Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[linux-2.6] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <asm/cacheflush.h>
40 #include <asm/iommu.h>
41 #include "pci.h"
42
43 #define ROOT_SIZE               VTD_PAGE_SIZE
44 #define CONTEXT_SIZE            VTD_PAGE_SIZE
45
46 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
48
49 #define IOAPIC_RANGE_START      (0xfee00000)
50 #define IOAPIC_RANGE_END        (0xfeefffff)
51 #define IOVA_START_ADDR         (0x1000)
52
53 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
54
55 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
56
57 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
58 #define DMA_32BIT_PFN           IOVA_PFN(DMA_32BIT_MASK)
59 #define DMA_64BIT_PFN           IOVA_PFN(DMA_64BIT_MASK)
60
61 /* global iommu list, set NULL for ignored DMAR units */
62 static struct intel_iommu **g_iommus;
63
64 static int rwbf_quirk;
65
66 /*
67  * 0: Present
68  * 1-11: Reserved
69  * 12-63: Context Ptr (12 - (haw-1))
70  * 64-127: Reserved
71  */
72 struct root_entry {
73         u64     val;
74         u64     rsvd1;
75 };
76 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
77 static inline bool root_present(struct root_entry *root)
78 {
79         return (root->val & 1);
80 }
81 static inline void set_root_present(struct root_entry *root)
82 {
83         root->val |= 1;
84 }
85 static inline void set_root_value(struct root_entry *root, unsigned long value)
86 {
87         root->val |= value & VTD_PAGE_MASK;
88 }
89
90 static inline struct context_entry *
91 get_context_addr_from_root(struct root_entry *root)
92 {
93         return (struct context_entry *)
94                 (root_present(root)?phys_to_virt(
95                 root->val & VTD_PAGE_MASK) :
96                 NULL);
97 }
98
99 /*
100  * low 64 bits:
101  * 0: present
102  * 1: fault processing disable
103  * 2-3: translation type
104  * 12-63: address space root
105  * high 64 bits:
106  * 0-2: address width
107  * 3-6: aval
108  * 8-23: domain id
109  */
110 struct context_entry {
111         u64 lo;
112         u64 hi;
113 };
114
115 static inline bool context_present(struct context_entry *context)
116 {
117         return (context->lo & 1);
118 }
119 static inline void context_set_present(struct context_entry *context)
120 {
121         context->lo |= 1;
122 }
123
124 static inline void context_set_fault_enable(struct context_entry *context)
125 {
126         context->lo &= (((u64)-1) << 2) | 1;
127 }
128
129 #define CONTEXT_TT_MULTI_LEVEL 0
130
131 static inline void context_set_translation_type(struct context_entry *context,
132                                                 unsigned long value)
133 {
134         context->lo &= (((u64)-1) << 4) | 3;
135         context->lo |= (value & 3) << 2;
136 }
137
138 static inline void context_set_address_root(struct context_entry *context,
139                                             unsigned long value)
140 {
141         context->lo |= value & VTD_PAGE_MASK;
142 }
143
144 static inline void context_set_address_width(struct context_entry *context,
145                                              unsigned long value)
146 {
147         context->hi |= value & 7;
148 }
149
150 static inline void context_set_domain_id(struct context_entry *context,
151                                          unsigned long value)
152 {
153         context->hi |= (value & ((1 << 16) - 1)) << 8;
154 }
155
156 static inline void context_clear_entry(struct context_entry *context)
157 {
158         context->lo = 0;
159         context->hi = 0;
160 }
161
162 /*
163  * 0: readable
164  * 1: writable
165  * 2-6: reserved
166  * 7: super page
167  * 8-11: available
168  * 12-63: Host physcial address
169  */
170 struct dma_pte {
171         u64 val;
172 };
173
174 static inline void dma_clear_pte(struct dma_pte *pte)
175 {
176         pte->val = 0;
177 }
178
179 static inline void dma_set_pte_readable(struct dma_pte *pte)
180 {
181         pte->val |= DMA_PTE_READ;
182 }
183
184 static inline void dma_set_pte_writable(struct dma_pte *pte)
185 {
186         pte->val |= DMA_PTE_WRITE;
187 }
188
189 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
190 {
191         pte->val = (pte->val & ~3) | (prot & 3);
192 }
193
194 static inline u64 dma_pte_addr(struct dma_pte *pte)
195 {
196         return (pte->val & VTD_PAGE_MASK);
197 }
198
199 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
200 {
201         pte->val |= (addr & VTD_PAGE_MASK);
202 }
203
204 static inline bool dma_pte_present(struct dma_pte *pte)
205 {
206         return (pte->val & 3) != 0;
207 }
208
209 /* devices under the same p2p bridge are owned in one domain */
210 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
211
212 /* domain represents a virtual machine, more than one devices
213  * across iommus may be owned in one domain, e.g. kvm guest.
214  */
215 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
216
217 struct dmar_domain {
218         int     id;                     /* domain id */
219         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
220
221         struct list_head devices;       /* all devices' list */
222         struct iova_domain iovad;       /* iova's that belong to this domain */
223
224         struct dma_pte  *pgd;           /* virtual address */
225         spinlock_t      mapping_lock;   /* page table lock */
226         int             gaw;            /* max guest address width */
227
228         /* adjusted guest address width, 0 is level 2 30-bit */
229         int             agaw;
230
231         int             flags;          /* flags to find out type of domain */
232
233         int             iommu_coherency;/* indicate coherency of iommu access */
234         int             iommu_count;    /* reference count of iommu */
235         spinlock_t      iommu_lock;     /* protect iommu set in domain */
236         u64             max_addr;       /* maximum mapped address */
237 };
238
239 /* PCI domain-device relationship */
240 struct device_domain_info {
241         struct list_head link;  /* link to domain siblings */
242         struct list_head global; /* link to global list */
243         u8 bus;                 /* PCI bus numer */
244         u8 devfn;               /* PCI devfn number */
245         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
246         struct dmar_domain *domain; /* pointer to domain */
247 };
248
249 static void flush_unmaps_timeout(unsigned long data);
250
251 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
252
253 #define HIGH_WATER_MARK 250
254 struct deferred_flush_tables {
255         int next;
256         struct iova *iova[HIGH_WATER_MARK];
257         struct dmar_domain *domain[HIGH_WATER_MARK];
258 };
259
260 static struct deferred_flush_tables *deferred_flush;
261
262 /* bitmap for indexing intel_iommus */
263 static int g_num_of_iommus;
264
265 static DEFINE_SPINLOCK(async_umap_flush_lock);
266 static LIST_HEAD(unmaps_to_do);
267
268 static int timer_on;
269 static long list_size;
270
271 static void domain_remove_dev_info(struct dmar_domain *domain);
272
273 #ifdef CONFIG_DMAR_DEFAULT_ON
274 int dmar_disabled = 0;
275 #else
276 int dmar_disabled = 1;
277 #endif /*CONFIG_DMAR_DEFAULT_ON*/
278
279 static int __initdata dmar_map_gfx = 1;
280 static int dmar_forcedac;
281 static int intel_iommu_strict;
282
283 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
284 static DEFINE_SPINLOCK(device_domain_lock);
285 static LIST_HEAD(device_domain_list);
286
287 static struct iommu_ops intel_iommu_ops;
288
289 static int __init intel_iommu_setup(char *str)
290 {
291         if (!str)
292                 return -EINVAL;
293         while (*str) {
294                 if (!strncmp(str, "on", 2)) {
295                         dmar_disabled = 0;
296                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
297                 } else if (!strncmp(str, "off", 3)) {
298                         dmar_disabled = 1;
299                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
300                 } else if (!strncmp(str, "igfx_off", 8)) {
301                         dmar_map_gfx = 0;
302                         printk(KERN_INFO
303                                 "Intel-IOMMU: disable GFX device mapping\n");
304                 } else if (!strncmp(str, "forcedac", 8)) {
305                         printk(KERN_INFO
306                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
307                         dmar_forcedac = 1;
308                 } else if (!strncmp(str, "strict", 6)) {
309                         printk(KERN_INFO
310                                 "Intel-IOMMU: disable batched IOTLB flush\n");
311                         intel_iommu_strict = 1;
312                 }
313
314                 str += strcspn(str, ",");
315                 while (*str == ',')
316                         str++;
317         }
318         return 0;
319 }
320 __setup("intel_iommu=", intel_iommu_setup);
321
322 static struct kmem_cache *iommu_domain_cache;
323 static struct kmem_cache *iommu_devinfo_cache;
324 static struct kmem_cache *iommu_iova_cache;
325
326 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
327 {
328         unsigned int flags;
329         void *vaddr;
330
331         /* trying to avoid low memory issues */
332         flags = current->flags & PF_MEMALLOC;
333         current->flags |= PF_MEMALLOC;
334         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
335         current->flags &= (~PF_MEMALLOC | flags);
336         return vaddr;
337 }
338
339
340 static inline void *alloc_pgtable_page(void)
341 {
342         unsigned int flags;
343         void *vaddr;
344
345         /* trying to avoid low memory issues */
346         flags = current->flags & PF_MEMALLOC;
347         current->flags |= PF_MEMALLOC;
348         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
349         current->flags &= (~PF_MEMALLOC | flags);
350         return vaddr;
351 }
352
353 static inline void free_pgtable_page(void *vaddr)
354 {
355         free_page((unsigned long)vaddr);
356 }
357
358 static inline void *alloc_domain_mem(void)
359 {
360         return iommu_kmem_cache_alloc(iommu_domain_cache);
361 }
362
363 static void free_domain_mem(void *vaddr)
364 {
365         kmem_cache_free(iommu_domain_cache, vaddr);
366 }
367
368 static inline void * alloc_devinfo_mem(void)
369 {
370         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
371 }
372
373 static inline void free_devinfo_mem(void *vaddr)
374 {
375         kmem_cache_free(iommu_devinfo_cache, vaddr);
376 }
377
378 struct iova *alloc_iova_mem(void)
379 {
380         return iommu_kmem_cache_alloc(iommu_iova_cache);
381 }
382
383 void free_iova_mem(struct iova *iova)
384 {
385         kmem_cache_free(iommu_iova_cache, iova);
386 }
387
388
389 static inline int width_to_agaw(int width);
390
391 /* calculate agaw for each iommu.
392  * "SAGAW" may be different across iommus, use a default agaw, and
393  * get a supported less agaw for iommus that don't support the default agaw.
