Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[linux-2.6] / fs / binfmt_elf.c
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48                                 int, int, unsigned long);
49
50 /*
51  * If we don't support core dumping, then supply a NULL so we
52  * don't even try.
53  */
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump   NULL
58 #endif
59
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN   PAGE_SIZE
64 #endif
65
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
69
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
73
74 static struct linux_binfmt elf_format = {
75                 .module         = THIS_MODULE,
76                 .load_binary    = load_elf_binary,
77                 .load_shlib     = load_elf_library,
78                 .core_dump      = elf_core_dump,
79                 .min_coredump   = ELF_EXEC_PAGESIZE,
80                 .hasvdso        = 1
81 };
82
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
84
85 static int set_brk(unsigned long start, unsigned long end)
86 {
87         start = ELF_PAGEALIGN(start);
88         end = ELF_PAGEALIGN(end);
89         if (end > start) {
90                 unsigned long addr;
91                 down_write(&current->mm->mmap_sem);
92                 addr = do_brk(start, end - start);
93                 up_write(&current->mm->mmap_sem);
94                 if (BAD_ADDR(addr))
95                         return addr;
96         }
97         current->mm->start_brk = current->mm->brk = end;
98         return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108         unsigned long nbyte;
109
110         nbyte = ELF_PAGEOFFSET(elf_bss);
111         if (nbyte) {
112                 nbyte = ELF_MIN_ALIGN - nbyte;
113                 if (clear_user((void __user *) elf_bss, nbyte))
114                         return -EFAULT;
115         }
116         return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123         ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125         elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126         old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130         (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145                 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147         unsigned long p = bprm->p;
148         int argc = bprm->argc;
149         int envc = bprm->envc;
150         elf_addr_t __user *argv;
151         elf_addr_t __user *envp;
152         elf_addr_t __user *sp;
153         elf_addr_t __user *u_platform;
154         elf_addr_t __user *u_base_platform;
155         const char *k_platform = ELF_PLATFORM;
156         const char *k_base_platform = ELF_BASE_PLATFORM;
157         int items;
158         elf_addr_t *elf_info;
159         int ei_index = 0;
160         struct task_struct *tsk = current;
161         struct vm_area_struct *vma;
162
163         /*
164          * In some cases (e.g. Hyper-Threading), we want to avoid L1
165          * evictions by the processes running on the same package. One
166          * thing we can do is to shuffle the initial stack for them.
167          */
168
169         p = arch_align_stack(p);
170
171         /*
172          * If this architecture has a platform capability string, copy it
173          * to userspace.  In some cases (Sparc), this info is impossible
174          * for userspace to get any other way, in others (i386) it is
175          * merely difficult.
176          */
177         u_platform = NULL;
178         if (k_platform) {
179                 size_t len = strlen(k_platform) + 1;
180
181                 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
182                 if (__copy_to_user(u_platform, k_platform, len))
183                         return -EFAULT;
184         }
185
186         /*
187          * If this architecture has a "base" platform capability
188          * string, copy it to userspace.
189          */
190         u_base_platform = NULL;
191         if (k_base_platform) {
192                 size_t len = strlen(k_base_platform) + 1;
193
194                 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
195                 if (__copy_to_user(u_base_platform, k_base_platform, len))
196                         return -EFAULT;
197         }
198
199         /* Create the ELF interpreter info */
200         elf_info = (elf_addr_t *)current->mm->saved_auxv;
201         /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
202 #define NEW_AUX_ENT(id, val) \
203         do { \
204                 elf_info[ei_index++] = id; \
205                 elf_info[ei_index++] = val; \
206         } while (0)
207
208 #ifdef ARCH_DLINFO
209         /* 
210          * ARCH_DLINFO must come first so PPC can do its special alignment of
211          * AUXV.
212          * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
213          * ARCH_DLINFO changes
214          */
215         ARCH_DLINFO;
216 #endif
217         NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
218         NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
219         NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
220         NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
221         NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
222         NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
223         NEW_AUX_ENT(AT_BASE, interp_load_addr);
224         NEW_AUX_ENT(AT_FLAGS, 0);
225         NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
226         NEW_AUX_ENT(AT_UID, tsk->uid);
227         NEW_AUX_ENT(AT_EUID, tsk->euid);
228         NEW_AUX_ENT(AT_GID, tsk->gid);
229         NEW_AUX_ENT(AT_EGID, tsk->egid);
230         NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
231         NEW_AUX_ENT(AT_EXECFN, bprm->exec);
232         if (k_platform) {
233                 NEW_AUX_ENT(AT_PLATFORM,
234                             (elf_addr_t)(unsigned long)u_platform);
235         }
236         if (k_base_platform) {
237                 NEW_AUX_ENT(AT_BASE_PLATFORM,
238                             (elf_addr_t)(unsigned long)u_base_platform);
239         }
240         if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
241                 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
242         }
243 #undef NEW_AUX_ENT
244         /* AT_NULL is zero; clear the rest too */
245         memset(&elf_info[ei_index], 0,
246                sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
247
248         /* And advance past the AT_NULL entry.  */
249         ei_index += 2;
250
251         sp = STACK_ADD(p, ei_index);
252
253         items = (argc + 1) + (envc + 1) + 1;
254         bprm->p = STACK_ROUND(sp, items);
255
256         /* Point sp at the lowest address on the stack */
257 #ifdef CONFIG_STACK_GROWSUP
258         sp = (elf_addr_t __user *)bprm->p - items - ei_index;
259         bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
260 #else
261         sp = (elf_addr_t __user *)bprm->p;
262 #endif
263
264
265         /*
266          * Grow the stack manually; some architectures have a limit on how
267          * far ahead a user-space access may be in order to grow the stack.
268          */
269         vma = find_extend_vma(current->mm, bprm->p);
270         if (!vma)
271                 return -EFAULT;
272
273         /* Now, let's put argc (and argv, envp if appropriate) on the stack */
274         if (__put_user(argc, sp++))
275                 return -EFAULT;
276         argv = sp;
277         envp = argv + argc + 1;
278
279         /* Populate argv and envp */
280         p = current->mm->arg_end = current->mm->arg_start;
281         while (argc-- > 0) {
282                 size_t len;
283                 if (__put_user((elf_addr_t)p, argv++))
284                         return -EFAULT;
285                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
286                 if (!len || len > MAX_ARG_STRLEN)
287                         return -EINVAL;
288                 p += len;
289         }
290         if (__put_user(0, argv))
291                 return -EFAULT;
292         current->mm->arg_end = current->mm->env_start = p;
293         while (envc-- > 0) {
294                 size_t len;
295                 if (__put_user((elf_addr_t)p, envp++))
296                         return -EFAULT;
297                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298                 if (!len || len > MAX_ARG_STRLEN)
299                         return -EINVAL;
300                 p += len;
301         }
302         if (__put_user(0, envp))
303                 return -EFAULT;
304         current->mm->env_end = p;
305
306         /* Put the elf_info on the stack in the right place.  */
307         sp = (elf_addr_t __user *)envp + 1;
308         if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
309                 return -EFAULT;
310         return 0;
311 }
312
313 #ifndef elf_map
314
315 static unsigned long elf_map(struct file *filep, unsigned long addr,
316                 struct elf_phdr *eppnt, int prot, int type,
317                 unsigned long total_size)
318 {
319         unsigned long map_addr;
320         unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
321         unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
322         addr = ELF_PAGESTART(addr);
323         size = ELF_PAGEALIGN(size);
324
325         /* mmap() will return -EINVAL if given a zero size, but a
326          * segment with zero filesize is perfectly valid */
327         if (!size)
328                 return addr;
329
330         down_write(&current->mm->mmap_sem);
331         /*
332         * total_size is the size of the ELF (interpreter) image.
