Merge branch 'alarm' into release
[linux-2.6] / drivers / scsi / aacraid / linit.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *   linit.c
26  *
27  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
28  */
29
30
31 #include <linux/compat.h>
32 #include <linux/blkdev.h>
33 #include <linux/completion.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/slab.h>
41 #include <linux/smp_lock.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51 #include <scsi/scsi_tcq.h>
52 #include <scsi/scsicam.h>
53 #include <scsi/scsi_eh.h>
54
55 #include "aacraid.h"
56
57 #define AAC_DRIVER_VERSION              "1.1-5"
58 #ifndef AAC_DRIVER_BRANCH
59 #define AAC_DRIVER_BRANCH               ""
60 #endif
61 #define AAC_DRIVER_BUILD_DATE           __DATE__ " " __TIME__
62 #define AAC_DRIVERNAME                  "aacraid"
63
64 #ifdef AAC_DRIVER_BUILD
65 #define _str(x) #x
66 #define str(x) _str(x)
67 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
68 #else
69 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH " " AAC_DRIVER_BUILD_DATE
70 #endif
71
72 MODULE_AUTHOR("Red Hat Inc and Adaptec");
73 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
74                    "Adaptec Advanced Raid Products, "
75                    "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
78
79 static LIST_HEAD(aac_devices);
80 static int aac_cfg_major = -1;
81 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
82
83 /*
84  * Because of the way Linux names scsi devices, the order in this table has
85  * become important.  Check for on-board Raid first, add-in cards second.
86  *
87  * Note: The last field is used to index into aac_drivers below.
88  */
89 static struct pci_device_id aac_pci_tbl[] = {
90         { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
91         { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
92         { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
93         { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
94         { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
95         { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
96         { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
97         { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
98         { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
99         { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
100         { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
101         { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
102         { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
103         { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
104         { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
105         { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
106
107         { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
108         { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
109         { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
110         { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
111         { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
112         { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
113         { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
114         { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
115         { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
116         { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
117         { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
118         { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
119         { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
120         { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
121         { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
122         { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
123         { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
124         { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
125         { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
126         { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
127         { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
128         { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
129         { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
130         { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
131         { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
132         { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
133         { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
134         { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
135         { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
136         { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
137         { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
138         { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
139         { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
140         { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
141         { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
142         { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
143         { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
144         { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
145
146         { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
147         { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
148         { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
149         { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
150         { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
151
152         { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
153         { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
154         { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
155         { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
156         { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
157         { 0,}
158 };
159 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
160
161 /*
162  * dmb - For now we add the number of channels to this structure.
163  * In the future we should add a fib that reports the number of channels
164  * for the card.  At that time we can remove the channels from here
165  */
166 static struct aac_driver_ident aac_drivers[] = {
167         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
168         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
169         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
170         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
171         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
172         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
173         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
174         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
175         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
176         { aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
177         { aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
178         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },                     /* Adaptec 2120S (Crusader) */
179         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },                     /* Adaptec 2200S (Vulcan) */
180         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
181         { aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
182         { aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
183
184         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
185         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
186         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
187         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
188         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
189         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
190         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
191         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
192         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
193         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
194         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
195         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
196         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
197         { aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
198         { aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
199         { aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
200         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
201         { NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
202         { aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
203         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
204         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
205         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
206         { aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
207         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
208         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
209         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
210         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
211         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
212         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
213         { aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
214         { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
215         { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
216         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
217         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
218         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
219         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
220
221         { aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
222         { aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
223         { aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
224         { aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
225         { aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
226
227         { aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
228         { aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
229         { aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
230         { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
231         { aac_nark_init, "aacraid", "ADAPTEC ", "RAID            ", 2 } /* Adaptec NEMER/ARK Catch All */
232 };
233
234 /**
235  *      aac_queuecommand        -       queue a SCSI command
236  *      @cmd:           SCSI command to queue
237  *      @done:          Function to call on command completion
238  *
239  *      Queues a command for execution by the associated Host Adapter.
240  *
241  *      TODO: unify with aac_scsi_cmd().
242  */
243
244 static int aac_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
245 {
246         struct Scsi_Host *host = cmd->device->host;
247         struct aac_dev *dev = (struct aac_dev *)host->hostdata;
248         u32 count = 0;
249         cmd->scsi_done = done;
250         for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
251                 struct fib * fib = &dev->fibs[count];
252                 struct scsi_cmnd * command;
253                 if (fib->hw_fib_va->header.XferState &&
254                     ((command = fib->callback_data)) &&
255                     (command == cmd) &&
256                     (cmd->SCp.phase == AAC_OWNER_FIRMWARE))
257                         return 0; /* Already owned by Adapter */
258         }
259         cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
260         return (aac_scsi_cmd(cmd) ? FAILED : 0);
261 }
262
263 /**
264  *      aac_info                -       Returns the host adapter name
265  *      @shost:         Scsi host to report on
266  *
267  *      Returns a static string describing the device in question
268  */
269
270 static const char *aac_info(struct Scsi_Host *shost)
271 {
272         struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
273         return aac_drivers[dev->cardtype].name;
274 }
275
276 /**
277  *      aac_get_driver_ident
278  *      @devtype: index into lookup table
279  *
280  *      Returns a pointer to the entry in the driver lookup table.