394  */
395 int iommu_calculate_agaw(struct intel_iommu *iommu)
396 {
397         unsigned long sagaw;
398         int agaw = -1;
399
400         sagaw = cap_sagaw(iommu->cap);
401         for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
402              agaw >= 0; agaw--) {
403                 if (test_bit(agaw, &sagaw))
404                         break;
405         }
406
407         return agaw;
408 }
409
410 /* in native case, each domain is related to only one iommu */
411 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
412 {
413         int iommu_id;
414
415         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
416
417         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
418         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
419                 return NULL;
420
421         return g_iommus[iommu_id];
422 }
423
424 /* "Coherency" capability may be different across iommus */
425 static void domain_update_iommu_coherency(struct dmar_domain *domain)
426 {
427         int i;
428
429         domain->iommu_coherency = 1;
430
431         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
432         for (; i < g_num_of_iommus; ) {
433                 if (!ecap_coherent(g_iommus[i]->ecap)) {
434                         domain->iommu_coherency = 0;
435                         break;
436                 }
437                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
438         }
439 }
440
441 static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
442 {
443         struct dmar_drhd_unit *drhd = NULL;
444         int i;
445
446         for_each_drhd_unit(drhd) {
447                 if (drhd->ignored)
448                         continue;
449
450                 for (i = 0; i < drhd->devices_cnt; i++)
451                         if (drhd->devices[i] &&
452                             drhd->devices[i]->bus->number == bus &&
453                             drhd->devices[i]->devfn == devfn)
454                                 return drhd->iommu;
455
456                 if (drhd->include_all)
457                         return drhd->iommu;
458         }
459
460         return NULL;
461 }
462
463 static void domain_flush_cache(struct dmar_domain *domain,
464                                void *addr, int size)
465 {
466         if (!domain->iommu_coherency)
467                 clflush_cache_range(addr, size);
468 }
469
470 /* Gets context entry for a given bus and devfn */
471 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
472                 u8 bus, u8 devfn)
473 {
474         struct root_entry *root;
475         struct context_entry *context;
476         unsigned long phy_addr;
477         unsigned long flags;
478
479         spin_lock_irqsave(&iommu->lock, flags);
480         root = &iommu->root_entry[bus];
481         context = get_context_addr_from_root(root);
482         if (!context) {
483                 context = (struct context_entry *)alloc_pgtable_page();
484                 if (!context) {
485                         spin_unlock_irqrestore(&iommu->lock, flags);
486                         return NULL;
487                 }
488                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
489                 phy_addr = virt_to_phys((void *)context);
490                 set_root_value(root, phy_addr);
491                 set_root_present(root);
492                 __iommu_flush_cache(iommu, root, sizeof(*root));
493         }
494         spin_unlock_irqrestore(&iommu->lock, flags);
495         return &context[devfn];
496 }
497
498 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
499 {
500         struct root_entry *root;
501         struct context_entry *context;
502         int ret;
503         unsigned long flags;
504
505         spin_lock_irqsave(&iommu->lock, flags);
506         root = &iommu->root_entry[bus];
507         context = get_context_addr_from_root(root);
508         if (!context) {
509                 ret = 0;
510                 goto out;
511         }
512         ret = context_present(&context[devfn]);
513 out:
514         spin_unlock_irqrestore(&iommu->lock, flags);
515         return ret;
516 }
517
518 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
519 {
520         struct root_entry *root;
521         struct context_entry *context;
522         unsigned long flags;
523
524         spin_lock_irqsave(&iommu->lock, flags);
525         root = &iommu->root_entry[bus];
526         context = get_context_addr_from_root(root);
527         if (context) {
528                 context_clear_entry(&context[devfn]);
529                 __iommu_flush_cache(iommu, &context[devfn], \
530                         sizeof(*context));
531         }
532         spin_unlock_irqrestore(&iommu->lock, flags);
533 }
534
535 static void free_context_table(struct intel_iommu *iommu)
536 {
537         struct root_entry *root;
538         int i;
539         unsigned long flags;
540         struct context_entry *context;
541
542         spin_lock_irqsave(&iommu->lock, flags);
543         if (!iommu->root_entry) {
544                 goto out;
545         }
546         for (i = 0; i < ROOT_ENTRY_NR; i++) {
547                 root = &iommu->root_entry[i];
548                 context = get_context_addr_from_root(root);
549                 if (context)
550                         free_pgtable_page(context);
551         }
552         free_pgtable_page(iommu->root_entry);
553         iommu->root_entry = NULL;
554 out:
555         spin_unlock_irqrestore(&iommu->lock, flags);
556 }
557
558 /* page table handling */
559 #define LEVEL_STRIDE            (9)
560 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
561
562 static inline int agaw_to_level(int agaw)
563 {
564         return agaw + 2;
565 }
566
567 static inline int agaw_to_width(int agaw)
568 {
569         return 30 + agaw * LEVEL_STRIDE;
570
571 }
572
573 static inline int width_to_agaw(int width)
574 {
575         return (width - 30) / LEVEL_STRIDE;
576 }
577
578 static inline unsigned int level_to_offset_bits(int level)
579 {
580         return (12 + (level - 1) * LEVEL_STRIDE);
581 }
582
583 static inline int address_level_offset(u64 addr, int level)
584 {
585         return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
586 }
587
588 static inline u64 level_mask(int level)
589 {
590         return ((u64)-1 << level_to_offset_bits(level));
591 }
592
593 static inline u64 level_size(int level)
594 {
595         return ((u64)1 << level_to_offset_bits(level));
596 }
597
598 static inline u64 align_to_level(u64 addr, int level)
599 {
600         return ((addr + level_size(level) - 1) & level_mask(level));
601 }
602
603 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
604 {
605         int addr_width = agaw_to_width(domain->agaw);
606         struct dma_pte *parent, *pte = NULL;
607         int level = agaw_to_level(domain->agaw);
608         int offset;
609         unsigned long flags;
610
611         BUG_ON(!domain->pgd);
612
613         addr &= (((u64)1) << addr_width) - 1;
614         parent = domain->pgd;
615
616         spin_lock_irqsave(&domain->mapping_lock, flags);
617         while (level > 0) {
618                 void *tmp_page;
619
620                 offset = address_level_offset(addr, level);
621                 pte = &parent[offset];
622                 if (level == 1)
623                         break;
624
625                 if (!dma_pte_present(pte)) {
626                         tmp_page = alloc_pgtable_page();
627
628                         if (!tmp_page) {
629                                 spin_unlock_irqrestore(&domain->mapping_lock,
630                                         flags);
631                                 return NULL;
632                         }
633                         domain_flush_cache(domain, tmp_page, PAGE_SIZE);
634                         dma_set_pte_addr(pte, virt_to_phys(tmp_page));
635                         /*
636                          * high level table always sets r/w, last level page
637                          * table control read/write
638                          */
639                         dma_set_pte_readable(pte);
640                         dma_set_pte_writable(pte);
641                         domain_flush_cache(domain, pte, sizeof(*pte));
642                 }
643                 parent = phys_to_virt(dma_pte_addr(pte));
644                 level--;
645         }
646
647         spin_unlock_irqrestore(&domain->mapping_lock, flags);
648         return pte;
649 }
650
651 /* return address's pte at specific level */
652 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
653                 int level)
654 {
655         struct dma_pte *parent, *pte = NULL;
656         int total = agaw_to_level(domain->agaw);
657         int offset;
658
659         parent = domain->pgd;
660         while (level <= total) {
661                 offset = address_level_offset(addr, total);
662                 pte = &parent[offset];
663                 if (level == total)
664                         return pte;
665
666                 if (!dma_pte_present(pte))
667                         break;
668                 parent = phys_to_virt(dma_pte_addr(pte));
669                 total--;
670         }
671         return NULL;
672 }
673
674 /* clear one page's page table */
675 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
676 {
677         struct dma_pte *pte = NULL;
678
679         /* get last level pte */
680         pte = dma_addr_level_pte(domain, addr, 1);
681
682         if (pte) {
683                 dma_clear_pte(pte);
684                 domain_flush_cache(domain, pte, sizeof(*pte));
685         }
686 }
687
688 /* clear last level pte, a tlb flush should be followed */
689 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
690 {
691         int addr_width = agaw_to_width(domain->agaw);
692
693         start &= (((u64)1) << addr_width) - 1;
694         end &= (((u64)1) << addr_width) - 1;
695         /* in case it's partial page */
696         start = PAGE_ALIGN(start);
697         end &= PAGE_MASK;
698
699         /* we don't need lock here, nobody else touches the iova range */
700         while (start < end) {
701                 dma_pte_clear_one(domain, start);
702                 start += VTD_PAGE_SIZE;
703         }
704 }
705
706 /* free page table pages. last level pte should already be cleared */
707 static void dma_pte_free_pagetable(struct dmar_domain *domain,
708         u64 start, u64 end)
709 {
710         int addr_width = agaw_to_width(domain->agaw);
711         struct dma_pte *pte;
712         int total = agaw_to_level(domain->agaw);
713         int level;
714         u64 tmp;
715
716         start &= (((u64)1) << addr_width) - 1;
717         end &= (((u64)1) << addr_width) - 1;
718
719         /* we don't need lock here, nobody else touches the iova range */
720         level = 2;
721         while (level <= total) {
722                 tmp = align_to_level(start, level);
723                 if (tmp >= end || (tmp + level_size(level) > end))
724                         return;
725
726                 while (tmp < end) {
727                         pte = dma_addr_level_pte(domain, tmp, level);
728                         if (pte) {
729                                 free_pgtable_page(
730                                         phys_to_virt(dma_pte_addr(pte)));
731                                 dma_clear_pte(pte);
732                                 domain_flush_cache(domain, pte, sizeof(*pte));
733                         }
734                         tmp += level_size(level);
735                 }
736                 level++;
737         }
738         /* free pgd */
739         if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
740                 free_pgtable_page(domain->pgd);
741                 domain->pgd = NULL;
742         }
743 }
744
745 /* iommu handling */
746 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
747 {
748         struct root_entry *root;
749         unsigned long flags;
750
751         root = (struct root_entry *)alloc_pgtable_page();
752         if (!root)
753                 return -ENOMEM;
754
755         __iommu_flush_cache(iommu, root, ROOT_SIZE);
756
757         spin_lock_irqsave(&iommu->lock, flags);
758         iommu->root_entry = root;
759         spin_unlock_irqrestore(&iommu->lock, flags);
760
761         return 0;
762 }
763
764 static void iommu_set_root_entry(struct intel_iommu *iommu)
765 {
766         void *addr;
767         u32 cmd, sts;
768         unsigned long flag;
769
770         addr = iommu->root_entry;
771
772         spin_lock_irqsave(&iommu->register_lock, flag);
773         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
774
775         cmd = iommu->gcmd | DMA_GCMD_SRTP;
776         writel(cmd, iommu->reg + DMAR_GCMD_REG);
777
778         /* Make sure hardware complete it */
779         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
780                 readl, (sts & DMA_GSTS_RTPS), sts);
781
782         spin_unlock_irqrestore(&iommu->register_lock, flag);
783 }
784
785 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
786 {
787         u32 val;
788         unsigned long flag;
789
790         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
791                 return;
792         val = iommu->gcmd | DMA_GCMD_WBF;
793
794         spin_lock_irqsave(&iommu->register_lock, flag);
795         writel(val, iommu->reg + DMAR_GCMD_REG);
796
797         /* Make sure hardware complete it */
798         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
799                         readl, (!(val & DMA_GSTS_WBFS)), val);
800
801         spin_unlock_irqrestore(&iommu->register_lock, flag);
802 }
803
804 /* return value determine if we need a write buffer flush */
805 static int __iommu_flush_context(struct intel_iommu *iommu,
806         u16 did, u16 source_id, u8 function_mask, u64 type,
807         int non_present_entry_flush)
808 {
809         u64 val = 0;
810         unsigned long flag;
811
812         /*
813          * In the non-present entry flush case, if hardware doesn't cache
814          * non-present entry we do nothing and if hardware cache non-present
815          * entry, we flush entries of domain 0 (the domain id is used to cache
816          * any non-present entries)
817          */
818         if (non_present_entry_flush) {
819                 if (!cap_caching_mode(iommu->cap))
820                         return 1;
821                 else
822                         did = 0;
823         }
824
825         switch (type) {
826         case DMA_CCMD_GLOBAL_INVL:
827                 val = DMA_CCMD_GLOBAL_INVL;
828                 break;
829         case DMA_CCMD_DOMAIN_INVL:
830                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
831                 break;
832         case DMA_CCMD_DEVICE_INVL:
833                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
834                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
835                 break;
836         default:
837                 BUG();
838         }
839         val |= DMA_CCMD_ICC;
840
841         spin_lock_irqsave(&iommu->register_lock, flag);
842         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
843
844         /* Make sure hardware complete it */
845         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
846                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
847
848         spin_unlock_irqrestore(&iommu->register_lock, flag);
849
850         /* flush context entry will implicitly flush write buffer */
851         return 0;
852 }
853
854 /* return value determine if we need a write buffer flush */
855 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
856         u64 addr, unsigned int size_order, u64 type,
857         int non_present_entry_flush)
858 {
859         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
860         u64 val = 0, val_iva = 0;
861         unsigned long flag;
862
863         /*
864          * In the non-present entry flush case, if hardware doesn't cache
865          * non-present entry we do nothing and if hardware cache non-present
866          * entry, we flush entries of domain 0 (the domain id is used to cache
867          * any non-present entries)
868          */
869         if (non_present_entry_flush) {
870                 if (!cap_caching_mode(iommu->cap))
871                         return 1;
872                 else
873                         did = 0;
874         }
875
876         switch (type) {
877         case DMA_TLB_GLOBAL_FLUSH:
878                 /* global flush doesn't need set IVA_REG */
879                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
880                 break;
881         case DMA_TLB_DSI_FLUSH:
882                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
883                 break;
884         case DMA_TLB_PSI_FLUSH:
885                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
886                 /* Note: always flush non-leaf currently */
887                 val_iva = size_order | addr;
888                 break;
889         default:
890                 BUG();
891         }
892         /* Note: set drain read/write */
893 #if 0
894         /*
895          * This is probably to be super secure.. Looks like we can
896          * ignore it without any impact.