333         * The _first_ mmap needs to know the full size, otherwise
334         * randomization might put this image into an overlapping
335         * position with the ELF binary image. (since size < total_size)
336         * So we first map the 'big' image - and unmap the remainder at
337         * the end. (which unmap is needed for ELF images with holes.)
338         */
339         if (total_size) {
340                 total_size = ELF_PAGEALIGN(total_size);
341                 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
342                 if (!BAD_ADDR(map_addr))
343                         do_munmap(current->mm, map_addr+size, total_size-size);
344         } else
345                 map_addr = do_mmap(filep, addr, size, prot, type, off);
346
347         up_write(&current->mm->mmap_sem);
348         return(map_addr);
349 }
350
351 #endif /* !elf_map */
352
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
354 {
355         int i, first_idx = -1, last_idx = -1;
356
357         for (i = 0; i < nr; i++) {
358                 if (cmds[i].p_type == PT_LOAD) {
359                         last_idx = i;
360                         if (first_idx == -1)
361                                 first_idx = i;
362                 }
363         }
364         if (first_idx == -1)
365                 return 0;
366
367         return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368                                 ELF_PAGESTART(cmds[first_idx].p_vaddr);
369 }
370
371
372 /* This is much more generalized than the library routine read function,
373    so we keep this separate.  Technically the library read function
374    is only provided so that we can read a.out libraries that have
375    an ELF header */
376
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378                 struct file *interpreter, unsigned long *interp_map_addr,
379                 unsigned long no_base)
380 {
381         struct elf_phdr *elf_phdata;
382         struct elf_phdr *eppnt;
383         unsigned long load_addr = 0;
384         int load_addr_set = 0;
385         unsigned long last_bss = 0, elf_bss = 0;
386         unsigned long error = ~0UL;
387         unsigned long total_size;
388         int retval, i, size;
389
390         /* First of all, some simple consistency checks */
391         if (interp_elf_ex->e_type != ET_EXEC &&
392             interp_elf_ex->e_type != ET_DYN)
393                 goto out;
394         if (!elf_check_arch(interp_elf_ex))
395                 goto out;
396         if (!interpreter->f_op || !interpreter->f_op->mmap)
397                 goto out;
398
399         /*
400          * If the size of this structure has changed, then punt, since
401          * we will be doing the wrong thing.
402          */
403         if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404                 goto out;
405         if (interp_elf_ex->e_phnum < 1 ||
406                 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407                 goto out;
408
409         /* Now read in all of the header information */
410         size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411         if (size > ELF_MIN_ALIGN)
412                 goto out;
413         elf_phdata = kmalloc(size, GFP_KERNEL);
414         if (!elf_phdata)
415                 goto out;
416
417         retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418                              (char *)elf_phdata,size);
419         error = -EIO;
420         if (retval != size) {
421                 if (retval < 0)
422                         error = retval; 
423                 goto out_close;
424         }
425
426         total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427         if (!total_size) {
428                 error = -EINVAL;
429                 goto out_close;
430         }
431
432         eppnt = elf_phdata;
433         for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434                 if (eppnt->p_type == PT_LOAD) {
435                         int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436                         int elf_prot = 0;
437                         unsigned long vaddr = 0;
438                         unsigned long k, map_addr;
439
440                         if (eppnt->p_flags & PF_R)
441                                 elf_prot = PROT_READ;
442                         if (eppnt->p_flags & PF_W)
443                                 elf_prot |= PROT_WRITE;
444                         if (eppnt->p_flags & PF_X)
445                                 elf_prot |= PROT_EXEC;
446                         vaddr = eppnt->p_vaddr;
447                         if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448                                 elf_type |= MAP_FIXED;
449                         else if (no_base && interp_elf_ex->e_type == ET_DYN)
450                                 load_addr = -vaddr;
451
452                         map_addr = elf_map(interpreter, load_addr + vaddr,
453                                         eppnt, elf_prot, elf_type, total_size);
454                         total_size = 0;
455                         if (!*interp_map_addr)
456                                 *interp_map_addr = map_addr;
457                         error = map_addr;
458                         if (BAD_ADDR(map_addr))
459                                 goto out_close;
460
461                         if (!load_addr_set &&
462                             interp_elf_ex->e_type == ET_DYN) {
463                                 load_addr = map_addr - ELF_PAGESTART(vaddr);
464                                 load_addr_set = 1;
465                         }
466
467                         /*
468                          * Check to see if the section's size will overflow the
469                          * allowed task size. Note that p_filesz must always be
470                          * <= p_memsize so it's only necessary to check p_memsz.
471                          */
472                         k = load_addr + eppnt->p_vaddr;
473                         if (BAD_ADDR(k) ||
474                             eppnt->p_filesz > eppnt->p_memsz ||
475                             eppnt->p_memsz > TASK_SIZE ||
476                             TASK_SIZE - eppnt->p_memsz < k) {
477                                 error = -ENOMEM;
478                                 goto out_close;
479                         }
480
481                         /*
482                          * Find the end of the file mapping for this phdr, and
483                          * keep track of the largest address we see for this.
484                          */
485                         k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486                         if (k > elf_bss)
487                                 elf_bss = k;
488
489                         /*
490                          * Do the same thing for the memory mapping - between
491                          * elf_bss and last_bss is the bss section.
492                          */
493                         k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494                         if (k > last_bss)
495                                 last_bss = k;
496                 }
497         }
498
499         /*
500          * Now fill out the bss section.  First pad the last page up
501          * to the page boundary, and then perform a mmap to make sure
502          * that there are zero-mapped pages up to and including the 
503          * last bss page.
504          */
505         if (padzero(elf_bss)) {
506                 error = -EFAULT;
507                 goto out_close;
508         }
509
510         /* What we have mapped so far */
511         elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
512
513         /* Map the last of the bss segment */
514         if (last_bss > elf_bss) {
515                 down_write(&current->mm->mmap_sem);
516                 error = do_brk(elf_bss, last_bss - elf_bss);
517                 up_write(&current->mm->mmap_sem);
518                 if (BAD_ADDR(error))
519                         goto out_close;
520         }
521
522         error = load_addr;
523
524 out_close:
525         kfree(elf_phdata);
526 out:
527         return error;
528 }
529
530 /*
531  * These are the functions used to load ELF style executables and shared
532  * libraries.  There is no binary dependent code anywhere else.