281  */
282
283 struct aac_driver_ident* aac_get_driver_ident(int devtype)
284 {
285         return &aac_drivers[devtype];
286 }
287
288 /**
289  *      aac_biosparm    -       return BIOS parameters for disk
290  *      @sdev: The scsi device corresponding to the disk
291  *      @bdev: the block device corresponding to the disk
292  *      @capacity: the sector capacity of the disk
293  *      @geom: geometry block to fill in
294  *
295  *      Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
296  *      The default disk geometry is 64 heads, 32 sectors, and the appropriate
297  *      number of cylinders so as not to exceed drive capacity.  In order for
298  *      disks equal to or larger than 1 GB to be addressable by the BIOS
299  *      without exceeding the BIOS limitation of 1024 cylinders, Extended
300  *      Translation should be enabled.   With Extended Translation enabled,
301  *      drives between 1 GB inclusive and 2 GB exclusive are given a disk
302  *      geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
303  *      are given a disk geometry of 255 heads and 63 sectors.  However, if
304  *      the BIOS detects that the Extended Translation setting does not match
305  *      the geometry in the partition table, then the translation inferred
306  *      from the partition table will be used by the BIOS, and a warning may
307  *      be displayed.
308  */
309
310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
311                         sector_t capacity, int *geom)
312 {
313         struct diskparm *param = (struct diskparm *)geom;
314         unsigned char *buf;
315
316         dprintk((KERN_DEBUG "aac_biosparm.\n"));
317
318         /*
319          *      Assuming extended translation is enabled - #REVISIT#
320          */
321         if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
322                 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
323                         param->heads = 255;
324                         param->sectors = 63;
325                 } else {
326                         param->heads = 128;
327                         param->sectors = 32;
328                 }
329         } else {
330                 param->heads = 64;
331                 param->sectors = 32;
332         }
333
334         param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
335
336         /*
337          *      Read the first 1024 bytes from the disk device, if the boot
338          *      sector partition table is valid, search for a partition table
339          *      entry whose end_head matches one of the standard geometry
340          *      translations ( 64/32, 128/32, 255/63 ).
341          */
342         buf = scsi_bios_ptable(bdev);
343         if (!buf)
344                 return 0;
345         if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
346                 struct partition *first = (struct partition * )buf;
347                 struct partition *entry = first;
348                 int saved_cylinders = param->cylinders;
349                 int num;
350                 unsigned char end_head, end_sec;
351
352                 for(num = 0; num < 4; num++) {
353                         end_head = entry->end_head;
354                         end_sec = entry->end_sector & 0x3f;
355
356                         if(end_head == 63) {
357                                 param->heads = 64;
358                                 param->sectors = 32;
359                                 break;
360                         } else if(end_head == 127) {
361                                 param->heads = 128;
362                                 param->sectors = 32;
363                                 break;
364                         } else if(end_head == 254) {
365                                 param->heads = 255;
366                                 param->sectors = 63;
367                                 break;
368                         }
369                         entry++;
370                 }
371
372                 if (num == 4) {
373                         end_head = first->end_head;
374                         end_sec = first->end_sector & 0x3f;
375                 }
376
377                 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
378                 if (num < 4 && end_sec == param->sectors) {
379                         if (param->cylinders != saved_cylinders)
380                                 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
381                                         param->heads, param->sectors, num));
382                 } else if (end_head > 0 || end_sec > 0) {
383                         dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
384                                 end_head + 1, end_sec, num));
385                         dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
386                                         param->heads, param->sectors));
387                 }
388         }
389         kfree(buf);
390         return 0;
391 }
392
393 /**
394  *      aac_slave_configure             -       compute queue depths
395  *      @sdev:  SCSI device we are considering
396  *
397  *      Selects queue depths for each target device based on the host adapter's
398  *      total capacity and the queue depth supported by the target device.
399  *      A queue depth of one automatically disables tagged queueing.
400  */
401
402 static int aac_slave_configure(struct scsi_device *sdev)
403 {
404         struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
405         if (aac->jbod && (sdev->type == TYPE_DISK))
406                 sdev->removable = 1;
407         if ((sdev->type == TYPE_DISK) &&
408                         (sdev_channel(sdev) != CONTAINER_CHANNEL) &&
409                         (!aac->jbod || sdev->inq_periph_qual) &&
410                         (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
411                 if (expose_physicals == 0)
412                         return -ENXIO;
413                 if (expose_physicals < 0)
414                         sdev->no_uld_attach = 1;
415         }
416         if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
417                         (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) &&
418                         !sdev->no_uld_attach) {
419                 struct scsi_device * dev;
420                 struct Scsi_Host *host = sdev->host;
421                 unsigned num_lsu = 0;
422                 unsigned num_one = 0;
423                 unsigned depth;
424                 unsigned cid;
425
426                 /*
427                  * Firmware has an individual device recovery time typically
428                  * of 35 seconds, give us a margin.
