun4v_vintr_set_state(dev_handle, dev_ino,
497 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
498 "HV_INTR_STATE_IDLE): err(%d)\n",
499 dev_handle, dev_ino, err);
502 static struct irq_chip sun4u_irq = {
504 .enable = sun4u_irq_enable,
505 .disable = sun4u_irq_disable,
506 .eoi = sun4u_irq_eoi,
507 .set_affinity = sun4u_set_affinity,
510 static struct irq_chip sun4v_irq = {
512 .enable = sun4v_irq_enable,
513 .disable = sun4v_irq_disable,
514 .eoi = sun4v_irq_eoi,
515 .set_affinity = sun4v_set_affinity,
518 static struct irq_chip sun4v_virq = {
519 .typename = "vsun4v",
520 .enable = sun4v_virq_enable,
521 .disable = sun4v_virq_disable,
522 .eoi = sun4v_virq_eoi,
523 .set_affinity = sun4v_virt_set_affinity,
526 static void pre_flow_handler(unsigned int virt_irq,
527 struct irq_desc *desc)
529 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
530 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
532 data->pre_handler(ino, data->arg1, data->arg2);
534 handle_fasteoi_irq(virt_irq, desc);
537 void irq_install_pre_handler(int virt_irq,
538 void (*func)(unsigned int, void *, void *),
539 void *arg1, void *arg2)
541 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
542 struct irq_desc *desc = irq_desc + virt_irq;
544 data->pre_handler = func;
548 desc->handle_irq = pre_flow_handler;
551 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
553 struct ino_bucket *bucket;
554 struct irq_handler_data *data;
555 unsigned int virt_irq;
558 BUG_ON(tlb_type == hypervisor);
560 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
561 bucket = &ivector_table[ino];
562 virt_irq = bucket_get_virt_irq(__pa(bucket));
564 virt_irq = virt_irq_alloc(0, ino);
565 bucket_set_virt_irq(__pa(bucket), virt_irq);
566 set_irq_chip_and_handler_name(virt_irq,
572 data = get_irq_chip_data(virt_irq);
576 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
577 if (unlikely(!data)) {
578 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
581 set_irq_chip_data(virt_irq, data);
590 static unsigned int sun4v_build_common(unsigned long sysino,
591 struct irq_chip *chip)
593 struct ino_bucket *bucket;
594 struct irq_handler_data *data;
595 unsigned int virt_irq;
597 BUG_ON(tlb_type != hypervisor);
599 bucket = &ivector_table[sysino];
600 virt_irq = bucket_get_virt_irq(__pa(bucket));
602 virt_irq = virt_irq_alloc(0, sysino);
603 bucket_set_virt_irq(__pa(bucket), virt_irq);
604 set_irq_chip_and_handler_name(virt_irq, chip,
609 data = get_irq_chip_data(virt_irq);
613 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
614 if (unlikely(!data)) {
615 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
618 set_irq_chip_data(virt_irq, data);
620 /* Catch accidental accesses to these things. IMAP/ICLR handling
621 * is done by hypervisor calls on sun4v platforms, not by direct
631 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
633 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
635 return sun4v_build_common(sysino, &sun4v_irq);
638 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
640 struct irq_handler_data *data;
641 unsigned long hv_err, cookie;
642 struct ino_bucket *bucket;
643 struct irq_desc *desc;
644 unsigned int virt_irq;
646 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
647 if (unlikely(!bucket))
649 __flush_dcache_range((unsigned long) bucket,
650 ((unsigned long) bucket +
651 sizeof(struct ino_bucket)));
653 virt_irq = virt_irq_alloc(devhandle, devino);
654 bucket_set_virt_irq(__pa(bucket), virt_irq);
656 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
660 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
664 /* In order to make the LDC channel startup sequence easier,
665 * especially wrt. locking, we do not let request_irq() enable