533  */
534
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
537
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
540 #endif
541
542 static unsigned long randomize_stack_top(unsigned long stack_top)
543 {
544         unsigned int random_variable = 0;
545
546         if ((current->flags & PF_RANDOMIZE) &&
547                 !(current->personality & ADDR_NO_RANDOMIZE)) {
548                 random_variable = get_random_int() & STACK_RND_MASK;
549                 random_variable <<= PAGE_SHIFT;
550         }
551 #ifdef CONFIG_STACK_GROWSUP
552         return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554         return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
556 }
557
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
559 {
560         struct file *interpreter = NULL; /* to shut gcc up */
561         unsigned long load_addr = 0, load_bias = 0;
562         int load_addr_set = 0;
563         char * elf_interpreter = NULL;
564         unsigned long error;
565         struct elf_phdr *elf_ppnt, *elf_phdata;
566         unsigned long elf_bss, elf_brk;
567         int elf_exec_fileno;
568         int retval, i;
569         unsigned int size;
570         unsigned long elf_entry;
571         unsigned long interp_load_addr = 0;
572         unsigned long start_code, end_code, start_data, end_data;
573         unsigned long reloc_func_desc = 0;
574         int executable_stack = EXSTACK_DEFAULT;
575         unsigned long def_flags = 0;
576         struct {
577                 struct elfhdr elf_ex;
578                 struct elfhdr interp_elf_ex;
579         } *loc;
580
581         loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582         if (!loc) {
583                 retval = -ENOMEM;
584                 goto out_ret;
585         }
586         
587         /* Get the exec-header */
588         loc->elf_ex = *((struct elfhdr *)bprm->buf);
589
590         retval = -ENOEXEC;
591         /* First of all, some simple consistency checks */
592         if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593                 goto out;
594
595         if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596                 goto out;
597         if (!elf_check_arch(&loc->elf_ex))
598                 goto out;
599         if (!bprm->file->f_op||!bprm->file->f_op->mmap)
600                 goto out;
601
602         /* Now read in all of the header information */
603         if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604                 goto out;
605         if (loc->elf_ex.e_phnum < 1 ||
606                 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607                 goto out;
608         size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609         retval = -ENOMEM;
610         elf_phdata = kmalloc(size, GFP_KERNEL);
611         if (!elf_phdata)
612                 goto out;
613
614         retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615                              (char *)elf_phdata, size);
616         if (retval != size) {
617                 if (retval >= 0)
618                         retval = -EIO;
619                 goto out_free_ph;
620         }
621
622         retval = get_unused_fd();
623         if (retval < 0)
624                 goto out_free_ph;
625         get_file(bprm->file);
626         fd_install(elf_exec_fileno = retval, bprm->file);
627
628         elf_ppnt = elf_phdata;
629         elf_bss = 0;
630         elf_brk = 0;
631
632         start_code = ~0UL;
633         end_code = 0;
634         start_data = 0;
635         end_data = 0;
636
637         for (i = 0; i < loc->elf_ex.e_phnum; i++) {
638                 if (elf_ppnt->p_type == PT_INTERP) {
639                         /* This is the program interpreter used for
640                          * shared libraries - for now assume that this
641                          * is an a.out format binary
642                          */
643                         retval = -ENOEXEC;
644                         if (elf_ppnt->p_filesz > PATH_MAX || 
645                             elf_ppnt->p_filesz < 2)
646                                 goto out_free_file;
647
648                         retval = -ENOMEM;
649                         elf_interpreter = kmalloc(elf_ppnt->p_filesz,
650                                                   GFP_KERNEL);
651                         if (!elf_interpreter)
652                                 goto out_free_file;
653
654                         retval = kernel_read(bprm->file, elf_ppnt->p_offset,
655                                              elf_interpreter,
656                                              elf_ppnt->p_filesz);
657                         if (retval != elf_ppnt->p_filesz) {
658                                 if (retval >= 0)
659                                         retval = -EIO;
660                                 goto out_free_interp;
661                         }
662                         /* make sure path is NULL terminated */
663                         retval = -ENOEXEC;
664                         if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
665                                 goto out_free_interp;
666
667                         /*
668                          * The early SET_PERSONALITY here is so that the lookup
669                          * for the interpreter happens in the namespace of the 
670                          * to-be-execed image.  SET_PERSONALITY can select an
671                          * alternate root.
672                          *
673                          * However, SET_PERSONALITY is NOT allowed to switch
674                          * this task into the new images's memory mapping
675                          * policy - that is, TASK_SIZE must still evaluate to
676                          * that which is appropriate to the execing application.
677                          * This is because exit_mmap() needs to have TASK_SIZE
678                          * evaluate to the size of the old image.
679                          *
680                          * So if (say) a 64-bit application is execing a 32-bit
681                          * application it is the architecture's responsibility
682                          * to defer changing the value of TASK_SIZE until the
683                          * switch really is going to happen - do this in
684                          * flush_thread().      - akpm
685                          */
686                         SET_PERSONALITY(loc->elf_ex);
687
688                         interpreter = open_exec(elf_interpreter);
689                         retval = PTR_ERR(interpreter);
690                         if (IS_ERR(interpreter))
691                                 goto out_free_interp;
692
693                         /*
694                          * If the binary is not readable then enforce
695                          * mm->dumpable = 0 regardless of the interpreter's
696                          * permissions.