429                  */
430                 if (sdev->request_queue->rq_timeout < (45 * HZ))
431                         blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
432                 for (cid = 0; cid < aac->maximum_num_containers; ++cid)
433                         if (aac->fsa_dev[cid].valid)
434                                 ++num_lsu;
435                 __shost_for_each_device(dev, host) {
436                         if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
437                                         (!aac->raid_scsi_mode ||
438                                                 (sdev_channel(sdev) != 2)) &&
439                                         !dev->no_uld_attach) {
440                                 if ((sdev_channel(dev) != CONTAINER_CHANNEL)
441                                  || !aac->fsa_dev[sdev_id(dev)].valid)
442                                         ++num_lsu;
443                         } else
444                                 ++num_one;
445                 }
446                 if (num_lsu == 0)
447                         ++num_lsu;
448                 depth = (host->can_queue - num_one) / num_lsu;
449                 if (depth > 256)
450                         depth = 256;
451                 else if (depth < 2)
452                         depth = 2;
453                 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
454         } else
455                 scsi_adjust_queue_depth(sdev, 0, 1);
456
457         return 0;
458 }
459
460 /**
461  *      aac_change_queue_depth          -       alter queue depths
462  *      @sdev:  SCSI device we are considering
463  *      @depth: desired queue depth
464  *
465  *      Alters queue depths for target device based on the host adapter's
466  *      total capacity and the queue depth supported by the target device.
467  */
468
469 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
470 {
471         if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
472             (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
473                 struct scsi_device * dev;
474                 struct Scsi_Host *host = sdev->host;
475                 unsigned num = 0;
476
477                 __shost_for_each_device(dev, host) {
478                         if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
479                             (sdev_channel(dev) == CONTAINER_CHANNEL))
480                                 ++num;
481                         ++num;
482                 }
483                 if (num >= host->can_queue)
484                         num = host->can_queue - 1;
485                 if (depth > (host->can_queue - num))
486                         depth = host->can_queue - num;
487                 if (depth > 256)
488                         depth = 256;
489                 else if (depth < 2)
490                         depth = 2;
491                 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
492         } else
493                 scsi_adjust_queue_depth(sdev, 0, 1);
494         return sdev->queue_depth;
495 }
496
497 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
498 {
499         struct scsi_device *sdev = to_scsi_device(dev);
500         struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
501         if (sdev_channel(sdev) != CONTAINER_CHANNEL)
502                 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
503                   ? "Hidden\n" :
504                   ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
505         return snprintf(buf, PAGE_SIZE, "%s\n",
506           get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
507 }
508
509 static struct device_attribute aac_raid_level_attr = {
510         .attr = {
511                 .name = "level",
512                 .mode = S_IRUGO,
513         },
514         .show = aac_show_raid_level
515 };
516
517 static struct device_attribute *aac_dev_attrs[] = {
518         &aac_raid_level_attr,
519         NULL,
520 };
521
522 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
523 {
524         struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
525         if (!capable(CAP_SYS_RAWIO))
526                 return -EPERM;
527         return aac_do_ioctl(dev, cmd, arg);
528 }
529
530 static int aac_eh_abort(struct scsi_cmnd* cmd)
531 {
532         struct scsi_device * dev = cmd->device;
533         struct Scsi_Host * host = dev->host;
534         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
535         int count;
536         int ret = FAILED;
537
538         printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n",
539                 AAC_DRIVERNAME,
540                 host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun);
541         switch (cmd->cmnd[0]) {
542         case SERVICE_ACTION_IN:
543                 if (!(aac->raw_io_interface) ||
544                     !(aac->raw_io_64) ||
545                     ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
546                         break;
547         case INQUIRY:
548         case READ_CAPACITY:
549                 /* Mark associated FIB to not complete, eh handler does this */
550                 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
551                         struct fib * fib = &aac->fibs[count];
552                         if (fib->hw_fib_va->header.XferState &&
553                           (fib->flags & FIB_CONTEXT_FLAG) &&
554                           (fib->callback_data == cmd)) {
555                                 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
556                                 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
557                                 ret = SUCCESS;
558                         }
559                 }
560                 break;
561         case TEST_UNIT_READY:
562                 /* Mark associated FIB to not complete, eh handler does this */
563                 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
564                         struct scsi_cmnd * command;
565                         struct fib * fib = &aac->fibs[count];
566                         if ((fib->hw_fib_va->header.XferState & cpu_to_le32(Async | NoResponseExpected)) &&
567                           (fib->flags & FIB_CONTEXT_FLAG) &&
568                           ((command = fib->callback_data)) &&
569                           (command->device == cmd->device)) {
570                                 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
571                                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
572                                 if (command == cmd)
573                                         ret = SUCCESS;
574                         }
575                 }
576         }
577         return ret;
578 }
579
580 /*
581  *      aac_eh_reset    - Reset command handling
582  *      @scsi_cmd:      SCSI command block causing the reset
583  *
584  */
585 static int aac_eh_reset(struct scsi_cmnd* cmd)
586 {
587         struct scsi_device * dev = cmd->device;
588         struct Scsi_Host * host = dev->host;
589         struct scsi_cmnd * command;
590         int count;
591         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
592         unsigned long flags;
593
594         /* Mark the associated FIB to not complete, eh handler does this */
595         for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
596                 struct fib * fib = &aac->fibs[count];
597                 if (fib->hw_fib_va->header.XferState &&
598                   (fib->flags & FIB_CONTEXT_FLAG) &&
599                   (fib->callback_data == cmd)) {
600                         fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
601                         cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
602                 }
603         }
604         printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n",
605                                         AAC_DRIVERNAME);
606
607         if ((count = aac_check_health(aac)))
608                 return count;
609         /*
610          * Wait for all commands to complete to this specific
611          * target (block maximum 60 seconds).