668 desc = irq_desc + virt_irq;
669 desc->status |= IRQ_NOAUTOEN;
671 set_irq_chip_data(virt_irq, data);
673 /* Catch accidental accesses to these things. IMAP/ICLR handling
674 * is done by hypervisor calls on sun4v platforms, not by direct
680 cookie = ~__pa(bucket);
681 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
683 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
684 "err=%lu\n", devhandle, devino, hv_err);
691 void ack_bad_irq(unsigned int virt_irq)
693 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
698 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
702 void *hardirq_stack[NR_CPUS];
703 void *softirq_stack[NR_CPUS];
705 static __attribute__((always_inline)) void *set_hardirq_stack(void)
707 void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
709 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
711 orig_sp > (sp + THREAD_SIZE)) {
712 sp += THREAD_SIZE - 192 - STACK_BIAS;
713 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
718 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
720 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
723 void handler_irq(int irq, struct pt_regs *regs)
725 unsigned long pstate, bucket_pa;
726 struct pt_regs *old_regs;
729 clear_softint(1 << irq);
731 old_regs = set_irq_regs(regs);
734 /* Grab an atomic snapshot of the pending IVECs. */
735 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
736 "wrpr %0, %3, %%pstate\n\t"
739 "wrpr %0, 0x0, %%pstate\n\t"
740 : "=&r" (pstate), "=&r" (bucket_pa)
741 : "r" (irq_work_pa(smp_processor_id())),
745 orig_sp = set_hardirq_stack();
748 struct irq_desc *desc;
749 unsigned long next_pa;
750 unsigned int virt_irq;
752 next_pa = bucket_get_chain_pa(bucket_pa);
753 virt_irq = bucket_get_virt_irq(bucket_pa);
754 bucket_clear_chain_pa(bucket_pa);
756 desc = irq_desc + virt_irq;
758 if (!(desc->status & IRQ_DISABLED))
759 desc->handle_irq(virt_irq, desc);
764 restore_hardirq_stack(orig_sp);
767 set_irq_regs(old_regs);
770 void do_softirq(void)
777 local_irq_save(flags);
779 if (local_softirq_pending()) {
780 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
782 sp += THREAD_SIZE - 192 - STACK_BIAS;
784 __asm__ __volatile__("mov %%sp, %0\n\t"
789 __asm__ __volatile__("mov %0, %%sp"
793 local_irq_restore(flags);
796 #ifdef CONFIG_HOTPLUG_CPU
797 void fixup_irqs(void)
801 for (irq = 0; irq < NR_IRQS; irq++) {
804 spin_lock_irqsave(&irq_desc[irq].lock, flags);
805 if (irq_desc[irq].action &&
806 !(irq_desc[irq].status & IRQ_PER_CPU)) {
807 if (irq_desc[irq].chip->set_affinity)
808 irq_desc[irq].chip->set_affinity(irq,
809 irq_desc[irq].affinity);
811 spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
814 tick_ops->disable_irq();
825 static struct sun5_timer *prom_timers;
826 static u64 prom_limit0, prom_limit1;
828 static void map_prom_timers(void)
830 struct device_node *dp;
831 const unsigned int *addr;
833 /* PROM timer node hangs out in the top level of device siblings... */
834 dp = of_find_node_by_path("/");
837 if (!strcmp(dp->name, "counter-timer"))
842 /* Assume if node is not present, PROM uses different tick mechanism
843 * which we should not care about.
846 prom_timers = (struct sun5_timer *) 0;
850 /* If PROM is really using this, it must be mapped by him. */
851 addr = of_get_property(dp, "address", NULL);
853 prom_printf("PROM does not have timer mapped, trying to continue.\n");
854 prom_timers = (struct sun5_timer *) 0;
857 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
860 static void kill_prom_timer(void)
865 /* Save them away for later. */
866 prom_limit0 = prom_timers->limit0;
867 prom_limit1 = prom_timers->limit1;
869 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
870 * We turn both off here just to be paranoid.