697                          */
698                         if (file_permission(interpreter, MAY_READ) < 0)
699                                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
700
701                         retval = kernel_read(interpreter, 0, bprm->buf,
702                                              BINPRM_BUF_SIZE);
703                         if (retval != BINPRM_BUF_SIZE) {
704                                 if (retval >= 0)
705                                         retval = -EIO;
706                                 goto out_free_dentry;
707                         }
708
709                         /* Get the exec headers */
710                         loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
711                         break;
712                 }
713                 elf_ppnt++;
714         }
715
716         elf_ppnt = elf_phdata;
717         for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
718                 if (elf_ppnt->p_type == PT_GNU_STACK) {
719                         if (elf_ppnt->p_flags & PF_X)
720                                 executable_stack = EXSTACK_ENABLE_X;
721                         else
722                                 executable_stack = EXSTACK_DISABLE_X;
723                         break;
724                 }
725
726         /* Some simple consistency checks for the interpreter */
727         if (elf_interpreter) {
728                 retval = -ELIBBAD;
729                 /* Not an ELF interpreter */
730                 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
731                         goto out_free_dentry;
732                 /* Verify the interpreter has a valid arch */
733                 if (!elf_check_arch(&loc->interp_elf_ex))
734                         goto out_free_dentry;
735         } else {
736                 /* Executables without an interpreter also need a personality  */
737                 SET_PERSONALITY(loc->elf_ex);
738         }
739
740         /* Flush all traces of the currently running executable */
741         retval = flush_old_exec(bprm);
742         if (retval)
743                 goto out_free_dentry;
744
745         /* OK, This is the point of no return */
746         current->flags &= ~PF_FORKNOEXEC;
747         current->mm->def_flags = def_flags;
748
749         /* Do this immediately, since STACK_TOP as used in setup_arg_pages
750            may depend on the personality.  */
751         SET_PERSONALITY(loc->elf_ex);
752         if (elf_read_implies_exec(loc->elf_ex, executable_stack))
753                 current->personality |= READ_IMPLIES_EXEC;
754
755         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
756                 current->flags |= PF_RANDOMIZE;
757         arch_pick_mmap_layout(current->mm);
758
759         /* Do this so that we can load the interpreter, if need be.  We will
760            change some of these later */
761         current->mm->free_area_cache = current->mm->mmap_base;
762         current->mm->cached_hole_size = 0;
763         retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
764                                  executable_stack);
765         if (retval < 0) {
766                 send_sig(SIGKILL, current, 0);
767                 goto out_free_dentry;
768         }
769         
770         current->mm->start_stack = bprm->p;
771
772         /* Now we do a little grungy work by mmaping the ELF image into
773            the correct location in memory. */
774         for(i = 0, elf_ppnt = elf_phdata;
775             i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
776                 int elf_prot = 0, elf_flags;
777                 unsigned long k, vaddr;
778
779                 if (elf_ppnt->p_type != PT_LOAD)
780                         continue;
781
782                 if (unlikely (elf_brk > elf_bss)) {
783                         unsigned long nbyte;
784                     
785                         /* There was a PT_LOAD segment with p_memsz > p_filesz
786                            before this one. Map anonymous pages, if needed,
787                            and clear the area.  */
788                         retval = set_brk (elf_bss + load_bias,
789                                           elf_brk + load_bias);
790                         if (retval) {
791                                 send_sig(SIGKILL, current, 0);
792                                 goto out_free_dentry;
793                         }
794                         nbyte = ELF_PAGEOFFSET(elf_bss);
795                         if (nbyte) {
796                                 nbyte = ELF_MIN_ALIGN - nbyte;
797                                 if (nbyte > elf_brk - elf_bss)
798                                         nbyte = elf_brk - elf_bss;
799                                 if (clear_user((void __user *)elf_bss +
800                                                         load_bias, nbyte)) {
801                                         /*
802                                          * This bss-zeroing can fail if the ELF
803                                          * file specifies odd protections. So
804                                          * we don't check the return value
805                                          */
806                                 }
807                         }
808                 }
809
810                 if (elf_ppnt->p_flags & PF_R)
811                         elf_prot |= PROT_READ;
812                 if (elf_ppnt->p_flags & PF_W)
813                         elf_prot |= PROT_WRITE;
814                 if (elf_ppnt->p_flags & PF_X)
815                         elf_prot |= PROT_EXEC;
816
817                 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
818
819                 vaddr = elf_ppnt->p_vaddr;
820                 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
821                         elf_flags |= MAP_FIXED;
822                 } else if (loc->elf_ex.e_type == ET_DYN) {
823                         /* Try and get dynamic programs out of the way of the
824                          * default mmap base, as well as whatever program they
825                          * might try to exec.  This is because the brk will
826                          * follow the loader, and is not movable.  */
827 #ifdef CONFIG_X86
828                         load_bias = 0;
829 #else
830                         load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
831 #endif
832                 }
833
834                 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
835                                 elf_prot, elf_flags, 0);
836                 if (BAD_ADDR(error)) {
837                         send_sig(SIGKILL, current, 0);
838                         retval = IS_ERR((void *)error) ?
839                                 PTR_ERR((void*)error) : -EINVAL;
840                         goto out_free_dentry;
841                 }
842
843                 if (!load_addr_set) {
844                         load_addr_set = 1;
845                         load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
846                         if (loc->elf_ex.e_type == ET_DYN) {
847                                 load_bias += error -
848                                              ELF_PAGESTART(load_bias + vaddr);
849                                 load_addr += load_bias;
850                                 reloc_func_desc = load_bias;
851                         }
852                 }
853                 k = elf_ppnt->p_vaddr;
854                 if (k < start_code)
855                         start_code = k;
856                 if (start_data < k)
857                         start_data = k;
858
859                 /*
860                  * Check to see if the section's size will overflow the
861                  * allowed task size. Note that p_filesz must always be
862                  * <= p_memsz so it is only necessary to check p_memsz.
863                  */
864                 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
865                     elf_ppnt->p_memsz > TASK_SIZE ||
866                     TASK_SIZE - elf_ppnt->p_memsz < k) {
867                         /* set_brk can never work. Avoid overflows. */
868                         send_sig(SIGKILL, current, 0);
869                         retval = -EINVAL;
870                         goto out_free_dentry;
871                 }
872
873                 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
874
875                 if (k > elf_bss)
876                         elf_bss = k;
877                 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
878                         end_code = k;
879                 if (end_data < k)
880                         end_data = k;
881                 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
882                 if (k > elf_brk)
883                         elf_brk = k;
884         }
885
886         loc->elf_ex.e_entry += load_bias;
887         elf_bss += load_bias;
888         elf_brk += load_bias;
889         start_code += load_bias;
890         end_code += load_bias;
891         start_data += load_bias;
892         end_data += load_bias;
893
894         /* Calling set_brk effectively mmaps the pages that we need
895          * for the bss and break sections.  We must do this before
896          * mapping in the interpreter, to make sure it doesn't wind
897          * up getting placed where the bss needs to go.
898          */
899         retval = set_brk(elf_bss, elf_brk);
900         if (retval) {
901                 send_sig(SIGKILL, current, 0);
902                 goto out_free_dentry;
903         }
904         if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
905                 send_sig(SIGSEGV, current, 0);
906                 retval = -EFAULT; /* Nobody gets to see this, but.. */
907                 goto out_free_dentry;
908         }
909
910         if (elf_interpreter) {
911                 unsigned long uninitialized_var(interp_map_addr);
912
913                 elf_entry = load_elf_interp(&loc->interp_elf_ex,
914                                             interpreter,
915                                             &interp_map_addr,
916                                             load_bias);
917                 if (!IS_ERR((void *)elf_entry)) {
918                         /*
919                          * load_elf_interp() returns relocation
920                          * adjustment
921                          */
922                         interp_load_addr = elf_entry;
923                         elf_entry += loc->interp_elf_ex.e_entry;
924                 }
925                 if (BAD_ADDR(elf_entry)) {
926                         force_sig(SIGSEGV, current);
927                         retval = IS_ERR((void *)elf_entry) ?
