Merge branch 'for-linus' of git://www.atmel.no/~hskinnemoen/linux/kernel/avr32
[linux-2.6] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27
28 static struct ia64_cpu *sysfs_cpus;
29
30 int arch_register_cpu(int num)
31 {
32 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
33         /*
34          * If CPEI can be re-targetted or if this is not
35          * CPEI target, then it is hotpluggable
36          */
37         if (can_cpei_retarget() || !is_cpu_cpei_target(num))
38                 sysfs_cpus[num].cpu.hotpluggable = 1;
39         map_cpu_to_node(num, node_cpuid[num].nid);
40 #endif
41
42         return register_cpu(&sysfs_cpus[num].cpu, num);
43 }
44
45 #ifdef CONFIG_HOTPLUG_CPU
46
47 void arch_unregister_cpu(int num)
48 {
49         unregister_cpu(&sysfs_cpus[num].cpu);
50         unmap_cpu_from_node(num, cpu_to_node(num));
51 }
52 EXPORT_SYMBOL(arch_register_cpu);
53 EXPORT_SYMBOL(arch_unregister_cpu);
54 #endif /*CONFIG_HOTPLUG_CPU*/
55
56
57 static int __init topology_init(void)
58 {
59         int i, err = 0;
60
61 #ifdef CONFIG_NUMA
62         /*
63          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
64          */
65         for_each_online_node(i) {
66                 if ((err = register_one_node(i)))
67                         goto out;
68         }
69 #endif
70
71         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
72         if (!sysfs_cpus)
73                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
74
75         for_each_present_cpu(i) {
76                 if((err = arch_register_cpu(i)))
77                         goto out;
78         }
79 out:
80         return err;
81 }
82
83 subsys_initcall(topology_init);
84
85
86 /*
87  * Export cpu cache information through sysfs
88  */
89
90 /*
91  *  A bunch of string array to get pretty printing
92  */
93 static const char *cache_types[] = {
94         "",                     /* not used */
95         "Instruction",
96         "Data",
97         "Unified"       /* unified */
98 };
99
100 static const char *cache_mattrib[]={
101         "WriteThrough",
102         "WriteBack",
103         "",             /* reserved */
104         ""              /* reserved */
105 };
106
107 struct cache_info {
108         pal_cache_config_info_t cci;
109         cpumask_t shared_cpu_map;
110         int level;
111         int type;
112         struct kobject kobj;
113 };
114
115 struct cpu_cache_info {
116         struct cache_info *cache_leaves;
117         int     num_cache_leaves;
118         struct kobject kobj;
119 };
120
121 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS];
122 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
123
124 #ifdef CONFIG_SMP
125 static void cache_shared_cpu_map_setup( unsigned int cpu,
126                 struct cache_info * this_leaf)
127 {
128         pal_cache_shared_info_t csi;
129         int num_shared, i = 0;
130         unsigned int j;
131
132         if (cpu_data(cpu)->threads_per_core <= 1 &&
133                 cpu_data(cpu)->cores_per_socket <= 1) {
134                 cpu_set(cpu, this_leaf->shared_cpu_map);
135                 return;
136         }
137
138         if (ia64_pal_cache_shared_info(this_leaf->level,
139                                         this_leaf->type,
140                                         0,
141                                         &csi) != PAL_STATUS_SUCCESS)
142                 return;
143
144         num_shared = (int) csi.num_shared;
145         do {
146                 for_each_possible_cpu(j)
147                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
148                                 && cpu_data(j)->core_id == csi.log1_cid
149                                 && cpu_data(j)->thread_id == csi.log1_tid)
150                                 cpu_set(j, this_leaf->shared_cpu_map);
151
152                 i++;
153         } while (i < num_shared &&
154                 ia64_pal_cache_shared_info(this_leaf->level,
155                                 this_leaf->type,
156                                 i,
157                                 &csi) == PAL_STATUS_SUCCESS);
158 }
159 #else
160 static void cache_shared_cpu_map_setup(unsigned int cpu,
161                 struct cache_info * this_leaf)
162 {
163         cpu_set(cpu, this_leaf->shared_cpu_map);
164         return;
165 }
166 #endif
167
168 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
169                                         char *buf)
170 {
171         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
172 }
173
174 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
175                                         char *buf)
176 {
177         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
178 }
179
180 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
181 {
182         return sprintf(buf,
183                         "%s\n",
184                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
185 }
186
187 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
188 {
189         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
190 }
191
192 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
193 {
194         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
195         number_of_sets /= this_leaf->cci.pcci_assoc;
196         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
197
198         return sprintf(buf, "%u\n", number_of_sets);
199 }
200
201 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
202 {
203         ssize_t len;
204         cpumask_t shared_cpu_map;
205
206         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
207         len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
208         len += sprintf(buf+len, "\n");
209         return len;
210 }
211
212 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
213 {
214         int type = this_leaf->type + this_leaf->cci.pcci_unified;
215         return sprintf(buf, "%s\n", cache_types[type]);
216 }
217
218 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
219 {
220         return sprintf(buf, "%u\n", this_leaf->level);
221 }
222
223 struct cache_attr {
224         struct attribute attr;
225         ssize_t (*show)(struct cache_info *, char *);
226         ssize_t (*store)(struct cache_info *, const char *, size_t count);
227 };
228
229 #ifdef define_one_ro
230         #undef define_one_ro
231 #endif
232 #define define_one_ro(_name) \
233         static struct cache_attr _name = \
234 __ATTR(_name, 0444, show_##_name, NULL)
235
236 define_one_ro(level);
237 define_one_ro(type);
238 define_one_ro(coherency_line_size);
239 define_one_ro(ways_of_associativity);
240 define_one_ro(size);
241 define_one_ro(number_of_sets);
242 define_one_ro(shared_cpu_map);
243 define_one_ro(attributes);
244
245 static struct attribute * cache_default_attrs[] = {
246         &type.attr,