612          */
613         for (count = 60; count; --count) {
614                 int active = aac->in_reset;
615
616                 if (active == 0)
617                 __shost_for_each_device(dev, host) {
618                         spin_lock_irqsave(&dev->list_lock, flags);
619                         list_for_each_entry(command, &dev->cmd_list, list) {
620                                 if ((command != cmd) &&
621                                     (command->SCp.phase == AAC_OWNER_FIRMWARE)) {
622                                         active++;
623                                         break;
624                                 }
625                         }
626                         spin_unlock_irqrestore(&dev->list_lock, flags);
627                         if (active)
628                                 break;
629
630                 }
631                 /*
632                  * We can exit If all the commands are complete
633                  */
634                 if (active == 0)
635                         return SUCCESS;
636                 ssleep(1);
637         }
638         printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME);
639         /*
640          * This adapter needs a blind reset, only do so for Adapters that
641          * support a register, instead of a commanded, reset.
642          */
643         if ((aac->supplement_adapter_info.SupportedOptions2 &
644            AAC_OPTION_MU_RESET) &&
645           aac_check_reset &&
646           ((aac_check_reset != 1) ||
647            !(aac->supplement_adapter_info.SupportedOptions2 &
648             AAC_OPTION_IGNORE_RESET)))
649                 aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */
650         return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */
651 }
652
653 /**
654  *      aac_cfg_open            -       open a configuration file
655  *      @inode: inode being opened
656  *      @file: file handle attached
657  *
658  *      Called when the configuration device is opened. Does the needed
659  *      set up on the handle and then returns
660  *
661  *      Bugs: This needs extending to check a given adapter is present
662  *      so we can support hot plugging, and to ref count adapters.
663  */
664
665 static int aac_cfg_open(struct inode *inode, struct file *file)
666 {
667         struct aac_dev *aac;
668         unsigned minor_number = iminor(inode);
669         int err = -ENODEV;
670
671         lock_kernel();  /* BKL pushdown: nothing else protects this list */
672         list_for_each_entry(aac, &aac_devices, entry) {
673                 if (aac->id == minor_number) {
674                         file->private_data = aac;
675                         err = 0;
676                         break;
677                 }
678         }
679         unlock_kernel();
680
681         return err;
682 }
683
684 /**
685  *      aac_cfg_ioctl           -       AAC configuration request
686  *      @inode: inode of device
687  *      @file: file handle
688  *      @cmd: ioctl command code
689  *      @arg: argument
690  *
691  *      Handles a configuration ioctl. Currently this involves wrapping it
692  *      up and feeding it into the nasty windowsalike glue layer.