928                                         (int)elf_entry : -EINVAL;
929                         goto out_free_dentry;
930                 }
931                 reloc_func_desc = interp_load_addr;
932
933                 allow_write_access(interpreter);
934                 fput(interpreter);
935                 kfree(elf_interpreter);
936         } else {
937                 elf_entry = loc->elf_ex.e_entry;
938                 if (BAD_ADDR(elf_entry)) {
939                         force_sig(SIGSEGV, current);
940                         retval = -EINVAL;
941                         goto out_free_dentry;
942                 }
943         }
944
945         kfree(elf_phdata);
946
947         sys_close(elf_exec_fileno);
948
949         set_binfmt(&elf_format);
950
951 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
952         retval = arch_setup_additional_pages(bprm, executable_stack);
953         if (retval < 0) {
954                 send_sig(SIGKILL, current, 0);
955                 goto out;
956         }
957 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
958
959         compute_creds(bprm);
960         current->flags &= ~PF_FORKNOEXEC;
961         retval = create_elf_tables(bprm, &loc->elf_ex,
962                           load_addr, interp_load_addr);
963         if (retval < 0) {
964                 send_sig(SIGKILL, current, 0);
965                 goto out;
966         }
967         /* N.B. passed_fileno might not be initialized? */
968         current->mm->end_code = end_code;
969         current->mm->start_code = start_code;
970         current->mm->start_data = start_data;
971         current->mm->end_data = end_data;
972         current->mm->start_stack = bprm->p;
973
974 #ifdef arch_randomize_brk
975         if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
976                 current->mm->brk = current->mm->start_brk =
977                         arch_randomize_brk(current->mm);
978 #endif
979
980         if (current->personality & MMAP_PAGE_ZERO) {
981                 /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
982                    and some applications "depend" upon this behavior.
983                    Since we do not have the power to recompile these, we
984                    emulate the SVr4 behavior. Sigh. */
985                 down_write(&current->mm->mmap_sem);
986                 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
987                                 MAP_FIXED | MAP_PRIVATE, 0);
988                 up_write(&current->mm->mmap_sem);
989         }
990
991 #ifdef ELF_PLAT_INIT
992         /*
993          * The ABI may specify that certain registers be set up in special
994          * ways (on i386 %edx is the address of a DT_FINI function, for
995          * example.  In addition, it may also specify (eg, PowerPC64 ELF)
996          * that the e_entry field is the address of the function descriptor
997          * for the startup routine, rather than the address of the startup
998          * routine itself.  This macro performs whatever initialization to
999          * the regs structure is required as well as any relocations to the
1000          * function descriptor entries when executing dynamically links apps.
1001          */
1002         ELF_PLAT_INIT(regs, reloc_func_desc);
1003 #endif
1004
1005         start_thread(regs, elf_entry, bprm->p);
1006         retval = 0;
1007 out:
1008         kfree(loc);
1009 out_ret:
1010         return retval;
1011
1012         /* error cleanup */
1013 out_free_dentry:
1014         allow_write_access(interpreter);
1015         if (interpreter)
1016                 fput(interpreter);
1017 out_free_interp:
1018         kfree(elf_interpreter);
1019 out_free_file:
1020         sys_close(elf_exec_fileno);
1021 out_free_ph:
1022         kfree(elf_phdata);
1023         goto out;
1024 }
1025
1026 /* This is really simpleminded and specialized - we are loading an
1027    a.out library that is given an ELF header. */
1028 static int load_elf_library(struct file *file)
1029 {
1030         struct elf_phdr *elf_phdata;
1031         struct elf_phdr *eppnt;
1032         unsigned long elf_bss, bss, len;
1033         int retval, error, i, j;
1034         struct elfhdr elf_ex;
1035
1036         error = -ENOEXEC;
1037         retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1038         if (retval != sizeof(elf_ex))
1039                 goto out;
1040
1041         if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1042                 goto out;
1043
1044         /* First of all, some simple consistency checks */
1045         if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1046             !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1047                 goto out;
1048
1049         /* Now read in all of the header information */
1050
1051         j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1052         /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1053
1054         error = -ENOMEM;
1055         elf_phdata = kmalloc(j, GFP_KERNEL);
1056         if (!elf_phdata)
1057                 goto out;
1058
1059         eppnt = elf_phdata;
1060         error = -ENOEXEC;
1061         retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1062         if (retval != j)
1063                 goto out_free_ph;
1064
1065         for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1066                 if ((eppnt + i)->p_type == PT_LOAD)
1067                         j++;
1068         if (j != 1)
1069                 goto out_free_ph;
1070
1071         while (eppnt->p_type != PT_LOAD)
1072                 eppnt++;
1073
1074         /* Now use mmap to map the library into memory. */
1075         down_write(&current->mm->mmap_sem);
1076         error = do_mmap(file,
1077                         ELF_PAGESTART(eppnt->p_vaddr),
1078                         (eppnt->p_filesz +
1079                          ELF_PAGEOFFSET(eppnt->p_vaddr)),
1080                         PROT_READ | PROT_WRITE | PROT_EXEC,
1081                         MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1082                         (eppnt->p_offset -
1083                          ELF_PAGEOFFSET(eppnt->p_vaddr)));
1084         up_write(&current->mm->mmap_sem);
1085         if (error != ELF_PAGESTART(eppnt->p_vaddr))
1086                 goto out_free_ph;
1087
1088         elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1089         if (padzero(elf_bss)) {
1090                 error = -EFAULT;
1091                 goto out_free_ph;
1092         }
1093
1094         len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1095                             ELF_MIN_ALIGN - 1);
1096         bss = eppnt->p_memsz + eppnt->p_vaddr;
1097         if (bss > len) {
1098                 down_write(&current->mm->mmap_sem);
1099                 do_brk(len, bss - len);
1100                 up_write(&current->mm->mmap_sem);
1101         }
1102         error = 0;
1103
1104 out_free_ph:
1105         kfree(elf_phdata);
1106 out:
1107         return error;
1108 }
1109
1110 /*
1111  * Note that some platforms still use traditional core dumps and not
1112  * the ELF core dump.  Each platform can select it as appropriate.
1113  */
1114 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1115
1116 /*
1117  * ELF core dumper
1118  *
1119  * Modelled on fs/exec.c:aout_core_dump()
1120  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1121  */
1122 /*
1123  * These are the only things you should do on a core-file: use only these
1124  * functions to write out all the necessary info.
1125  */
1126 static int dump_write(struct file *file, const void *addr, int nr)
1127 {
1128         return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1129 }
1130
1131 static int dump_seek(struct file *file, loff_t off)
1132 {
1133         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1134                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1135                         return 0;
1136         } else {
1137                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1138                 if (!buf)
1139                         return 0;
1140                 while (off > 0) {
1141                         unsigned long n = off;
1142                         if (n > PAGE_SIZE)
1143                                 n = PAGE_SIZE;
1144                         if (!dump_write(file, buf, n))
1145                                 return 0;
1146                         off -= n;
1147                 }
1148                 free_page((unsigned long)buf);
1149         }
1150         return 1;
1151 }
1152
1153 /*
1154  * Decide what to dump of a segment, part, all or none.