897          */
898         if (cap_read_drain(iommu->cap))
899                 val |= DMA_TLB_READ_DRAIN;
900 #endif
901         if (cap_write_drain(iommu->cap))
902                 val |= DMA_TLB_WRITE_DRAIN;
903
904         spin_lock_irqsave(&iommu->register_lock, flag);
905         /* Note: Only uses first TLB reg currently */
906         if (val_iva)
907                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
908         dmar_writeq(iommu->reg + tlb_offset + 8, val);
909
910         /* Make sure hardware complete it */
911         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
912                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
913
914         spin_unlock_irqrestore(&iommu->register_lock, flag);
915
916         /* check IOTLB invalidation granularity */
917         if (DMA_TLB_IAIG(val) == 0)
918                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
919         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
920                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
921                         (unsigned long long)DMA_TLB_IIRG(type),
922                         (unsigned long long)DMA_TLB_IAIG(val));
923         /* flush iotlb entry will implicitly flush write buffer */
924         return 0;
925 }
926
927 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
928         u64 addr, unsigned int pages, int non_present_entry_flush)
929 {
930         unsigned int mask;
931
932         BUG_ON(addr & (~VTD_PAGE_MASK));
933         BUG_ON(pages == 0);
934
935         /* Fallback to domain selective flush if no PSI support */
936         if (!cap_pgsel_inv(iommu->cap))
937                 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
938                                                 DMA_TLB_DSI_FLUSH,
939                                                 non_present_entry_flush);
940
941         /*
942          * PSI requires page size to be 2 ^ x, and the base address is naturally
943          * aligned to the size
944          */
945         mask = ilog2(__roundup_pow_of_two(pages));
946         /* Fallback to domain selective flush if size is too big */
947         if (mask > cap_max_amask_val(iommu->cap))
948                 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
949                         DMA_TLB_DSI_FLUSH, non_present_entry_flush);
950
951         return iommu->flush.flush_iotlb(iommu, did, addr, mask,
952                                         DMA_TLB_PSI_FLUSH,
953                                         non_present_entry_flush);
954 }
955
956 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
957 {
958         u32 pmen;
959         unsigned long flags;
960
961         spin_lock_irqsave(&iommu->register_lock, flags);
962         pmen = readl(iommu->reg + DMAR_PMEN_REG);
963         pmen &= ~DMA_PMEN_EPM;
964         writel(pmen, iommu->reg + DMAR_PMEN_REG);
965
966         /* wait for the protected region status bit to clear */
967         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
968                 readl, !(pmen & DMA_PMEN_PRS), pmen);
969
970         spin_unlock_irqrestore(&iommu->register_lock, flags);
971 }
972
973 static int iommu_enable_translation(struct intel_iommu *iommu)
974 {
975         u32 sts;
976         unsigned long flags;
977
978         spin_lock_irqsave(&iommu->register_lock, flags);
979         writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
980
981         /* Make sure hardware complete it */
982         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
983                 readl, (sts & DMA_GSTS_TES), sts);
984
985         iommu->gcmd |= DMA_GCMD_TE;
986         spin_unlock_irqrestore(&iommu->register_lock, flags);
987         return 0;
988 }
989
990 static int iommu_disable_translation(struct intel_iommu *iommu)
991 {
992         u32 sts;
993         unsigned long flag;
994
995         spin_lock_irqsave(&iommu->register_lock, flag);
996         iommu->gcmd &= ~DMA_GCMD_TE;
997         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
998
999         /* Make sure hardware complete it */
1000         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1001                 readl, (!(sts & DMA_GSTS_TES)), sts);
1002
1003         spin_unlock_irqrestore(&iommu->register_lock, flag);
1004         return 0;
1005 }
1006
1007
1008 static int iommu_init_domains(struct intel_iommu *iommu)
1009 {
1010         unsigned long ndomains;
1011         unsigned long nlongs;
1012
1013         ndomains = cap_ndoms(iommu->cap);
1014         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1015         nlongs = BITS_TO_LONGS(ndomains);
1016
1017         /* TBD: there might be 64K domains,
1018          * consider other allocation for future chip
1019          */
1020         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1021         if (!iommu->domain_ids) {
1022                 printk(KERN_ERR "Allocating domain id array failed\n");
1023                 return -ENOMEM;
1024         }
1025         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1026                         GFP_KERNEL);
1027         if (!iommu->domains) {
1028                 printk(KERN_ERR "Allocating domain array failed\n");
1029                 kfree(iommu->domain_ids);
1030                 return -ENOMEM;
1031         }
1032
1033         spin_lock_init(&iommu->lock);
1034
1035         /*
1036          * if Caching mode is set, then invalid translations are tagged
1037          * with domainid 0. Hence we need to pre-allocate it.
1038          */
1039         if (cap_caching_mode(iommu->cap))
1040                 set_bit(0, iommu->domain_ids);
1041         return 0;
1042 }
1043
1044
1045 static void domain_exit(struct dmar_domain *domain);
1046 static void vm_domain_exit(struct dmar_domain *domain);
1047
1048 void free_dmar_iommu(struct intel_iommu *iommu)
1049 {
1050         struct dmar_domain *domain;
1051         int i;
1052         unsigned long flags;
1053
1054         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1055         for (; i < cap_ndoms(iommu->cap); ) {
1056                 domain = iommu->domains[i];
1057                 clear_bit(i, iommu->domain_ids);
1058
1059                 spin_lock_irqsave(&domain->iommu_lock, flags);
1060                 if (--domain->iommu_count == 0) {
1061                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1062                                 vm_domain_exit(domain);
1063                         else
1064                                 domain_exit(domain);
1065                 }
1066                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1067
1068                 i = find_next_bit(iommu->domain_ids,
1069                         cap_ndoms(iommu->cap), i+1);
1070         }
1071
1072         if (iommu->gcmd & DMA_GCMD_TE)
1073                 iommu_disable_translation(iommu);
1074
1075         if (iommu->irq) {
1076                 set_irq_data(iommu->irq, NULL);
1077                 /* This will mask the irq */
1078                 free_irq(iommu->irq, iommu);
1079                 destroy_irq(iommu->irq);
1080         }
1081
1082         kfree(iommu->domains);
1083         kfree(iommu->domain_ids);
1084
1085         g_iommus[iommu->seq_id] = NULL;
1086
1087         /* if all iommus are freed, free g_iommus */
1088         for (i = 0; i < g_num_of_iommus; i++) {
1089                 if (g_iommus[i])
1090                         break;
1091         }
1092
1093         if (i == g_num_of_iommus)
1094                 kfree(g_iommus);
1095
1096         /* free context mapping */
1097         free_context_table(iommu);
1098 }
1099
1100 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1101 {
1102         unsigned long num;
1103         unsigned long ndomains;
1104         struct dmar_domain *domain;
1105         unsigned long flags;
1106
1107         domain = alloc_domain_mem();
1108         if (!domain)
1109                 return NULL;
1110
1111         ndomains = cap_ndoms(iommu->cap);
1112
1113         spin_lock_irqsave(&iommu->lock, flags);
1114         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1115         if (num >= ndomains) {
1116                 spin_unlock_irqrestore(&iommu->lock, flags);
1117                 free_domain_mem(domain);
1118                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1119                 return NULL;
1120         }
1121
1122         set_bit(num, iommu->domain_ids);
1123         domain->id = num;
1124         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1125         set_bit(iommu->seq_id, &domain->iommu_bmp);
1126         domain->flags = 0;
1127         iommu->domains[num] = domain;
1128         spin_unlock_irqrestore(&iommu->lock, flags);
1129
1130         return domain;
1131 }
1132
1133 static void iommu_free_domain(struct dmar_domain *domain)
1134 {
1135         unsigned long flags;
1136         struct intel_iommu *iommu;
1137
1138         iommu = domain_get_iommu(domain);
1139
1140         spin_lock_irqsave(&iommu->lock, flags);
1141         clear_bit(domain->id, iommu->domain_ids);
1142         spin_unlock_irqrestore(&iommu->lock, flags);
1143 }
1144
1145 static struct iova_domain reserved_iova_list;
1146 static struct lock_class_key reserved_alloc_key;
1147 static struct lock_class_key reserved_rbtree_key;
1148
1149 static void dmar_init_reserved_ranges(void)
1150 {
1151         struct pci_dev *pdev = NULL;
1152         struct iova *iova;
1153         int i;
1154         u64 addr, size;
1155
1156         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1157
1158         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1159                 &reserved_alloc_key);
1160         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1161                 &reserved_rbtree_key);
1162
1163         /* IOAPIC ranges shouldn't be accessed by DMA */
1164         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1165                 IOVA_PFN(IOAPIC_RANGE_END));
1166         if (!iova)
1167                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1168
1169         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1170         for_each_pci_dev(pdev) {
1171                 struct resource *r;
1172
1173                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1174                         r = &pdev->resource[i];
1175                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1176                                 continue;
1177                         addr = r->start;
1178                         addr &= PAGE_MASK;
1179                         size = r->end - addr;
1180                         size = PAGE_ALIGN(size);
1181                         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1182                                 IOVA_PFN(size + addr) - 1);
1183                         if (!iova)
1184                                 printk(KERN_ERR "Reserve iova failed\n");
1185                 }
1186         }
1187
1188 }
1189
1190 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1191 {
1192         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1193 }
1194
1195 static inline int guestwidth_to_adjustwidth(int gaw)
1196 {
1197         int agaw;
1198         int r = (gaw - 12) % 9;
1199
1200         if (r == 0)
1201                 agaw = gaw;
1202         else
1203                 agaw = gaw + 9 - r;
1204         if (agaw > 64)
1205                 agaw = 64;
1206         return agaw;
1207 }
1208
1209 static int domain_init(struct dmar_domain *domain, int guest_width)
1210 {
1211         struct intel_iommu *iommu;
1212         int adjust_width, agaw;
1213         unsigned long sagaw;
1214
1215         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1216         spin_lock_init(&domain->mapping_lock);
1217         spin_lock_init(&domain->iommu_lock);
1218
1219         domain_reserve_special_ranges(domain);
1220
1221         /* calculate AGAW */
1222         iommu = domain_get_iommu(domain);
1223         if (guest_width > cap_mgaw(iommu->cap))
1224                 guest_width = cap_mgaw(iommu->cap);
1225         domain->gaw = guest_width;
1226         adjust_width = guestwidth_to_adjustwidth(guest_width);
1227         agaw = width_to_agaw(adjust_width);