693  *
694  *      Bugs: Needs locking against parallel ioctls lower down
695  *      Bugs: Needs to handle hot plugging
696  */
697
698 static int aac_cfg_ioctl(struct inode *inode, struct file *file,
699                 unsigned int cmd, unsigned long arg)
700 {
701         if (!capable(CAP_SYS_RAWIO))
702                 return -EPERM;
703         return aac_do_ioctl(file->private_data, cmd, (void __user *)arg);
704 }
705
706 #ifdef CONFIG_COMPAT
707 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
708 {
709         long ret;
710         lock_kernel();
711         switch (cmd) {
712         case FSACTL_MINIPORT_REV_CHECK:
713         case FSACTL_SENDFIB:
714         case FSACTL_OPEN_GET_ADAPTER_FIB:
715         case FSACTL_CLOSE_GET_ADAPTER_FIB:
716         case FSACTL_SEND_RAW_SRB:
717         case FSACTL_GET_PCI_INFO:
718         case FSACTL_QUERY_DISK:
719         case FSACTL_DELETE_DISK:
720         case FSACTL_FORCE_DELETE_DISK:
721         case FSACTL_GET_CONTAINERS:
722         case FSACTL_SEND_LARGE_FIB:
723                 ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
724                 break;
725
726         case FSACTL_GET_NEXT_ADAPTER_FIB: {
727                 struct fib_ioctl __user *f;
728
729                 f = compat_alloc_user_space(sizeof(*f));
730                 ret = 0;
731                 if (clear_user(f, sizeof(*f)))
732                         ret = -EFAULT;
733                 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
734                         ret = -EFAULT;
735                 if (!ret)
736                         ret = aac_do_ioctl(dev, cmd, f);
737                 break;
738         }
739
740         default:
741                 ret = -ENOIOCTLCMD;
742                 break;
743         }
744         unlock_kernel();
745         return ret;
746 }
747
748 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
749 {
750         struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
751         return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
752 }
753
754 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
755 {
756         if (!capable(CAP_SYS_RAWIO))
757                 return -EPERM;
758         return aac_compat_do_ioctl((struct aac_dev *)file->private_data, cmd, arg);
759 }
760 #endif
761
762 static ssize_t aac_show_model(struct device *device,
763                               struct device_attribute *attr, char *buf)
764 {
765         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
766         int len;
767
768         if (dev->supplement_adapter_info.AdapterTypeText[0]) {
769                 char * cp = dev->supplement_adapter_info.AdapterTypeText;
770                 while (*cp && *cp != ' ')
771                         ++cp;
772                 while (*cp == ' ')
773                         ++cp;
774                 len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
775         } else
776                 len = snprintf(buf, PAGE_SIZE, "%s\n",
777                   aac_drivers[dev->cardtype].model);
778         return len;
779 }
780
781 static ssize_t aac_show_vendor(struct device *device,
782                                struct device_attribute *attr, char *buf)
783 {
784         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
785         int len;
786
787         if (dev->supplement_adapter_info.AdapterTypeText[0]) {
788                 char * cp = dev->supplement_adapter_info.AdapterTypeText;
789                 while (*cp && *cp != ' ')
790                         ++cp;
791                 len = snprintf(buf, PAGE_SIZE, "%.*s\n",
792                   (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText),
793                   dev->supplement_adapter_info.AdapterTypeText);
794         } else
795                 len = snprintf(buf, PAGE_SIZE, "%s\n",
796                   aac_drivers[dev->cardtype].vname);
797         return len;
798 }
799
800 static ssize_t aac_show_flags(struct device *cdev,
801                               struct device_attribute *attr, char *buf)
802 {
803         int len = 0;
804         struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
805
806         if (nblank(dprintk(x)))
807                 len = snprintf(buf, PAGE_SIZE, "dprintk\n");
808 #ifdef AAC_DETAILED_STATUS_INFO
809         len += snprintf(buf + len, PAGE_SIZE - len,
810                         "AAC_DETAILED_STATUS_INFO\n");
811 #endif
812         if (dev->raw_io_interface && dev->raw_io_64)
813                 len += snprintf(buf + len, PAGE_SIZE - len,
814                                 "SAI_READ_CAPACITY_16\n");
815         if (dev->jbod)
816                 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
817         if (dev->supplement_adapter_info.SupportedOptions2 &
818                 AAC_OPTION_POWER_MANAGEMENT)
819                 len += snprintf(buf + len, PAGE_SIZE - len,
820                                 "SUPPORTED_POWER_MANAGEMENT\n");
821         if (dev->msi)
822                 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
823         return len;
824 }
825
826 static ssize_t aac_show_kernel_version(struct device *device,
827                                        struct device_attribute *attr,
828                                        char *buf)
829 {
830         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
831         int len, tmp;
832
833         tmp = le32_to_cpu(dev->adapter_info.kernelrev);
834         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
835           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
836           le32_to_cpu(dev->adapter_info.kernelbuild));
837         return len;
838 }
839
840 static ssize_t aac_show_monitor_version(struct device *device,