1155  */
1156 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1157                                    unsigned long mm_flags)
1158 {
1159 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1160
1161         /* The vma can be set up to tell us the answer directly.  */
1162         if (vma->vm_flags & VM_ALWAYSDUMP)
1163                 goto whole;
1164
1165         /* Hugetlb memory check */
1166         if (vma->vm_flags & VM_HUGETLB) {
1167                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1168                         goto whole;
1169                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1170                         goto whole;
1171         }
1172
1173         /* Do not dump I/O mapped devices or special mappings */
1174         if (vma->vm_flags & (VM_IO | VM_RESERVED))
1175                 return 0;
1176
1177         /* By default, dump shared memory if mapped from an anonymous file. */
1178         if (vma->vm_flags & VM_SHARED) {
1179                 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1180                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1181                         goto whole;
1182                 return 0;
1183         }
1184
1185         /* Dump segments that have been written to.  */
1186         if (vma->anon_vma && FILTER(ANON_PRIVATE))
1187                 goto whole;
1188         if (vma->vm_file == NULL)
1189                 return 0;
1190
1191         if (FILTER(MAPPED_PRIVATE))
1192                 goto whole;
1193
1194         /*
1195          * If this looks like the beginning of a DSO or executable mapping,
1196          * check for an ELF header.  If we find one, dump the first page to
1197          * aid in determining what was mapped here.
1198          */
1199         if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1200                 u32 __user *header = (u32 __user *) vma->vm_start;
1201                 u32 word;
1202                 /*
1203                  * Doing it this way gets the constant folded by GCC.
1204                  */
1205                 union {
1206                         u32 cmp;
1207                         char elfmag[SELFMAG];
1208                 } magic;
1209                 BUILD_BUG_ON(SELFMAG != sizeof word);
1210                 magic.elfmag[EI_MAG0] = ELFMAG0;
1211                 magic.elfmag[EI_MAG1] = ELFMAG1;
1212                 magic.elfmag[EI_MAG2] = ELFMAG2;
1213                 magic.elfmag[EI_MAG3] = ELFMAG3;
1214                 if (get_user(word, header) == 0 && word == magic.cmp)
1215                         return PAGE_SIZE;
1216         }
1217
1218 #undef  FILTER
1219
1220         return 0;
1221
1222 whole:
1223         return vma->vm_end - vma->vm_start;
1224 }
1225
1226 /* An ELF note in memory */
1227 struct memelfnote
1228 {
1229         const char *name;
1230         int type;
1231         unsigned int datasz;
1232         void *data;
1233 };
1234
1235 static int notesize(struct memelfnote *en)
1236 {
1237         int sz;
1238
1239         sz = sizeof(struct elf_note);
1240         sz += roundup(strlen(en->name) + 1, 4);
1241         sz += roundup(en->datasz, 4);
1242
1243         return sz;
1244 }
1245
1246 #define DUMP_WRITE(addr, nr, foffset)   \
1247         do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1248
1249 static int alignfile(struct file *file, loff_t *foffset)
1250 {
1251         static const char buf[4] = { 0, };
1252         DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1253         return 1;
1254 }
1255
1256 static int writenote(struct memelfnote *men, struct file *file,
1257                         loff_t *foffset)
1258 {
1259         struct elf_note en;
1260         en.n_namesz = strlen(men->name) + 1;
1261         en.n_descsz = men->datasz;
1262         en.n_type = men->type;
1263
1264         DUMP_WRITE(&en, sizeof(en), foffset);
1265         DUMP_WRITE(men->name, en.n_namesz, foffset);
1266         if (!alignfile(file, foffset))
1267                 return 0;
1268         DUMP_WRITE(men->data, men->datasz, foffset);
1269         if (!alignfile(file, foffset))
1270                 return 0;
1271
1272         return 1;
1273 }
1274 #undef DUMP_WRITE
1275
1276 #define DUMP_WRITE(addr, nr)    \
1277         if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1278                 goto end_coredump;
1279 #define DUMP_SEEK(off)  \
1280         if (!dump_seek(file, (off))) \
1281                 goto end_coredump;
1282
1283 static void fill_elf_header(struct elfhdr *elf, int segs,
1284                             u16 machine, u32 flags, u8 osabi)
1285 {
1286         memset(elf, 0, sizeof(*elf));
1287
1288         memcpy(elf->e_ident, ELFMAG, SELFMAG);
1289         elf->e_ident[EI_CLASS] = ELF_CLASS;
1290         elf->e_ident[EI_DATA] = ELF_DATA;
1291         elf->e_ident[EI_VERSION] = EV_CURRENT;
1292         elf->e_ident[EI_OSABI] = ELF_OSABI;
1293
1294         elf->e_type = ET_CORE;
1295         elf->e_machine = machine;
1296         elf->e_version = EV_CURRENT;
1297         elf->e_phoff = sizeof(struct elfhdr);
1298         elf->e_flags = flags;
1299         elf->e_ehsize = sizeof(struct elfhdr);
1300         elf->e_phentsize = sizeof(struct elf_phdr);
1301         elf->e_phnum = segs;
1302
1303         return;
1304 }
1305
1306 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1307 {
1308         phdr->p_type = PT_NOTE;
1309         phdr->p_offset = offset;
1310         phdr->p_vaddr = 0;
1311         phdr->p_paddr = 0;
1312         phdr->p_filesz = sz;
1313         phdr->p_memsz = 0;
1314         phdr->p_flags = 0;
1315         phdr->p_align = 0;
1316         return;
1317 }
1318
1319 static void fill_note(struct memelfnote *note, const char *name, int type, 
1320                 unsigned int sz, void *data)
1321 {
1322         note->name = name;
1323         note->type = type;
1324         note->datasz = sz;
1325         note->data = data;
1326         return;
1327 }
1328
1329 /*
1330  * fill up all the fields in prstatus from the given task struct, except
1331  * registers which need to be filled up separately.
1332  */
1333 static void fill_prstatus(struct elf_prstatus *prstatus,
1334                 struct task_struct *p, long signr)
1335 {
1336         prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1337         prstatus->pr_sigpend = p->pending.signal.sig[0];
1338         prstatus->pr_sighold = p->blocked.sig[0];
1339         prstatus->pr_pid = task_pid_vnr(p);
1340         prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1341         prstatus->pr_pgrp = task_pgrp_vnr(p);
1342         prstatus->pr_sid = task_session_vnr(p);
1343         if (thread_group_leader(p)) {
1344                 /*
1345                  * This is the record for the group leader.  Add in the
1346                  * cumulative times of previous dead threads.  This total
1347                  * won't include the time of each live thread whose state
1348                  * is included in the core dump.  The final total reported
1349                  * to our parent process when it calls wait4 will include
1350                  * those sums as well as the little bit more time it takes
1351                  * this and each other thread to finish dying after the
1352                  * core dump synchronization phase.