1228         sagaw = cap_sagaw(iommu->cap);
1229         if (!test_bit(agaw, &sagaw)) {
1230                 /* hardware doesn't support it, choose a bigger one */
1231                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1232                 agaw = find_next_bit(&sagaw, 5, agaw);
1233                 if (agaw >= 5)
1234                         return -ENODEV;
1235         }
1236         domain->agaw = agaw;
1237         INIT_LIST_HEAD(&domain->devices);
1238
1239         if (ecap_coherent(iommu->ecap))
1240                 domain->iommu_coherency = 1;
1241         else
1242                 domain->iommu_coherency = 0;
1243
1244         domain->iommu_count = 1;
1245
1246         /* always allocate the top pgd */
1247         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1248         if (!domain->pgd)
1249                 return -ENOMEM;
1250         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1251         return 0;
1252 }
1253
1254 static void domain_exit(struct dmar_domain *domain)
1255 {
1256         u64 end;
1257
1258         /* Domain 0 is reserved, so dont process it */
1259         if (!domain)
1260                 return;
1261
1262         domain_remove_dev_info(domain);
1263         /* destroy iovas */
1264         put_iova_domain(&domain->iovad);
1265         end = DOMAIN_MAX_ADDR(domain->gaw);
1266         end = end & (~PAGE_MASK);
1267
1268         /* clear ptes */
1269         dma_pte_clear_range(domain, 0, end);
1270
1271         /* free page tables */
1272         dma_pte_free_pagetable(domain, 0, end);
1273
1274         iommu_free_domain(domain);
1275         free_domain_mem(domain);
1276 }
1277
1278 static int domain_context_mapping_one(struct dmar_domain *domain,
1279                 u8 bus, u8 devfn)
1280 {
1281         struct context_entry *context;
1282         unsigned long flags;
1283         struct intel_iommu *iommu;
1284         struct dma_pte *pgd;
1285         unsigned long num;
1286         unsigned long ndomains;
1287         int id;
1288         int agaw;
1289
1290         pr_debug("Set context mapping for %02x:%02x.%d\n",
1291                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1292         BUG_ON(!domain->pgd);
1293
1294         iommu = device_to_iommu(bus, devfn);
1295         if (!iommu)
1296                 return -ENODEV;
1297
1298         context = device_to_context_entry(iommu, bus, devfn);
1299         if (!context)
1300                 return -ENOMEM;
1301         spin_lock_irqsave(&iommu->lock, flags);
1302         if (context_present(context)) {
1303                 spin_unlock_irqrestore(&iommu->lock, flags);
1304                 return 0;
1305         }
1306
1307         id = domain->id;
1308         pgd = domain->pgd;
1309
1310         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1311                 int found = 0;
1312
1313                 /* find an available domain id for this device in iommu */
1314                 ndomains = cap_ndoms(iommu->cap);
1315                 num = find_first_bit(iommu->domain_ids, ndomains);
1316                 for (; num < ndomains; ) {
1317                         if (iommu->domains[num] == domain) {
1318                                 id = num;
1319                                 found = 1;
1320                                 break;
1321                         }
1322                         num = find_next_bit(iommu->domain_ids,
1323                                             cap_ndoms(iommu->cap), num+1);
1324                 }
1325
1326                 if (found == 0) {
1327                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1328                         if (num >= ndomains) {
1329                                 spin_unlock_irqrestore(&iommu->lock, flags);
1330                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1331                                 return -EFAULT;
1332                         }
1333
1334                         set_bit(num, iommu->domain_ids);
1335                         iommu->domains[num] = domain;
1336                         id = num;
1337                 }
1338
1339                 /* Skip top levels of page tables for
1340                  * iommu which has less agaw than default.
1341                  */
1342                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1343                         pgd = phys_to_virt(dma_pte_addr(pgd));
1344                         if (!dma_pte_present(pgd)) {
1345                                 spin_unlock_irqrestore(&iommu->lock, flags);
1346                                 return -ENOMEM;
1347                         }
1348                 }
1349         }
1350
1351         context_set_domain_id(context, id);
1352         context_set_address_width(context, iommu->agaw);
1353         context_set_address_root(context, virt_to_phys(pgd));
1354         context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1355         context_set_fault_enable(context);
1356         context_set_present(context);
1357         domain_flush_cache(domain, context, sizeof(*context));
1358
1359         /* it's a non-present to present mapping */
1360         if (iommu->flush.flush_context(iommu, domain->id,
1361                 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1362                 DMA_CCMD_DEVICE_INVL, 1))
1363                 iommu_flush_write_buffer(iommu);
1364         else
1365                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1366
1367         spin_unlock_irqrestore(&iommu->lock, flags);
1368
1369         spin_lock_irqsave(&domain->iommu_lock, flags);
1370         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1371                 domain->iommu_count++;
1372                 domain_update_iommu_coherency(domain);
1373         }
1374         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1375         return 0;
1376 }
1377
1378 static int
1379 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1380 {
1381         int ret;
1382         struct pci_dev *tmp, *parent;
1383
1384         ret = domain_context_mapping_one(domain, pdev->bus->number,
1385                 pdev->devfn);
1386         if (ret)
1387                 return ret;
1388
1389         /* dependent device mapping */
1390         tmp = pci_find_upstream_pcie_bridge(pdev);
1391         if (!tmp)
1392                 return 0;
1393         /* Secondary interface's bus number and devfn 0 */
1394         parent = pdev->bus->self;
1395         while (parent != tmp) {
1396                 ret = domain_context_mapping_one(domain, parent->bus->number,
1397                         parent->devfn);
1398                 if (ret)
1399                         return ret;
1400                 parent = parent->bus->self;
1401         }
1402         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1403                 return domain_context_mapping_one(domain,
1404                         tmp->subordinate->number, 0);
1405         else /* this is a legacy PCI bridge */
1406                 return domain_context_mapping_one(domain,
1407                         tmp->bus->number, tmp->devfn);
1408 }
1409
1410 static int domain_context_mapped(struct pci_dev *pdev)
1411 {
1412         int ret;
1413         struct pci_dev *tmp, *parent;
1414         struct intel_iommu *iommu;
1415
1416         iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1417         if (!iommu)
1418                 return -ENODEV;
1419
1420         ret = device_context_mapped(iommu,
1421                 pdev->bus->number, pdev->devfn);
1422         if (!ret)
1423                 return ret;
1424         /* dependent device mapping */
1425         tmp = pci_find_upstream_pcie_bridge(pdev);
1426         if (!tmp)
1427                 return ret;
1428         /* Secondary interface's bus number and devfn 0 */
1429         parent = pdev->bus->self;
1430         while (parent != tmp) {
1431                 ret = device_context_mapped(iommu, parent->bus->number,
1432                         parent->devfn);
1433                 if (!ret)
1434                         return ret;
1435                 parent = parent->bus->self;
1436         }
1437         if (tmp->is_pcie)
1438                 return device_context_mapped(iommu,
1439                         tmp->subordinate->number, 0);
1440         else
1441                 return device_context_mapped(iommu,
1442                         tmp->bus->number, tmp->devfn);
1443 }
1444
1445 static int
1446 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1447                         u64 hpa, size_t size, int prot)
1448 {
1449         u64 start_pfn, end_pfn;
1450         struct dma_pte *pte;
1451         int index;
1452         int addr_width = agaw_to_width(domain->agaw);
1453
1454         hpa &= (((u64)1) << addr_width) - 1;
1455
1456         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1457                 return -EINVAL;
1458         iova &= PAGE_MASK;
1459         start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1460         end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1461         index = 0;
1462         while (start_pfn < end_pfn) {
1463                 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1464                 if (!pte)
1465                         return -ENOMEM;
1466                 /* We don't need lock here, nobody else
1467                  * touches the iova range
1468                  */
1469                 BUG_ON(dma_pte_addr(pte));
1470                 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1471                 dma_set_pte_prot(pte, prot);
1472                 domain_flush_cache(domain, pte, sizeof(*pte));
1473                 start_pfn++;
1474                 index++;
1475         }
1476         return 0;
1477 }
1478
1479 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1480 {
1481         if (!iommu)
1482                 return;
1483
1484         clear_context_table(iommu, bus, devfn);
1485         iommu->flush.flush_context(iommu, 0, 0, 0,
1486                                            DMA_CCMD_GLOBAL_INVL, 0);
1487         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1488                                          DMA_TLB_GLOBAL_FLUSH, 0);
1489 }
1490
1491 static void domain_remove_dev_info(struct dmar_domain *domain)
1492 {
1493         struct device_domain_info *info;
1494         unsigned long flags;
1495         struct intel_iommu *iommu;
1496
1497         spin_lock_irqsave(&device_domain_lock, flags);
1498         while (!list_empty(&domain->devices)) {
1499                 info = list_entry(domain->devices.next,
1500                         struct device_domain_info, link);
1501                 list_del(&info->link);
1502                 list_del(&info->global);
1503                 if (info->dev)
1504                         info->dev->dev.archdata.iommu = NULL;
1505                 spin_unlock_irqrestore(&device_domain_lock, flags);
1506
1507                 iommu = device_to_iommu(info->bus, info->devfn);
1508                 iommu_detach_dev(iommu, info->bus, info->devfn);
1509                 free_devinfo_mem(info);
1510
1511                 spin_lock_irqsave(&device_domain_lock, flags);
1512         }
1513         spin_unlock_irqrestore(&device_domain_lock, flags);
1514 }
1515
1516 /*
1517  * find_domain
1518  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1519  */
1520 static struct dmar_domain *
1521 find_domain(struct pci_dev *pdev)
1522 {
1523         struct device_domain_info *info;
1524
1525         /* No lock here, assumes no domain exit in normal case */
1526         info = pdev->dev.archdata.iommu;
1527         if (info)
1528                 return info->domain;
1529         return NULL;
1530 }
1531
1532 /* domain is initialized */
1533 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1534 {
1535         struct dmar_domain *domain, *found = NULL;
1536         struct intel_iommu *iommu;
1537         struct dmar_drhd_unit *drhd;
1538         struct device_domain_info *info, *tmp;
1539         struct pci_dev *dev_tmp;
1540         unsigned long flags;
1541         int bus = 0, devfn = 0;
1542
1543         domain = find_domain(pdev);
1544         if (domain)