841                                         struct device_attribute *attr,
842                                         char *buf)
843 {
844         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
845         int len, tmp;
846
847         tmp = le32_to_cpu(dev->adapter_info.monitorrev);
848         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
849           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
850           le32_to_cpu(dev->adapter_info.monitorbuild));
851         return len;
852 }
853
854 static ssize_t aac_show_bios_version(struct device *device,
855                                      struct device_attribute *attr,
856                                      char *buf)
857 {
858         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
859         int len, tmp;
860
861         tmp = le32_to_cpu(dev->adapter_info.biosrev);
862         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
863           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
864           le32_to_cpu(dev->adapter_info.biosbuild));
865         return len;
866 }
867
868 static ssize_t aac_show_serial_number(struct device *device,
869                                struct device_attribute *attr, char *buf)
870 {
871         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
872         int len = 0;
873
874         if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
875                 len = snprintf(buf, PAGE_SIZE, "%06X\n",
876                   le32_to_cpu(dev->adapter_info.serial[0]));
877         if (len &&
878           !memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[
879             sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)-len],
880           buf, len-1))
881                 len = snprintf(buf, PAGE_SIZE, "%.*s\n",
882                   (int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo),
883                   dev->supplement_adapter_info.MfgPcbaSerialNo);
884         return len;
885 }
886
887 static ssize_t aac_show_max_channel(struct device *device,
888                                     struct device_attribute *attr, char *buf)
889 {
890         return snprintf(buf, PAGE_SIZE, "%d\n",
891           class_to_shost(device)->max_channel);
892 }
893
894 static ssize_t aac_show_max_id(struct device *device,
895                                struct device_attribute *attr, char *buf)
896 {
897         return snprintf(buf, PAGE_SIZE, "%d\n",
898           class_to_shost(device)->max_id);
899 }
900
901 static ssize_t aac_store_reset_adapter(struct device *device,
902                                        struct device_attribute *attr,
903                                        const char *buf, size_t count)
904 {
905         int retval = -EACCES;
906
907         if (!capable(CAP_SYS_ADMIN))
908                 return retval;
909         retval = aac_reset_adapter((struct aac_dev*)class_to_shost(device)->hostdata, buf[0] == '!');
910         if (retval >= 0)
911                 retval = count;
912         return retval;
913 }
914
915 static ssize_t aac_show_reset_adapter(struct device *device,
916                                       struct device_attribute *attr,
917                                       char *buf)
918 {
919         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
920         int len, tmp;
921
922         tmp = aac_adapter_check_health(dev);
923         if ((tmp == 0) && dev->in_reset)
924                 tmp = -EBUSY;
925         len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
926         return len;
927 }
928
929 static struct device_attribute aac_model = {
930         .attr = {
931                 .name = "model",
932                 .mode = S_IRUGO,
933         },
934         .show = aac_show_model,
935 };
936 static struct device_attribute aac_vendor = {
937         .attr = {
938                 .name = "vendor",
939                 .mode = S_IRUGO,
940         },
941         .show = aac_show_vendor,
942 };
943 static struct device_attribute aac_flags = {
944         .attr = {
945                 .name = "flags",
946                 .mode = S_IRUGO,
947         },
948         .show = aac_show_flags,
949 };
950 static struct device_attribute aac_kernel_version = {
951         .attr = {
952                 .name = "hba_kernel_version",
953                 .mode = S_IRUGO,
954         },
955         .show = aac_show_kernel_version,
956 };
957 static struct device_attribute aac_monitor_version = {
958         .attr = {
959                 .name = "hba_monitor_version",
960                 .mode = S_IRUGO,
961         },
962         .show = aac_show_monitor_version,
963 };
964 static struct device_attribute aac_bios_version = {
965         .attr = {
966                 .name = "hba_bios_version",
967                 .mode = S_IRUGO,
968         },
969         .show = aac_show_bios_version,
970 };
971 static struct device_attribute aac_serial_number = {
972         .attr = {
973                 .name = "serial_number",
974                 .mode = S_IRUGO,
975         },
976         .show = aac_show_serial_number,
977 };
978 static struct device_attribute aac_max_channel = {
979         .attr = {
980                 .name = "max_channel",
981                 .mode = S_IRUGO,
982         },
983         .show = aac_show_max_channel,
984 };
985 static struct device_attribute aac_max_id = {
986         .attr = {
987                 .name = "max_id",
988                 .mode = S_IRUGO,
989         },
990         .show = aac_show_max_id,
991 };
992 static struct device_attribute aac_reset = {
993         .attr = {
994                 .name = "reset_host",
995                 .mode = S_IWUSR|S_IRUGO,
996         },
997         .store = aac_store_reset_adapter,
998         .show = aac_show_reset_adapter,
999 };
1000