247         &level.attr,
248         &coherency_line_size.attr,
249         &ways_of_associativity.attr,
250         &attributes.attr,
251         &size.attr,
252         &number_of_sets.attr,
253         &shared_cpu_map.attr,
254         NULL
255 };
256
257 #define to_object(k) container_of(k, struct cache_info, kobj)
258 #define to_attr(a) container_of(a, struct cache_attr, attr)
259
260 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
261 {
262         struct cache_attr *fattr = to_attr(attr);
263         struct cache_info *this_leaf = to_object(kobj);
264         ssize_t ret;
265
266         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
267         return ret;
268 }
269
270 static struct sysfs_ops cache_sysfs_ops = {
271         .show   = cache_show
272 };
273
274 static struct kobj_type cache_ktype = {
275         .sysfs_ops      = &cache_sysfs_ops,
276         .default_attrs  = cache_default_attrs,
277 };
278
279 static struct kobj_type cache_ktype_percpu_entry = {
280         .sysfs_ops      = &cache_sysfs_ops,
281 };
282
283 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
284 {
285         kfree(all_cpu_cache_info[cpu].cache_leaves);
286         all_cpu_cache_info[cpu].cache_leaves = NULL;
287         all_cpu_cache_info[cpu].num_cache_leaves = 0;
288         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
289         return;
290 }
291
292 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
293 {
294         u64 i, levels, unique_caches;
295         pal_cache_config_info_t cci;
296         int j;
297         s64 status;
298         struct cache_info *this_cache;
299         int num_cache_leaves = 0;
300
301         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
302                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
303                 return -1;
304         }
305
306         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
307                         GFP_KERNEL);
308         if (this_cache == NULL)
309                 return -ENOMEM;
310
311         for (i=0; i < levels; i++) {
312                 for (j=2; j >0 ; j--) {
313                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
314                                         PAL_STATUS_SUCCESS)
315                                 continue;
316
317                         this_cache[num_cache_leaves].cci = cci;
318                         this_cache[num_cache_leaves].level = i + 1;
319                         this_cache[num_cache_leaves].type = j;
320
321                         cache_shared_cpu_map_setup(cpu,
322                                         &this_cache[num_cache_leaves]);
323                         num_cache_leaves ++;
324                 }
325         }
326
327         all_cpu_cache_info[cpu].cache_leaves = this_cache;
328         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
329
330         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
331
332         return 0;
333 }
334
335 /* Add cache interface for CPU device */
336 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
337 {
338         unsigned int cpu = sys_dev->id;
339         unsigned long i, j;
340         struct cache_info *this_object;
341         int retval = 0;
342         cpumask_t oldmask;
343
344         if (all_cpu_cache_info[cpu].kobj.parent)
345                 return 0;
346
347         oldmask = current->cpus_allowed;
348         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
349         if (unlikely(retval))
350                 return retval;
351
352         retval = cpu_cache_sysfs_init(cpu);
353         set_cpus_allowed(current, oldmask);
354         if (unlikely(retval < 0))
355                 return retval;
356
357         all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
358         kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
359         all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
360         retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
361
362         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
363                 this_object = LEAF_KOBJECT_PTR(cpu,i);
364                 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
365                 kobject_set_name(&(this_object->kobj), "index%1lu", i);
366                 this_object->kobj.ktype = &cache_ktype;
367                 retval = kobject_register(&(this_object->kobj));
368                 if (unlikely(retval)) {
369                         for (j = 0; j < i; j++) {
370                                 kobject_unregister(
371                                         &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
372                         }
373                         kobject_unregister(&all_cpu_cache_info[cpu].kobj);
374                         cpu_cache_sysfs_exit(cpu);
375                         break;
376                 }
377         }
378         return retval;
379 }
380
381 /* Remove cache interface for CPU device */
382 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
383 {
384         unsigned int cpu = sys_dev->id;
385         unsigned long i;
386
387         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
388                 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
389
390         if (all_cpu_cache_info[cpu].kobj.parent) {
391                 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
392                 memset(&all_cpu_cache_info[cpu].kobj,
393                         0,
394                         sizeof(struct kobject));
395         }
396
397         cpu_cache_sysfs_exit(cpu);
398
399         return 0;
400 }
401
402 /*
403  * When a cpu is hot-plugged, do a check and initiate
404  * cache kobject if necessary
405  */
406 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
407                 unsigned long action, void *hcpu)
408 {
409         unsigned int cpu = (unsigned long)hcpu;
410         struct sys_device *sys_dev;
411
412         sys_dev = get_cpu_sysdev(cpu);
413         switch (action) {
414         case CPU_ONLINE:
415         case CPU_ONLINE_FROZEN:
416                 cache_add_dev(sys_dev);
417                 break;
418         case CPU_DEAD:
419         case CPU_DEAD_FROZEN:
420                 cache_remove_dev(sys_dev);
421                 break;
422         }
423         return NOTIFY_OK;
424 }
425
426 static struct notifier_block __cpuinitdata cache_cpu_notifier =
427 {
428         .notifier_call = cache_cpu_callback
429 };
430
431 static int __cpuinit cache_sysfs_init(void)
432 {
433         int i;
434
435         for_each_online_cpu(i) {
436                 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
437                                 (void *)(long)i);
438         }
439
440         register_hotcpu_notifier(&cache_cpu_notifier);
441
442         return 0;
443 }
444
445 device_initcall(cache_sysfs_init);
446