1545                 return domain;
1546
1547         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1548         if (dev_tmp) {
1549                 if (dev_tmp->is_pcie) {
1550                         bus = dev_tmp->subordinate->number;
1551                         devfn = 0;
1552                 } else {
1553                         bus = dev_tmp->bus->number;
1554                         devfn = dev_tmp->devfn;
1555                 }
1556                 spin_lock_irqsave(&device_domain_lock, flags);
1557                 list_for_each_entry(info, &device_domain_list, global) {
1558                         if (info->bus == bus && info->devfn == devfn) {
1559                                 found = info->domain;
1560                                 break;
1561                         }
1562                 }
1563                 spin_unlock_irqrestore(&device_domain_lock, flags);
1564                 /* pcie-pci bridge already has a domain, uses it */
1565                 if (found) {
1566                         domain = found;
1567                         goto found_domain;
1568                 }
1569         }
1570
1571         /* Allocate new domain for the device */
1572         drhd = dmar_find_matched_drhd_unit(pdev);
1573         if (!drhd) {
1574                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1575                         pci_name(pdev));
1576                 return NULL;
1577         }
1578         iommu = drhd->iommu;
1579
1580         domain = iommu_alloc_domain(iommu);
1581         if (!domain)
1582                 goto error;
1583
1584         if (domain_init(domain, gaw)) {
1585                 domain_exit(domain);
1586                 goto error;
1587         }
1588
1589         /* register pcie-to-pci device */
1590         if (dev_tmp) {
1591                 info = alloc_devinfo_mem();
1592                 if (!info) {
1593                         domain_exit(domain);
1594                         goto error;
1595                 }
1596                 info->bus = bus;
1597                 info->devfn = devfn;
1598                 info->dev = NULL;
1599                 info->domain = domain;
1600                 /* This domain is shared by devices under p2p bridge */
1601                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1602
1603                 /* pcie-to-pci bridge already has a domain, uses it */
1604                 found = NULL;
1605                 spin_lock_irqsave(&device_domain_lock, flags);
1606                 list_for_each_entry(tmp, &device_domain_list, global) {
1607                         if (tmp->bus == bus && tmp->devfn == devfn) {
1608                                 found = tmp->domain;
1609                                 break;
1610                         }
1611                 }
1612                 if (found) {
1613                         free_devinfo_mem(info);
1614                         domain_exit(domain);
1615                         domain = found;
1616                 } else {
1617                         list_add(&info->link, &domain->devices);
1618                         list_add(&info->global, &device_domain_list);
1619                 }
1620                 spin_unlock_irqrestore(&device_domain_lock, flags);
1621         }
1622
1623 found_domain:
1624         info = alloc_devinfo_mem();
1625         if (!info)
1626                 goto error;
1627         info->bus = pdev->bus->number;
1628         info->devfn = pdev->devfn;
1629         info->dev = pdev;
1630         info->domain = domain;
1631         spin_lock_irqsave(&device_domain_lock, flags);
1632         /* somebody is fast */
1633         found = find_domain(pdev);
1634         if (found != NULL) {
1635                 spin_unlock_irqrestore(&device_domain_lock, flags);
1636                 if (found != domain) {
1637                         domain_exit(domain);
1638                         domain = found;
1639                 }
1640                 free_devinfo_mem(info);
1641                 return domain;
1642         }
1643         list_add(&info->link, &domain->devices);
1644         list_add(&info->global, &device_domain_list);
1645         pdev->dev.archdata.iommu = info;
1646         spin_unlock_irqrestore(&device_domain_lock, flags);
1647         return domain;
1648 error:
1649         /* recheck it here, maybe others set it */
1650         return find_domain(pdev);
1651 }
1652
1653 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1654                                       unsigned long long start,
1655                                       unsigned long long end)
1656 {
1657         struct dmar_domain *domain;
1658         unsigned long size;
1659         unsigned long long base;
1660         int ret;
1661
1662         printk(KERN_INFO
1663                 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1664                 pci_name(pdev), start, end);
1665         /* page table init */
1666         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1667         if (!domain)
1668                 return -ENOMEM;
1669
1670         /* The address might not be aligned */
1671         base = start & PAGE_MASK;
1672         size = end - base;
1673         size = PAGE_ALIGN(size);
1674         if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1675                         IOVA_PFN(base + size) - 1)) {
1676                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1677                 ret = -ENOMEM;
1678                 goto error;
1679         }
1680
1681         pr_debug("Mapping reserved region %lx@%llx for %s\n",
1682                 size, base, pci_name(pdev));
1683         /*
1684          * RMRR range might have overlap with physical memory range,
1685          * clear it first
1686          */
1687         dma_pte_clear_range(domain, base, base + size);
1688
1689         ret = domain_page_mapping(domain, base, base, size,
1690                 DMA_PTE_READ|DMA_PTE_WRITE);
1691         if (ret)
1692                 goto error;
1693
1694         /* context entry init */
1695         ret = domain_context_mapping(domain, pdev);
1696         if (!ret)
1697                 return 0;
1698 error:
1699         domain_exit(domain);
1700         return ret;
1701
1702 }
1703
1704 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1705         struct pci_dev *pdev)
1706 {
1707         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1708                 return 0;
1709         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1710                 rmrr->end_address + 1);
1711 }
1712
1713 #ifdef CONFIG_DMAR_GFX_WA
1714 struct iommu_prepare_data {
1715         struct pci_dev *pdev;
1716         int ret;
1717 };
1718
1719 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1720                                          unsigned long end_pfn, void *datax)
1721 {
1722         struct iommu_prepare_data *data;
1723
1724         data = (struct iommu_prepare_data *)datax;
1725
1726         data->ret = iommu_prepare_identity_map(data->pdev,
1727                                 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1728         return data->ret;
1729
1730 }
1731
1732 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1733 {
1734         int nid;
1735         struct iommu_prepare_data data;
1736
1737         data.pdev = pdev;
1738         data.ret = 0;
1739
1740         for_each_online_node(nid) {
1741                 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1742                 if (data.ret)
1743                         return data.ret;
1744         }
1745         return data.ret;
1746 }
1747
1748 static void __init iommu_prepare_gfx_mapping(void)
1749 {
1750         struct pci_dev *pdev = NULL;
1751         int ret;
1752
1753         for_each_pci_dev(pdev) {
1754                 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1755                                 !IS_GFX_DEVICE(pdev))
1756                         continue;
1757                 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1758                         pci_name(pdev));
1759                 ret = iommu_prepare_with_active_regions(pdev);
1760                 if (ret)
1761                         printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1762         }
1763 }
1764 #else /* !CONFIG_DMAR_GFX_WA */
1765 static inline void iommu_prepare_gfx_mapping(void)
1766 {
1767         return;
1768 }
1769 #endif
1770
1771 #ifdef CONFIG_DMAR_FLOPPY_WA
1772 static inline void iommu_prepare_isa(void)
1773 {
1774         struct pci_dev *pdev;
1775         int ret;
1776
1777         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1778         if (!pdev)
1779                 return;
1780
1781         printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1782         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1783
1784         if (ret)
1785                 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1786                         "floppy might not work\n");
1787
1788 }
1789 #else
1790 static inline void iommu_prepare_isa(void)
1791 {
1792         return;
1793 }
1794 #endif /* !CONFIG_DMAR_FLPY_WA */
1795
1796 static int __init init_dmars(void)
1797 {
1798         struct dmar_drhd_unit *drhd;
1799         struct dmar_rmrr_unit *rmrr;
1800         struct pci_dev *pdev;
1801         struct intel_iommu *iommu;
1802         int i, ret;
1803
1804         /*
1805          * for each drhd
1806          *    allocate root
1807          *    initialize and program root entry to not present
1808          * endfor
1809          */
1810         for_each_drhd_unit(drhd) {
1811                 g_num_of_iommus++;
1812                 /*
1813                  * lock not needed as this is only incremented in the single
1814                  * threaded kernel __init code path all other access are read
1815                  * only
1816                  */
1817         }
1818
1819         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1820                         GFP_KERNEL);
1821         if (!g_iommus) {
1822                 printk(KERN_ERR "Allocating global iommu array failed\n");
1823                 ret = -ENOMEM;
1824                 goto error;
1825         }
1826
1827         deferred_flush = kzalloc(g_num_of_iommus *
1828                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1829         if (!deferred_flush) {
1830                 kfree(g_iommus);
1831                 ret = -ENOMEM;
1832                 goto error;
1833         }
1834
1835         for_each_drhd_unit(drhd) {
1836                 if (drhd->ignored)
1837                         continue;
1838
1839                 iommu = drhd->iommu;
1840                 g_iommus[iommu->seq_id] = iommu;
1841
1842                 ret = iommu_init_domains(iommu);
1843                 if (ret)
1844                         goto error;
1845
1846                 /*
1847                  * TBD:
1848                  * we could share the same root & context tables
1849                  * amoung all IOMMU's. Need to Split it later.
1850                  */
1851                 ret = iommu_alloc_root_entry(iommu);
1852                 if (ret) {
1853                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1854                         goto error;
1855                 }
1856         }
1857
1858         /*
1859          * Start from the sane iommu hardware state.
1860          */
1861         for_each_drhd_unit(drhd) {
1862                 if (drhd->ignored)
1863                         continue;
1864
1865                 iommu = drhd->iommu;
1866
1867                 /*
1868                  * If the queued invalidation is already initialized by us
1869                  * (for example, while enabling interrupt-remapping) then
1870                  * we got the things already rolling from a sane state.
1871                  */
1872                 if (iommu->qi)
1873                         continue;
1874
1875                 /*
1876                  * Clear any previous faults.
1877                  */
1878                 dmar_fault(-1, iommu);
1879                 /*
1880                  * Disable queued invalidation if supported and already enabled
1881                  * before OS handover.