1001 static struct device_attribute *aac_attrs[] = {
1002         &aac_model,
1003         &aac_vendor,
1004         &aac_flags,
1005         &aac_kernel_version,
1006         &aac_monitor_version,
1007         &aac_bios_version,
1008         &aac_serial_number,
1009         &aac_max_channel,
1010         &aac_max_id,
1011         &aac_reset,
1012         NULL
1013 };
1014
1015 ssize_t aac_get_serial_number(struct device *device, char *buf)
1016 {
1017         return aac_show_serial_number(device, &aac_serial_number, buf);
1018 }
1019
1020 static const struct file_operations aac_cfg_fops = {
1021         .owner          = THIS_MODULE,
1022         .ioctl          = aac_cfg_ioctl,
1023 #ifdef CONFIG_COMPAT
1024         .compat_ioctl   = aac_compat_cfg_ioctl,
1025 #endif
1026         .open           = aac_cfg_open,
1027 };
1028
1029 static struct scsi_host_template aac_driver_template = {
1030         .module                         = THIS_MODULE,
1031         .name                           = "AAC",
1032         .proc_name                      = AAC_DRIVERNAME,
1033         .info                           = aac_info,
1034         .ioctl                          = aac_ioctl,
1035 #ifdef CONFIG_COMPAT
1036         .compat_ioctl                   = aac_compat_ioctl,
1037 #endif
1038         .queuecommand                   = aac_queuecommand,
1039         .bios_param                     = aac_biosparm,
1040         .shost_attrs                    = aac_attrs,
1041         .slave_configure                = aac_slave_configure,
1042         .change_queue_depth             = aac_change_queue_depth,
1043         .sdev_attrs                     = aac_dev_attrs,
1044         .eh_abort_handler               = aac_eh_abort,
1045         .eh_host_reset_handler          = aac_eh_reset,
1046         .can_queue                      = AAC_NUM_IO_FIB,
1047         .this_id                        = MAXIMUM_NUM_CONTAINERS,
1048         .sg_tablesize                   = 16,
1049         .max_sectors                    = 128,
1050 #if (AAC_NUM_IO_FIB > 256)
1051         .cmd_per_lun                    = 256,
1052 #else
1053         .cmd_per_lun                    = AAC_NUM_IO_FIB,
1054 #endif
1055         .use_clustering                 = ENABLE_CLUSTERING,
1056         .emulated                       = 1,
1057 };
1058
1059 static void __aac_shutdown(struct aac_dev * aac)
1060 {
1061         if (aac->aif_thread)
1062                 kthread_stop(aac->thread);
1063         aac_send_shutdown(aac);
1064         aac_adapter_disable_int(aac);
1065         free_irq(aac->pdev->irq, aac);
1066         if (aac->msi)
1067                 pci_disable_msi(aac->pdev);
1068 }
1069
1070 static int __devinit aac_probe_one(struct pci_dev *pdev,
1071                 const struct pci_device_id *id)
1072 {
1073         unsigned index = id->driver_data;
1074         struct Scsi_Host *shost;
1075         struct aac_dev *aac;
1076         struct list_head *insert = &aac_devices;
1077         int error = -ENODEV;
1078         int unique_id = 0;
1079
1080         list_for_each_entry(aac, &aac_devices, entry) {
1081                 if (aac->id > unique_id)
1082                         break;
1083                 insert = &aac->entry;
1084                 unique_id++;
1085         }
1086
1087         error = pci_enable_device(pdev);
1088         if (error)
1089                 goto out;
1090         error = -ENODEV;
1091
1092         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) ||
1093                         pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))
1094                 goto out_disable_pdev;
1095         /*
1096          * If the quirk31 bit is set, the adapter needs adapter
1097          * to driver communication memory to be allocated below 2gig
1098          */
1099         if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1100                 if (pci_set_dma_mask(pdev, DMA_31BIT_MASK) ||
1101                                 pci_set_consistent_dma_mask(pdev, DMA_31BIT_MASK))
1102                         goto out_disable_pdev;
1103
1104         pci_set_master(pdev);
1105
1106         shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1107         if (!shost)
1108                 goto out_disable_pdev;
1109
1110         shost->irq = pdev->irq;
1111         shost->base = pci_resource_start(pdev, 0);
1112         shost->unique_id = unique_id;
1113         shost->max_cmd_len = 16;
1114
1115         aac = (struct aac_dev *)shost->hostdata;
1116         aac->scsi_host_ptr = shost;
1117         aac->pdev = pdev;
1118         aac->name = aac_driver_template.name;
1119         aac->id = shost->unique_id;
1120         aac->cardtype = index;
1121         INIT_LIST_HEAD(&aac->entry);
1122
1123         aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
1124         if (!aac->fibs)
1125                 goto out_free_host;
1126         spin_lock_init(&aac->fib_lock);
1127
1128         /*
1129          *      Map in the registers from the adapter.
1130          */
1131         aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1132         if ((*aac_drivers[index].init)(aac))
1133                 goto out_unmap;
1134
1135         /*
1136          *      Start any kernel threads needed
1137          */
1138         aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1139         if (IS_ERR(aac->thread)) {
1140                 printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1141                 error = PTR_ERR(aac->thread);
1142                 goto out_deinit;
1143         }
1144
1145         /*
1146          * If we had set a smaller DMA mask earlier, set it to 4gig
1147          * now since the adapter can dma data to at least a 4gig
1148          * address space.