872 prom_timers->limit0 = 0;
873 prom_timers->limit1 = 0;
875 /* Wheee, eat the interrupt packet too... */
876 __asm__ __volatile__(
878 " ldxa [%%g0] %0, %%g1\n"
879 " ldxa [%%g2] %1, %%g1\n"
880 " stxa %%g0, [%%g0] %0\n"
883 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
887 void notrace init_irqwork_curcpu(void)
889 int cpu = hard_smp_processor_id();
891 trap_block[cpu].irq_worklist_pa = 0UL;
894 /* Please be very careful with register_one_mondo() and
895 * sun4v_register_mondo_queues().
897 * On SMP this gets invoked from the CPU trampoline before
898 * the cpu has fully taken over the trap table from OBP,
899 * and it's kernel stack + %g6 thread register state is
900 * not fully cooked yet.
902 * Therefore you cannot make any OBP calls, not even prom_printf,
903 * from these two routines.
905 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
907 unsigned long num_entries = (qmask + 1) / 64;
908 unsigned long status;
910 status = sun4v_cpu_qconf(type, paddr, num_entries);
911 if (status != HV_EOK) {
912 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
913 "err %lu\n", type, paddr, num_entries, status);
918 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
920 struct trap_per_cpu *tb = &trap_block[this_cpu];
922 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
923 tb->cpu_mondo_qmask);
924 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
925 tb->dev_mondo_qmask);
926 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
928 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
932 static void __init alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask)
934 unsigned long size = PAGE_ALIGN(qmask + 1);
935 void *p = __alloc_bootmem(size, size, 0);
937 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
944 static void __init alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask)
946 unsigned long size = PAGE_ALIGN(qmask + 1);
947 void *p = __alloc_bootmem(size, size, 0);
950 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
957 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
962 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
964 page = alloc_bootmem_pages(PAGE_SIZE);
966 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
970 tb->cpu_mondo_block_pa = __pa(page);
971 tb->cpu_list_pa = __pa(page + 64);
975 /* Allocate mondo and error queues for all possible cpus. */
976 static void __init sun4v_init_mondo_queues(void)
980 for_each_possible_cpu(cpu) {
981 struct trap_per_cpu *tb = &trap_block[cpu];
983 alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
984 alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
985 alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask);
986 alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask);
987 alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
988 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa,
993 static void __init init_send_mondo_info(void)
997 for_each_possible_cpu(cpu) {
998 struct trap_per_cpu *tb = &trap_block[cpu];
1000 init_cpu_send_mondo_info(tb);
1004 static struct irqaction timer_irq_action = {
1008 /* Only invoked on boot processor. */
1009 void __init init_IRQ(void)
1016 size = sizeof(struct ino_bucket) * NUM_IVECS;
1017 ivector_table = alloc_bootmem(size);
1018 if (!ivector_table) {
1019 prom_printf("Fatal error, cannot allocate ivector_table\n");
1022 __flush_dcache_range((unsigned long) ivector_table,
1023 ((unsigned long) ivector_table) + size);
1025 ivector_table_pa = __pa(ivector_table);
1027 if (tlb_type == hypervisor)
1028 sun4v_init_mondo_queues();
1030 init_send_mondo_info();
1032 if (tlb_type == hypervisor) {
1033 /* Load up the boot cpu's entries. */
1034 sun4v_register_mondo_queues(hard_smp_processor_id());
1037 /* We need to clear any IRQ's pending in the soft interrupt
1038 * registers, a spurious one could be left around from the
1039 * PROM timer which we just disabled.
1041 clear_softint(get_softint());
1043 /* Now that ivector table is initialized, it is safe
1044 * to receive IRQ vector traps. We will normally take
1045 * one or two right now, in case some device PROM used
1046 * to boot us wants to speak to us. We just ignore them.
1048 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1049 "or %%g1, %0, %%g1\n\t"
1050 "wrpr %%g1, 0x0, %%pstate"
1055 irq_desc[0].action = &timer_irq_action;