1882                  */
1883                 dmar_disable_qi(iommu);
1884         }
1885
1886         for_each_drhd_unit(drhd) {
1887                 if (drhd->ignored)
1888                         continue;
1889
1890                 iommu = drhd->iommu;
1891
1892                 if (dmar_enable_qi(iommu)) {
1893                         /*
1894                          * Queued Invalidate not enabled, use Register Based
1895                          * Invalidate
1896                          */
1897                         iommu->flush.flush_context = __iommu_flush_context;
1898                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1899                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1900                                "invalidation\n",
1901                                (unsigned long long)drhd->reg_base_addr);
1902                 } else {
1903                         iommu->flush.flush_context = qi_flush_context;
1904                         iommu->flush.flush_iotlb = qi_flush_iotlb;
1905                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1906                                "invalidation\n",
1907                                (unsigned long long)drhd->reg_base_addr);
1908                 }
1909         }
1910
1911         /*
1912          * For each rmrr
1913          *   for each dev attached to rmrr
1914          *   do
1915          *     locate drhd for dev, alloc domain for dev
1916          *     allocate free domain
1917          *     allocate page table entries for rmrr
1918          *     if context not allocated for bus
1919          *           allocate and init context
1920          *           set present in root table for this bus
1921          *     init context with domain, translation etc
1922          *    endfor
1923          * endfor
1924          */
1925         for_each_rmrr_units(rmrr) {
1926                 for (i = 0; i < rmrr->devices_cnt; i++) {
1927                         pdev = rmrr->devices[i];
1928                         /* some BIOS lists non-exist devices in DMAR table */
1929                         if (!pdev)
1930                                 continue;
1931                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1932                         if (ret)
1933                                 printk(KERN_ERR
1934                                  "IOMMU: mapping reserved region failed\n");
1935                 }
1936         }
1937
1938         iommu_prepare_gfx_mapping();
1939
1940         iommu_prepare_isa();
1941
1942         /*
1943          * for each drhd
1944          *   enable fault log
1945          *   global invalidate context cache
1946          *   global invalidate iotlb
1947          *   enable translation
1948          */
1949         for_each_drhd_unit(drhd) {
1950                 if (drhd->ignored)
1951                         continue;
1952                 iommu = drhd->iommu;
1953
1954                 iommu_flush_write_buffer(iommu);
1955
1956                 ret = dmar_set_interrupt(iommu);
1957                 if (ret)
1958                         goto error;
1959
1960                 iommu_set_root_entry(iommu);
1961
1962                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
1963                                            0);
1964                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
1965                                          0);
1966                 iommu_disable_protect_mem_regions(iommu);
1967
1968                 ret = iommu_enable_translation(iommu);
1969                 if (ret)
1970                         goto error;
1971         }
1972
1973         return 0;
1974 error:
1975         for_each_drhd_unit(drhd) {
1976                 if (drhd->ignored)
1977                         continue;
1978                 iommu = drhd->iommu;
1979                 free_iommu(iommu);
1980         }
1981         kfree(g_iommus);
1982         return ret;
1983 }
1984
1985 static inline u64 aligned_size(u64 host_addr, size_t size)
1986 {
1987         u64 addr;
1988         addr = (host_addr & (~PAGE_MASK)) + size;
1989         return PAGE_ALIGN(addr);
1990 }
1991
1992 struct iova *
1993 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
1994 {
1995         struct iova *piova;
1996
1997         /* Make sure it's in range */
1998         end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
1999         if (!size || (IOVA_START_ADDR + size > end))
2000                 return NULL;
2001
2002         piova = alloc_iova(&domain->iovad,
2003                         size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2004         return piova;
2005 }
2006
2007 static struct iova *
2008 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2009                    size_t size, u64 dma_mask)
2010 {
2011         struct pci_dev *pdev = to_pci_dev(dev);
2012         struct iova *iova = NULL;
2013
2014         if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
2015                 iova = iommu_alloc_iova(domain, size, dma_mask);
2016         else {
2017                 /*
2018                  * First try to allocate an io virtual address in
2019                  * DMA_32BIT_MASK and if that fails then try allocating
2020                  * from higher range
2021                  */
2022                 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
2023                 if (!iova)
2024                         iova = iommu_alloc_iova(domain, size, dma_mask);
2025         }
2026
2027         if (!iova) {
2028                 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2029                 return NULL;
2030         }
2031
2032         return iova;
2033 }
2034
2035 static struct dmar_domain *
2036 get_valid_domain_for_dev(struct pci_dev *pdev)
2037 {
2038         struct dmar_domain *domain;
2039         int ret;
2040
2041         domain = get_domain_for_dev(pdev,
2042                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2043         if (!domain) {
2044                 printk(KERN_ERR
2045                         "Allocating domain for %s failed", pci_name(pdev));
2046                 return NULL;
2047         }
2048
2049         /* make sure context mapping is ok */
2050         if (unlikely(!domain_context_mapped(pdev))) {
2051                 ret = domain_context_mapping(domain, pdev);
2052                 if (ret) {
2053                         printk(KERN_ERR
2054                                 "Domain context map for %s failed",
2055                                 pci_name(pdev));
2056                         return NULL;
2057                 }
2058         }
2059
2060         return domain;
2061 }
2062
2063 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2064                                      size_t size, int dir, u64 dma_mask)
2065 {
2066         struct pci_dev *pdev = to_pci_dev(hwdev);
2067         struct dmar_domain *domain;
2068         phys_addr_t start_paddr;
2069         struct iova *iova;
2070         int prot = 0;
2071         int ret;
2072         struct intel_iommu *iommu;
2073
2074         BUG_ON(dir == DMA_NONE);
2075         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2076                 return paddr;
2077
2078         domain = get_valid_domain_for_dev(pdev);
2079         if (!domain)
2080                 return 0;
2081
2082         iommu = domain_get_iommu(domain);
2083         size = aligned_size((u64)paddr, size);
2084
2085         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2086         if (!iova)
2087                 goto error;
2088
2089         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2090
2091         /*
2092          * Check if DMAR supports zero-length reads on write only
2093          * mappings..
2094          */
2095         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2096                         !cap_zlr(iommu->cap))
2097                 prot |= DMA_PTE_READ;
2098         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2099                 prot |= DMA_PTE_WRITE;
2100         /*
2101          * paddr - (paddr + size) might be partial page, we should map the whole
2102          * page.  Note: if two part of one page are separately mapped, we
2103          * might have two guest_addr mapping to the same host paddr, but this
2104          * is not a big problem
2105          */
2106         ret = domain_page_mapping(domain, start_paddr,
2107                 ((u64)paddr) & PAGE_MASK, size, prot);
2108         if (ret)
2109                 goto error;
2110
2111         /* it's a non-present to present mapping */
2112         ret = iommu_flush_iotlb_psi(iommu, domain->id,
2113                         start_paddr, size >> VTD_PAGE_SHIFT, 1);
2114         if (ret)
2115                 iommu_flush_write_buffer(iommu);
2116
2117         return start_paddr + ((u64)paddr & (~PAGE_MASK));
2118
2119 error:
2120         if (iova)
2121                 __free_iova(&domain->iovad, iova);
2122         printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
2123                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2124         return 0;
2125 }
2126
2127 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2128                                  unsigned long offset, size_t size,
2129                                  enum dma_data_direction dir,
2130                                  struct dma_attrs *attrs)
2131 {
2132         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2133                                   dir, to_pci_dev(dev)->dma_mask);
2134 }
2135
2136 static void flush_unmaps(void)
2137 {
2138         int i, j;
2139
2140         timer_on = 0;
2141
2142         /* just flush them all */
2143         for (i = 0; i < g_num_of_iommus; i++) {
2144                 struct intel_iommu *iommu = g_iommus[i];
2145                 if (!iommu)
2146                         continue;
2147
2148                 if (deferred_flush[i].next) {
2149                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2150                                                  DMA_TLB_GLOBAL_FLUSH, 0);
2151                         for (j = 0; j < deferred_flush[i].next; j++) {
2152                                 __free_iova(&deferred_flush[i].domain[j]->iovad,
2153                                                 deferred_flush[i].iova[j]);
2154                         }
2155                         deferred_flush[i].next = 0;
2156                 }
2157         }
2158
2159         list_size = 0;
2160 }
2161
2162 static void flush_unmaps_timeout(unsigned long data)
2163 {
2164         unsigned long flags;
2165
2166         spin_lock_irqsave(&async_umap_flush_lock, flags);
2167         flush_unmaps();
2168         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2169 }
2170
2171 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2172 {
2173         unsigned long flags;
2174         int next, iommu_id;
2175         struct intel_iommu *iommu;
2176
2177         spin_lock_irqsave(&async_umap_flush_lock, flags);
2178         if (list_size == HIGH_WATER_MARK)
2179                 flush_unmaps();
2180
2181         iommu = domain_get_iommu(dom);
2182         iommu_id = iommu->seq_id;
2183
2184         next = deferred_flush[iommu_id].next;
2185         deferred_flush[iommu_id].domain[next] = dom;
2186         deferred_flush[iommu_id].iova[next] = iova;
2187         deferred_flush[iommu_id].next++;
2188
2189         if (!timer_on) {
2190                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2191                 timer_on = 1;
2192         }
2193         list_size++;
2194         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2195 }
2196
2197 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2198                              size_t size, enum dma_data_direction dir,
2199                              struct dma_attrs *attrs)
2200 {
2201         struct pci_dev *pdev = to_pci_dev(dev);
2202         struct dmar_domain *domain;
2203         unsigned long start_addr;
2204         struct iova *iova;
2205         struct intel_iommu *iommu;
2206
2207         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2208                 return;
2209         domain = find_domain(pdev);
2210         BUG_ON(!domain);
2211
2212         iommu = domain_get_iommu(domain);
2213
2214         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2215         if (!iova)
2216                 return;
2217
2218         start_addr = iova->pfn_lo << PAGE_SHIFT;
2219         size = aligned_size((u64)dev_addr, size);
2220
2221         pr_debug("Device %s unmapping: %lx@%llx\n",
2222                 pci_name(pdev), size, (unsigned long long)start_addr);
2223
2224         /*  clear the whole page */
2225         dma_pte_clear_range(domain, start_addr, start_addr + size);
2226         /* free page tables */
2227         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2228         if (intel_iommu_strict) {
2229                 if (iommu_flush_iotlb_psi(iommu,
2230                         domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2231                         iommu_flush_write_buffer(iommu);
2232                 /* free iova */
2233                 __free_iova(&domain->iovad, iova);
2234         } else {
2235                 add_unmap(domain, iova);
2236                 /*
2237                  * queue up the release of the unmap to save the 1/6th of the
2238                  * cpu used up by the iotlb flush operation...