1149          */
1150         if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1151                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK))
1152                         goto out_deinit;
1153
1154         aac->maximum_num_channels = aac_drivers[index].channels;
1155         error = aac_get_adapter_info(aac);
1156         if (error < 0)
1157                 goto out_deinit;
1158
1159         /*
1160          * Lets override negotiations and drop the maximum SG limit to 34
1161          */
1162         if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1163                         (shost->sg_tablesize > 34)) {
1164                 shost->sg_tablesize = 34;
1165                 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1166         }
1167
1168         if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1169                         (shost->sg_tablesize > 17)) {
1170                 shost->sg_tablesize = 17;
1171                 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1172         }
1173
1174         error = pci_set_dma_max_seg_size(pdev,
1175                 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1176                         (shost->max_sectors << 9) : 65536);
1177         if (error)
1178                 goto out_deinit;
1179
1180         /*
1181          * Firmware printf works only with older firmware.
1182          */
1183         if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1184                 aac->printf_enabled = 1;
1185         else
1186                 aac->printf_enabled = 0;
1187
1188         /*
1189          * max channel will be the physical channels plus 1 virtual channel
1190          * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1191          * physical channels are address by their actual physical number+1
1192          */
1193         if (aac->nondasd_support || expose_physicals || aac->jbod)
1194                 shost->max_channel = aac->maximum_num_channels;
1195         else
1196                 shost->max_channel = 0;
1197
1198         aac_get_config_status(aac, 0);
1199         aac_get_containers(aac);
1200         list_add(&aac->entry, insert);
1201
1202         shost->max_id = aac->maximum_num_containers;
1203         if (shost->max_id < aac->maximum_num_physicals)
1204                 shost->max_id = aac->maximum_num_physicals;
1205         if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1206                 shost->max_id = MAXIMUM_NUM_CONTAINERS;
1207         else
1208                 shost->this_id = shost->max_id;
1209
1210         /*
1211          * dmb - we may need to move the setting of these parms somewhere else once
1212          * we get a fib that can report the actual numbers
1213          */
1214         shost->max_lun = AAC_MAX_LUN;
1215
1216         pci_set_drvdata(pdev, shost);
1217
1218         error = scsi_add_host(shost, &pdev->dev);
1219         if (error)
1220                 goto out_deinit;
1221         scsi_scan_host(shost);
1222
1223         return 0;
1224
1225  out_deinit:
1226         __aac_shutdown(aac);
1227  out_unmap:
1228         aac_fib_map_free(aac);
1229         if (aac->comm_addr)
1230                 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1231                   aac->comm_phys);
1232         kfree(aac->queues);
1233         aac_adapter_ioremap(aac, 0);
1234         kfree(aac->fibs);
1235         kfree(aac->fsa_dev);
1236  out_free_host:
1237         scsi_host_put(shost);
1238  out_disable_pdev:
1239         pci_disable_device(pdev);
1240  out:
1241         return error;
1242 }
1243
1244 static void aac_shutdown(struct pci_dev *dev)
1245 {
1246         struct Scsi_Host *shost = pci_get_drvdata(dev);
1247         scsi_block_requests(shost);
1248         __aac_shutdown((struct aac_dev *)shost->hostdata);
1249 }
1250
1251 static void __devexit aac_remove_one(struct pci_dev *pdev)
1252 {
1253         struct Scsi_Host *shost = pci_get_drvdata(pdev);
1254         struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1255
1256         scsi_remove_host(shost);
1257
1258         __aac_shutdown(aac);
1259         aac_fib_map_free(aac);
1260         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1261                         aac->comm_phys);
1262         kfree(aac->queues);
1263
1264         aac_adapter_ioremap(aac, 0);
1265
1266         kfree(aac->fibs);
1267         kfree(aac->fsa_dev);
1268
1269         list_del(&aac->entry);
1270         scsi_host_put(shost);
1271         pci_disable_device(pdev);
1272         if (list_empty(&aac_devices)) {
1273                 unregister_chrdev(aac_cfg_major, "aac");
1274                 aac_cfg_major = -1;
1275         }
1276 }
1277
1278 static struct pci_driver aac_pci_driver = {
1279         .name           = AAC_DRIVERNAME,
1280         .id_table       = aac_pci_tbl,
1281         .probe          = aac_probe_one,
1282         .remove         = __devexit_p(aac_remove_one),
1283         .shutdown       = aac_shutdown,
1284 };
1285
1286 static int __init aac_init(void)
1287 {
1288         int error;
1289
1290         printk(KERN_INFO "Adaptec %s driver %s\n",
1291           AAC_DRIVERNAME, aac_driver_version);
1292
1293         error = pci_register_driver(&aac_pci_driver);
1294         if (error < 0)
1295                 return error;
1296
1297         aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
1298         if (aac_cfg_major < 0) {
1299                 printk(KERN_WARNING
1300                         "aacraid: unable to register \"aac\" device.\n");
1301         }
1302
1303         return 0;
1304 }
1305
1306 static void __exit aac_exit(void)
1307 {
1308         if (aac_cfg_major > -1)
1309                 unregister_chrdev(aac_cfg_major, "aac");
1310         pci_unregister_driver(&aac_pci_driver);
1311 }
1312
1313 module_init(aac_init);
1314 module_exit(aac_exit);