1353                  */
1354                 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1355                                    &prstatus->pr_utime);
1356                 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1357                                    &prstatus->pr_stime);
1358         } else {
1359                 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1360                 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1361         }
1362         cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1363         cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1364 }
1365
1366 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1367                        struct mm_struct *mm)
1368 {
1369         unsigned int i, len;
1370         
1371         /* first copy the parameters from user space */
1372         memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1373
1374         len = mm->arg_end - mm->arg_start;
1375         if (len >= ELF_PRARGSZ)
1376                 len = ELF_PRARGSZ-1;
1377         if (copy_from_user(&psinfo->pr_psargs,
1378                            (const char __user *)mm->arg_start, len))
1379                 return -EFAULT;
1380         for(i = 0; i < len; i++)
1381                 if (psinfo->pr_psargs[i] == 0)
1382                         psinfo->pr_psargs[i] = ' ';
1383         psinfo->pr_psargs[len] = 0;
1384
1385         psinfo->pr_pid = task_pid_vnr(p);
1386         psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1387         psinfo->pr_pgrp = task_pgrp_vnr(p);
1388         psinfo->pr_sid = task_session_vnr(p);
1389
1390         i = p->state ? ffz(~p->state) + 1 : 0;
1391         psinfo->pr_state = i;
1392         psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1393         psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1394         psinfo->pr_nice = task_nice(p);
1395         psinfo->pr_flag = p->flags;
1396         SET_UID(psinfo->pr_uid, p->uid);
1397         SET_GID(psinfo->pr_gid, p->gid);
1398         strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1399         
1400         return 0;
1401 }
1402
1403 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1404 {
1405         elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1406         int i = 0;
1407         do
1408                 i += 2;
1409         while (auxv[i - 2] != AT_NULL);
1410         fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1411 }
1412
1413 #ifdef CORE_DUMP_USE_REGSET
1414 #include <linux/regset.h>
1415
1416 struct elf_thread_core_info {
1417         struct elf_thread_core_info *next;
1418         struct task_struct *task;
1419         struct elf_prstatus prstatus;
1420         struct memelfnote notes[0];
1421 };
1422
1423 struct elf_note_info {
1424         struct elf_thread_core_info *thread;
1425         struct memelfnote psinfo;
1426         struct memelfnote auxv;
1427         size_t size;
1428         int thread_notes;
1429 };
1430
1431 /*
1432  * When a regset has a writeback hook, we call it on each thread before
1433  * dumping user memory.  On register window machines, this makes sure the
1434  * user memory backing the register data is up to date before we read it.
1435  */
1436 static void do_thread_regset_writeback(struct task_struct *task,
1437                                        const struct user_regset *regset)
1438 {
1439         if (regset->writeback)
1440                 regset->writeback(task, regset, 1);
1441 }
1442
1443 static int fill_thread_core_info(struct elf_thread_core_info *t,
1444                                  const struct user_regset_view *view,
1445                                  long signr, size_t *total)
1446 {
1447         unsigned int i;
1448
1449         /*
1450          * NT_PRSTATUS is the one special case, because the regset data
1451          * goes into the pr_reg field inside the note contents, rather
1452          * than being the whole note contents.  We fill the reset in here.
1453          * We assume that regset 0 is NT_PRSTATUS.
1454          */
1455         fill_prstatus(&t->prstatus, t->task, signr);
1456         (void) view->regsets[0].get(t->task, &view->regsets[0],
1457                                     0, sizeof(t->prstatus.pr_reg),
1458                                     &t->prstatus.pr_reg, NULL);
1459
1460         fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1461                   sizeof(t->prstatus), &t->prstatus);
1462         *total += notesize(&t->notes[0]);
1463
1464         do_thread_regset_writeback(t->task, &view->regsets[0]);
1465
1466         /*
1467          * Each other regset might generate a note too.  For each regset
1468          * that has no core_note_type or is inactive, we leave t->notes[i]
1469          * all zero and we'll know to skip writing it later.
1470          */
1471         for (i = 1; i < view->n; ++i) {
1472                 const struct user_regset *regset = &view->regsets[i];
1473                 do_thread_regset_writeback(t->task, regset);
1474                 if (regset->core_note_type &&
1475                     (!regset->active || regset->active(t->task, regset))) {
1476                         int ret;
1477                         size_t size = regset->n * regset->size;
1478                         void *data = kmalloc(size, GFP_KERNEL);
1479                         if (unlikely(!data))
1480                                 return 0;
1481                         ret = regset->get(t->task, regset,
1482                                           0, size, data, NULL);
1483                         if (unlikely(ret))
1484                                 kfree(data);
1485                         else {
1486                                 if (regset->core_note_type != NT_PRFPREG)
1487                                         fill_note(&t->notes[i], "LINUX",
1488                                                   regset->core_note_type,
1489                                                   size, data);
1490                                 else {
1491                                         t->prstatus.pr_fpvalid = 1;
1492                                         fill_note(&t->notes[i], "CORE",
1493                                                   NT_PRFPREG, size, data);
1494                                 }
1495                                 *total += notesize(&t->notes[i]);
1496                         }
1497                 }
1498         }
1499
1500         return 1;
1501 }
1502
1503 static int fill_note_info(struct elfhdr *elf, int phdrs,
1504                           struct elf_note_info *info,
1505                           long signr, struct pt_regs *regs)
1506 {
1507         struct task_struct *dump_task = current;
1508         const struct user_regset_view *view = task_user_regset_view(dump_task);
1509         struct elf_thread_core_info *t;
1510         struct elf_prpsinfo *psinfo;
1511         struct core_thread *ct;
1512         unsigned int i;
1513
1514         info->size = 0;
1515         info->thread = NULL;
1516
1517         psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1518         fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1519
1520         if (psinfo == NULL)
1521                 return 0;
1522
1523         /*
1524          * Figure out how many notes we're going to need for each thread.
1525          */
1526         info->thread_notes = 0;
1527         for (i = 0; i < view->n; ++i)
1528                 if (view->regsets[i].core_note_type != 0)
1529                         ++info->thread_notes;
1530
1531         /*
1532          * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1533          * since it is our one special case.
1534          */
1535         if (unlikely(info->thread_notes == 0) ||
1536             unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1537                 WARN_ON(1);
1538                 return 0;
1539         }
1540
1541         /*
1542          * Initialize the ELF file header.
1543          */
1544         fill_elf_header(elf, phdrs,
1545                         view->e_machine, view->e_flags, view->ei_osabi);
1546
1547         /*
1548          * Allocate a structure for each thread.
1549          */
1550         for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1551                 t = kzalloc(offsetof(struct elf_thread_core_info,
1552                                      notes[info->thread_notes]),
1553                             GFP_KERNEL);
1554                 if (unlikely(!t))
1555                         return 0;
1556
1557                 t->task = ct->task;
1558                 if (ct->task == dump_task || !info->thread) {
1559                         t->next = info->thread;
1560                         info->thread = t;
1561                 } else {
1562                         /*
1563                          * Make sure to keep the original task at
1564                          * the head of the list.
1565                          */
1566                         t->next = info->thread->next;
1567                         info->thread->next = t;
1568                 }
1569         }
1570
1571         /*
1572          * Now fill in each thread's information.