2239                  */
2240         }
2241 }
2242
2243 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2244                                int dir)
2245 {
2246         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2247 }
2248
2249 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2250                                   dma_addr_t *dma_handle, gfp_t flags)
2251 {
2252         void *vaddr;
2253         int order;
2254
2255         size = PAGE_ALIGN(size);
2256         order = get_order(size);
2257         flags &= ~(GFP_DMA | GFP_DMA32);
2258
2259         vaddr = (void *)__get_free_pages(flags, order);
2260         if (!vaddr)
2261                 return NULL;
2262         memset(vaddr, 0, size);
2263
2264         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2265                                          DMA_BIDIRECTIONAL,
2266                                          hwdev->coherent_dma_mask);
2267         if (*dma_handle)
2268                 return vaddr;
2269         free_pages((unsigned long)vaddr, order);
2270         return NULL;
2271 }
2272
2273 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2274                                 dma_addr_t dma_handle)
2275 {
2276         int order;
2277
2278         size = PAGE_ALIGN(size);
2279         order = get_order(size);
2280
2281         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2282         free_pages((unsigned long)vaddr, order);
2283 }
2284
2285 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
2286
2287 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2288                            int nelems, enum dma_data_direction dir,
2289                            struct dma_attrs *attrs)
2290 {
2291         int i;
2292         struct pci_dev *pdev = to_pci_dev(hwdev);
2293         struct dmar_domain *domain;
2294         unsigned long start_addr;
2295         struct iova *iova;
2296         size_t size = 0;
2297         void *addr;
2298         struct scatterlist *sg;
2299         struct intel_iommu *iommu;
2300
2301         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2302                 return;
2303
2304         domain = find_domain(pdev);
2305         BUG_ON(!domain);
2306
2307         iommu = domain_get_iommu(domain);
2308
2309         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2310         if (!iova)
2311                 return;
2312         for_each_sg(sglist, sg, nelems, i) {
2313                 addr = SG_ENT_VIRT_ADDRESS(sg);
2314                 size += aligned_size((u64)addr, sg->length);
2315         }
2316
2317         start_addr = iova->pfn_lo << PAGE_SHIFT;
2318
2319         /*  clear the whole page */
2320         dma_pte_clear_range(domain, start_addr, start_addr + size);
2321         /* free page tables */
2322         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2323
2324         if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2325                         size >> VTD_PAGE_SHIFT, 0))
2326                 iommu_flush_write_buffer(iommu);
2327
2328         /* free iova */
2329         __free_iova(&domain->iovad, iova);
2330 }
2331
2332 static int intel_nontranslate_map_sg(struct device *hddev,
2333         struct scatterlist *sglist, int nelems, int dir)
2334 {
2335         int i;
2336         struct scatterlist *sg;
2337
2338         for_each_sg(sglist, sg, nelems, i) {
2339                 BUG_ON(!sg_page(sg));
2340                 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2341                 sg->dma_length = sg->length;
2342         }
2343         return nelems;
2344 }
2345
2346 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2347                         enum dma_data_direction dir, struct dma_attrs *attrs)
2348 {
2349         void *addr;
2350         int i;
2351         struct pci_dev *pdev = to_pci_dev(hwdev);
2352         struct dmar_domain *domain;
2353         size_t size = 0;
2354         int prot = 0;
2355         size_t offset = 0;
2356         struct iova *iova = NULL;
2357         int ret;
2358         struct scatterlist *sg;
2359         unsigned long start_addr;
2360         struct intel_iommu *iommu;
2361
2362         BUG_ON(dir == DMA_NONE);
2363         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2364                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2365
2366         domain = get_valid_domain_for_dev(pdev);
2367         if (!domain)
2368                 return 0;
2369
2370         iommu = domain_get_iommu(domain);
2371
2372         for_each_sg(sglist, sg, nelems, i) {
2373                 addr = SG_ENT_VIRT_ADDRESS(sg);
2374                 addr = (void *)virt_to_phys(addr);
2375                 size += aligned_size((u64)addr, sg->length);
2376         }
2377
2378         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2379         if (!iova) {
2380                 sglist->dma_length = 0;
2381                 return 0;
2382         }
2383
2384         /*
2385          * Check if DMAR supports zero-length reads on write only
2386          * mappings..
2387          */
2388         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2389                         !cap_zlr(iommu->cap))
2390                 prot |= DMA_PTE_READ;
2391         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2392                 prot |= DMA_PTE_WRITE;
2393
2394         start_addr = iova->pfn_lo << PAGE_SHIFT;
2395         offset = 0;
2396         for_each_sg(sglist, sg, nelems, i) {
2397                 addr = SG_ENT_VIRT_ADDRESS(sg);
2398                 addr = (void *)virt_to_phys(addr);
2399                 size = aligned_size((u64)addr, sg->length);
2400                 ret = domain_page_mapping(domain, start_addr + offset,
2401                         ((u64)addr) & PAGE_MASK,
2402                         size, prot);
2403                 if (ret) {
2404                         /*  clear the page */
2405                         dma_pte_clear_range(domain, start_addr,
2406                                   start_addr + offset);
2407                         /* free page tables */
2408                         dma_pte_free_pagetable(domain, start_addr,
2409                                   start_addr + offset);
2410                         /* free iova */
2411                         __free_iova(&domain->iovad, iova);
2412                         return 0;
2413                 }
2414                 sg->dma_address = start_addr + offset +
2415                                 ((u64)addr & (~PAGE_MASK));
2416                 sg->dma_length = sg->length;
2417                 offset += size;
2418         }
2419
2420         /* it's a non-present to present mapping */
2421         if (iommu_flush_iotlb_psi(iommu, domain->id,
2422                         start_addr, offset >> VTD_PAGE_SHIFT, 1))
2423                 iommu_flush_write_buffer(iommu);
2424         return nelems;
2425 }
2426
2427 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2428 {
2429         return !dma_addr;
2430 }
2431
2432 struct dma_map_ops intel_dma_ops = {
2433         .alloc_coherent = intel_alloc_coherent,
2434         .free_coherent = intel_free_coherent,
2435         .map_sg = intel_map_sg,
2436         .unmap_sg = intel_unmap_sg,
2437         .map_page = intel_map_page,
2438         .unmap_page = intel_unmap_page,
2439         .mapping_error = intel_mapping_error,
2440 };
2441
2442 static inline int iommu_domain_cache_init(void)
2443 {
2444         int ret = 0;
2445
2446         iommu_domain_cache = kmem_cache_create("iommu_domain",
2447                                          sizeof(struct dmar_domain),
2448                                          0,
2449                                          SLAB_HWCACHE_ALIGN,
2450
2451                                          NULL);
2452         if (!iommu_domain_cache) {
2453                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2454                 ret = -ENOMEM;
2455         }
2456
2457         return ret;
2458 }
2459
2460 static inline int iommu_devinfo_cache_init(void)
2461 {
2462         int ret = 0;
2463
2464         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2465                                          sizeof(struct device_domain_info),
2466                                          0,
2467                                          SLAB_HWCACHE_ALIGN,
2468                                          NULL);
2469         if (!iommu_devinfo_cache) {
2470                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2471                 ret = -ENOMEM;
2472         }
2473
2474         return ret;
2475 }
2476
2477 static inline int iommu_iova_cache_init(void)
2478 {
2479         int ret = 0;
2480
2481         iommu_iova_cache = kmem_cache_create("iommu_iova",
2482                                          sizeof(struct iova),
2483                                          0,
2484                                          SLAB_HWCACHE_ALIGN,
2485                                          NULL);
2486         if (!iommu_iova_cache) {
2487                 printk(KERN_ERR "Couldn't create iova cache\n");
2488                 ret = -ENOMEM;
2489         }
2490
2491         return ret;
2492 }
2493
2494 static int __init iommu_init_mempool(void)
2495 {
2496         int ret;
2497         ret = iommu_iova_cache_init();
2498         if (ret)
2499                 return ret;
2500
2501         ret = iommu_domain_cache_init();
2502         if (ret)
2503                 goto domain_error;
2504
2505         ret = iommu_devinfo_cache_init();
2506         if (!ret)
2507                 return ret;
2508
2509         kmem_cache_destroy(iommu_domain_cache);
2510 domain_error:
2511         kmem_cache_destroy(iommu_iova_cache);
2512
2513         return -ENOMEM;
2514 }
2515
2516 static void __init iommu_exit_mempool(void)
2517 {
2518         kmem_cache_destroy(iommu_devinfo_cache);
2519         kmem_cache_destroy(iommu_domain_cache);
2520         kmem_cache_destroy(iommu_iova_cache);
2521
2522 }
2523
2524 static void __init init_no_remapping_devices(void)
2525 {
2526         struct dmar_drhd_unit *drhd;
2527
2528         for_each_drhd_unit(drhd) {
2529                 if (!drhd->include_all) {
2530                         int i;
2531                         for (i = 0; i < drhd->devices_cnt; i++)
2532                                 if (drhd->devices[i] != NULL)
2533                                         break;
2534                         /* ignore DMAR unit if no pci devices exist */
2535                         if (i == drhd->devices_cnt)
2536                                 drhd->ignored = 1;
2537                 }
2538         }
2539
2540         if (dmar_map_gfx)
2541                 return;
2542
2543         for_each_drhd_unit(drhd) {
2544                 int i;
2545                 if (drhd->ignored || drhd->include_all)
2546                         continue;
2547
2548                 for (i = 0; i < drhd->devices_cnt; i++)
2549                         if (drhd->devices[i] &&
2550                                 !IS_GFX_DEVICE(drhd->devices[i]))
2551                                 break;
2552
2553                 if (i < drhd->devices_cnt)
2554                         continue;
2555
2556                 /* bypass IOMMU if it is just for gfx devices */
2557                 drhd->ignored = 1;
2558                 for (i = 0; i < drhd->devices_cnt; i++) {
2559                         if (!drhd->devices[i])
2560                                 continue;
2561                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2562                 }
2563         }
2564 }
2565
2566 int __init intel_iommu_init(void)
2567 {
2568         int ret = 0;
2569
2570         if (dmar_table_init())
2571                 return  -ENODEV;
2572
2573         if (dmar_dev_scope_init())
2574                 return  -ENODEV;
2575
2576         /*
2577          * Check the need for DMA-remapping initialization now.
2578          * Above initialization will also be used by Interrupt-remapping.
2579          */
2580         if (no_iommu || swiotlb || dmar_disabled)
2581                 return -ENODEV;
2582
2583         iommu_init_mempool();
2584         dmar_init_reserved_ranges();
2585
2586         init_no_remapping_devices();
2587
2588         ret = init_dmars();
2589         if (ret) {
2590                 printk(KERN_ERR "IOMMU: dmar init failed\n");
2591                 put_iova_domain(&reserved_iova_list);
2592                 iommu_exit_mempool();
2593                 return ret;
2594         }
2595         printk(KERN_INFO
2596         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2597
2598         init_timer(&unmap_timer);
2599         force_iommu = 1;
2600         dma_ops = &intel_dma_ops;
2601
2602         register_iommu(&intel_iommu_ops);
2603
2604         return 0;
2605 }
2606
2607 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2608                                   struct pci_dev *pdev)
2609 {
2610         struct device_domain_info *info;
2611         unsigned long flags;
2612
2613         info = alloc_devinfo_mem();
2614         if (!info)
2615                 return -ENOMEM;
2616
2617         info->bus = pdev->bus->number;
2618         info->devfn = pdev->devfn;
2619         info->dev = pdev;
2620         info->domain = domain;
2621
2622         spin_lock_irqsave(&device_domain_lock, flags);
2623         list_add(&info->link, &domain->devices);
2624         list_add(&info->global, &device_domain_list);
2625         pdev->dev.archdata.iommu = info;
2626         spin_unlock_irqrestore(&device_domain_lock, flags);
2627
2628         return 0;
2629 }
2630
2631 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2632                                           struct pci_dev *pdev)
2633 {
2634         struct device_domain_info *info;
2635         struct intel_iommu *iommu;
2636         unsigned long flags;
2637         int found = 0;
2638         struct list_head *entry, *tmp;
2639
2640         iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2641         if (!iommu)
2642                 return;
2643
2644         spin_lock_irqsave(&device_domain_lock, flags);
2645         list_for_each_safe(entry, tmp, &domain->devices) {
2646                 info = list_entry(entry, struct device_domain_info, link);
2647                 if (info->bus == pdev->bus->number &&
2648                     info->devfn == pdev->devfn) {
2649                         list_del(&info->link);
2650                         list_del(&info->global);
2651                         if (info->dev)
2652                                 info->dev->dev.archdata.iommu = NULL;
2653                         spin_unlock_irqrestore(&device_domain_lock, flags);
2654
2655                         iommu_detach_dev(iommu, info->bus, info->devfn);
2656                         free_devinfo_mem(info);
2657
2658                         spin_lock_irqsave(&device_domain_lock, flags);
2659
2660                         if (found)
2661                                 break;
2662                         else
2663                                 continue;
2664                 }
2665
2666                 /* if there is no other devices under the same iommu
2667                  * owned by this domain, clear this iommu in iommu_bmp
2668                  * update iommu count and coherency
2669                  */
2670                 if (device_to_iommu(info->bus, info->devfn) == iommu)
2671                         found = 1;
2672         }
2673
2674         if (found == 0) {
2675                 unsigned long tmp_flags;
2676                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2677                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2678                 domain->iommu_count--;
2679                 domain_update_iommu_coherency(domain);
2680                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2681         }
2682
2683         spin_unlock_irqrestore(&device_domain_lock, flags);
2684 }
2685
2686 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2687 {
2688         struct device_domain_info *info;
2689         struct intel_iommu *iommu;
2690         unsigned long flags1, flags2;
2691
2692         spin_lock_irqsave(&device_domain_lock, flags1);
2693         while (!list_empty(&domain->devices)) {
2694                 info = list_entry(domain->devices.next,
2695                         struct device_domain_info, link);
2696                 list_del(&info->link);
2697                 list_del(&info->global);
2698                 if (info->dev)
2699                         info->dev->dev.archdata.iommu = NULL;
2700
2701                 spin_unlock_irqrestore(&device_domain_lock, flags1);
2702
2703                 iommu = device_to_iommu(info->bus, info->devfn);
2704                 iommu_detach_dev(iommu, info->bus, info->devfn);
2705
2706                 /* clear this iommu in iommu_bmp, update iommu count
2707                  * and coherency
2708                  */
2709                 spin_lock_irqsave(&domain->iommu_lock, flags2);
2710                 if (test_and_clear_bit(iommu->seq_id,
2711                                        &domain->iommu_bmp)) {
2712                         domain->iommu_count--;
2713                         domain_update_iommu_coherency(domain);
2714                 }
2715                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2716
2717                 free_devinfo_mem(info);
2718                 spin_lock_irqsave(&device_domain_lock, flags1);
2719         }
2720         spin_unlock_irqrestore(&device_domain_lock, flags1);
2721 }
2722
2723 /* domain id for virtual machine, it won't be set in context */
2724 static unsigned long vm_domid;
2725
2726 static int vm_domain_min_agaw(struct dmar_domain *domain)
2727 {
2728         int i;
2729         int min_agaw = domain->agaw;
2730
2731         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2732         for (; i < g_num_of_iommus; ) {
2733                 if (min_agaw > g_iommus[i]->agaw)
2734                         min_agaw = g_iommus[i]->agaw;
2735
2736                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2737         }
2738
2739         return min_agaw;
2740 }
2741
2742 static struct dmar_domain *iommu_alloc_vm_domain(void)
2743 {
2744         struct dmar_domain *domain;
2745
2746         domain = alloc_domain_mem();
2747         if (!domain)
2748                 return NULL;
2749
2750         domain->id = vm_domid++;
2751         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2752         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2753
2754         return domain;
2755 }
2756
2757 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2758 {
2759         int adjust_width;
2760
2761         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2762         spin_lock_init(&domain->mapping_lock);
2763         spin_lock_init(&domain->iommu_lock);
2764
2765         domain_reserve_special_ranges(domain);
2766
2767         /* calculate AGAW */
2768         domain->gaw = guest_width;
2769         adjust_width = guestwidth_to_adjustwidth(guest_width);
2770         domain->agaw = width_to_agaw(adjust_width);
2771
2772         INIT_LIST_HEAD(&domain->devices);
2773
2774         domain->iommu_count = 0;
2775         domain->iommu_coherency = 0;
2776         domain->max_addr = 0;
2777
2778         /* always allocate the top pgd */
2779         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2780         if (!domain->pgd)
2781                 return -ENOMEM;
2782         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2783         return 0;
2784 }
2785
2786 static void iommu_free_vm_domain(struct dmar_domain *domain)
2787 {
2788         unsigned long flags;
2789         struct dmar_drhd_unit *drhd;
2790         struct intel_iommu *iommu;
2791         unsigned long i;
2792         unsigned long ndomains;
2793
2794         for_each_drhd_unit(drhd) {
2795                 if (drhd->ignored)
2796                         continue;
2797                 iommu = drhd->iommu;
2798
2799                 ndomains = cap_ndoms(iommu->cap);
2800                 i = find_first_bit(iommu->domain_ids, ndomains);
2801                 for (; i < ndomains; ) {
2802                         if (iommu->domains[i] == domain) {
2803                                 spin_lock_irqsave(&iommu->lock, flags);
2804                                 clear_bit(i, iommu->domain_ids);
2805                                 iommu->domains[i] = NULL;
2806                                 spin_unlock_irqrestore(&iommu->lock, flags);
2807                                 break;
2808                         }
2809                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2810                 }
2811         }
2812 }
2813
2814 static void vm_domain_exit(struct dmar_domain *domain)
2815 {
2816         u64 end;
2817
2818         /* Domain 0 is reserved, so dont process it */
2819         if (!domain)
2820                 return;
2821
2822         vm_domain_remove_all_dev_info(domain);
2823         /* destroy iovas */
2824         put_iova_domain(&domain->iovad);
2825         end = DOMAIN_MAX_ADDR(domain->gaw);
2826         end = end & (~VTD_PAGE_MASK);
2827
2828         /* clear ptes */
2829         dma_pte_clear_range(domain, 0, end);
2830
2831         /* free page tables */
2832         dma_pte_free_pagetable(domain, 0, end);
2833
2834         iommu_free_vm_domain(domain);
2835         free_domain_mem(domain);
2836 }
2837
2838 static int intel_iommu_domain_init(struct iommu_domain *domain)
2839 {
2840         struct dmar_domain *dmar_domain;
2841
2842         dmar_domain = iommu_alloc_vm_domain();
2843         if (!dmar_domain) {
2844                 printk(KERN_ERR
2845                         "intel_iommu_domain_init: dmar_domain == NULL\n");
2846                 return -ENOMEM;
2847         }
2848         if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2849                 printk(KERN_ERR
2850                         "intel_iommu_domain_init() failed\n");
2851                 vm_domain_exit(dmar_domain);
2852                 return -ENOMEM;
2853         }
2854         domain->priv = dmar_domain;
2855
2856         return 0;
2857 }
2858
2859 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
2860 {
2861         struct dmar_domain *dmar_domain = domain->priv;
2862
2863         domain->priv = NULL;
2864         vm_domain_exit(dmar_domain);
2865 }
2866
2867 static int intel_iommu_attach_device(struct iommu_domain *domain,
2868                                      struct device *dev)
2869 {
2870         struct dmar_domain *dmar_domain = domain->priv;
2871         struct pci_dev *pdev = to_pci_dev(dev);
2872         struct intel_iommu *iommu;
2873         int addr_width;
2874         u64 end;
2875         int ret;
2876
2877         /* normally pdev is not mapped */
2878         if (unlikely(domain_context_mapped(pdev))) {
2879                 struct dmar_domain *old_domain;
2880
2881                 old_domain = find_domain(pdev);
2882                 if (old_domain) {
2883                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
2884                                 vm_domain_remove_one_dev_info(old_domain, pdev);
2885                         else
2886                                 domain_remove_dev_info(old_domain);
2887                 }
2888         }
2889
2890         iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2891         if (!iommu)
2892                 return -ENODEV;
2893
2894         /* check if this iommu agaw is sufficient for max mapped address */
2895         addr_width = agaw_to_width(iommu->agaw);
2896         end = DOMAIN_MAX_ADDR(addr_width);
2897         end = end & VTD_PAGE_MASK;
2898         if (end < dmar_domain->max_addr) {
2899                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2900                        "sufficient for the mapped address (%llx)\n",
2901                        __func__, iommu->agaw, dmar_domain->max_addr);
2902                 return -EFAULT;
2903         }
2904
2905         ret = domain_context_mapping(dmar_domain, pdev);
2906         if (ret)
2907                 return ret;
2908
2909         ret = vm_domain_add_dev_info(dmar_domain, pdev);
2910         return ret;
2911 }
2912
2913 static void intel_iommu_detach_device(struct iommu_domain *domain,
2914                                       struct device *dev)
2915 {
2916         struct dmar_domain *dmar_domain = domain->priv;
2917         struct pci_dev *pdev = to_pci_dev(dev);
2918
2919         vm_domain_remove_one_dev_info(dmar_domain, pdev);
2920 }
2921
2922 static int intel_iommu_map_range(struct iommu_domain *domain,
2923                                  unsigned long iova, phys_addr_t hpa,
2924                                  size_t size, int iommu_prot)
2925 {
2926         struct dmar_domain *dmar_domain = domain->priv;
2927         u64 max_addr;
2928         int addr_width;
2929         int prot = 0;
2930         int ret;
2931
2932         if (iommu_prot & IOMMU_READ)
2933                 prot |= DMA_PTE_READ;
2934         if (iommu_prot & IOMMU_WRITE)
2935                 prot |= DMA_PTE_WRITE;
2936
2937         max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
2938         if (dmar_domain->max_addr < max_addr) {
2939                 int min_agaw;
2940                 u64 end;
2941
2942                 /* check if minimum agaw is sufficient for mapped address */
2943                 min_agaw = vm_domain_min_agaw(dmar_domain);
2944                 addr_width = agaw_to_width(min_agaw);
2945                 end = DOMAIN_MAX_ADDR(addr_width);
2946                 end = end & VTD_PAGE_MASK;
2947                 if (end < max_addr) {
2948                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
2949                                "sufficient for the mapped address (%llx)\n",
2950                                __func__, min_agaw, max_addr);
2951                         return -EFAULT;
2952                 }
2953                 dmar_domain->max_addr = max_addr;
2954         }
2955
2956         ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
2957         return ret;
2958 }
2959
2960 static void intel_iommu_unmap_range(struct iommu_domain *domain,
2961                                     unsigned long iova, size_t size)
2962 {
2963         struct dmar_domain *dmar_domain = domain->priv;
2964         dma_addr_t base;
2965
2966         /* The address might not be aligned */
2967         base = iova & VTD_PAGE_MASK;
2968         size = VTD_PAGE_ALIGN(size);
2969         dma_pte_clear_range(dmar_domain, base, base + size);
2970
2971         if (dmar_domain->max_addr == base + size)
2972                 dmar_domain->max_addr = base;
2973 }
2974
2975 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
2976                                             unsigned long iova)
2977 {
2978         struct dmar_domain *dmar_domain = domain->priv;
2979         struct dma_pte *pte;
2980         u64 phys = 0;
2981
2982         pte = addr_to_dma_pte(dmar_domain, iova);
2983         if (pte)
2984                 phys = dma_pte_addr(pte);
2985
2986         return phys;
2987 }
2988
2989 static struct iommu_ops intel_iommu_ops = {
2990         .domain_init    = intel_iommu_domain_init,
2991         .domain_destroy = intel_iommu_domain_destroy,
2992         .attach_dev     = intel_iommu_attach_device,
2993         .detach_dev     = intel_iommu_detach_device,
2994         .map            = intel_iommu_map_range,
2995         .unmap          = intel_iommu_unmap_range,
2996         .iova_to_phys   = intel_iommu_iova_to_phys,
2997 };
2998
2999 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3000 {
3001         /*
3002          * Mobile 4 Series Chipset neglects to set RWBF capability,
3003          * but needs it:
3004          */
3005         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3006         rwbf_quirk = 1;
3007 }
3008
3009 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);