1573          */
1574         for (t = info->thread; t != NULL; t = t->next)
1575                 if (!fill_thread_core_info(t, view, signr, &info->size))
1576                         return 0;
1577
1578         /*
1579          * Fill in the two process-wide notes.
1580          */
1581         fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1582         info->size += notesize(&info->psinfo);
1583
1584         fill_auxv_note(&info->auxv, current->mm);
1585         info->size += notesize(&info->auxv);
1586
1587         return 1;
1588 }
1589
1590 static size_t get_note_info_size(struct elf_note_info *info)
1591 {
1592         return info->size;
1593 }
1594
1595 /*
1596  * Write all the notes for each thread.  When writing the first thread, the
1597  * process-wide notes are interleaved after the first thread-specific note.
1598  */
1599 static int write_note_info(struct elf_note_info *info,
1600                            struct file *file, loff_t *foffset)
1601 {
1602         bool first = 1;
1603         struct elf_thread_core_info *t = info->thread;
1604
1605         do {
1606                 int i;
1607
1608                 if (!writenote(&t->notes[0], file, foffset))
1609                         return 0;
1610
1611                 if (first && !writenote(&info->psinfo, file, foffset))
1612                         return 0;
1613                 if (first && !writenote(&info->auxv, file, foffset))
1614                         return 0;
1615
1616                 for (i = 1; i < info->thread_notes; ++i)
1617                         if (t->notes[i].data &&
1618                             !writenote(&t->notes[i], file, foffset))
1619                                 return 0;
1620
1621                 first = 0;
1622                 t = t->next;
1623         } while (t);
1624
1625         return 1;
1626 }
1627
1628 static void free_note_info(struct elf_note_info *info)
1629 {
1630         struct elf_thread_core_info *threads = info->thread;
1631         while (threads) {
1632                 unsigned int i;
1633                 struct elf_thread_core_info *t = threads;
1634                 threads = t->next;
1635                 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1636                 for (i = 1; i < info->thread_notes; ++i)
1637                         kfree(t->notes[i].data);
1638                 kfree(t);
1639         }
1640         kfree(info->psinfo.data);
1641 }
1642
1643 #else
1644
1645 /* Here is the structure in which status of each thread is captured. */
1646 struct elf_thread_status
1647 {
1648         struct list_head list;
1649         struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1650         elf_fpregset_t fpu;             /* NT_PRFPREG */
1651         struct task_struct *thread;
1652 #ifdef ELF_CORE_COPY_XFPREGS
1653         elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1654 #endif
1655         struct memelfnote notes[3];
1656         int num_notes;
1657 };
1658
1659 /*
1660  * In order to add the specific thread information for the elf file format,
1661  * we need to keep a linked list of every threads pr_status and then create
1662  * a single section for them in the final core file.
1663  */
1664 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1665 {
1666         int sz = 0;
1667         struct task_struct *p = t->thread;
1668         t->num_notes = 0;
1669
1670         fill_prstatus(&t->prstatus, p, signr);
1671         elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1672         
1673         fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1674                   &(t->prstatus));
1675         t->num_notes++;
1676         sz += notesize(&t->notes[0]);
1677
1678         if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1679                                                                 &t->fpu))) {
1680                 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1681                           &(t->fpu));
1682                 t->num_notes++;
1683                 sz += notesize(&t->notes[1]);
1684         }
1685
1686 #ifdef ELF_CORE_COPY_XFPREGS
1687         if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1688                 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1689                           sizeof(t->xfpu), &t->xfpu);
1690                 t->num_notes++;
1691                 sz += notesize(&t->notes[2]);
1692         }
1693 #endif  
1694         return sz;
1695 }
1696
1697 struct elf_note_info {
1698         struct memelfnote *notes;
1699         struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1700         struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1701         struct list_head thread_list;
1702         elf_fpregset_t *fpu;
1703 #ifdef ELF_CORE_COPY_XFPREGS
1704         elf_fpxregset_t *xfpu;
1705 #endif
1706         int thread_status_size;
1707         int numnote;
1708 };
1709
1710 static int fill_note_info(struct elfhdr *elf, int phdrs,
1711                           struct elf_note_info *info,
1712                           long signr, struct pt_regs *regs)
1713 {
1714 #define NUM_NOTES       6
1715         struct list_head *t;
1716
1717         info->notes = NULL;
1718         info->prstatus = NULL;
1719         info->psinfo = NULL;
1720         info->fpu = NULL;
1721 #ifdef ELF_CORE_COPY_XFPREGS
1722         info->xfpu = NULL;
1723 #endif
1724         INIT_LIST_HEAD(&info->thread_list);
1725
1726         info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1727                               GFP_KERNEL);
1728         if (!info->notes)
1729                 return 0;
1730         info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1731         if (!info->psinfo)
1732                 return 0;
1733         info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1734         if (!info->prstatus)
1735                 return 0;
1736         info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1737         if (!info->fpu)
1738                 return 0;
1739 #ifdef ELF_CORE_COPY_XFPREGS
1740         info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1741         if (!info->xfpu)
1742                 return 0;
1743 #endif
1744
1745         info->thread_status_size = 0;
1746         if (signr) {
1747                 struct core_thread *ct;
1748                 struct elf_thread_status *ets;
1749
1750                 for (ct = current->mm->core_state->dumper.next;
1751                                                 ct; ct = ct->next) {
1752                         ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1753                         if (!ets)
1754                                 return 0;
1755
1756                         ets->thread = ct->task;
1757                         list_add(&ets->list, &info->thread_list);
1758                 }
1759
1760                 list_for_each(t, &info->thread_list) {
1761                         int sz;
1762
1763                         ets = list_entry(t, struct elf_thread_status, list);
1764                         sz = elf_dump_thread_status(signr, ets);
1765                         info->thread_status_size += sz;
1766                 }
1767         }
1768         /* now collect the dump for the current */
1769         memset(info->prstatus, 0, sizeof(*info->prstatus));
1770         fill_prstatus(info->prstatus, current, signr);
1771         elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1772
1773         /* Set up header */
1774         fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1775
1776         /*
1777          * Set up the notes in similar form to SVR4 core dumps made
1778          * with info from their /proc.
1779          */
1780
1781         fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1782                   sizeof(*info->prstatus), info->prstatus);
1783         fill_psinfo(info->psinfo, current->group_leader, current->mm);
1784         fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1785                   sizeof(*info->psinfo), info->psinfo);
1786
1787         info->numnote = 2;
1788
1789         fill_auxv_note(&info->notes[info->numnote++], current->mm);
1790
1791         /* Try to dump the FPU. */
1792         info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1793                                                                info->fpu);
1794         if (info->prstatus->pr_fpvalid)
1795                 fill_note(info->notes + info->numnote++,
1796                           "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1797 #ifdef ELF_CORE_COPY_XFPREGS
1798         if (elf_core_copy_task_xfpregs(current, info->xfpu))
1799                 fill_note(info->notes + info->numnote++,
1800                           "LINUX", ELF_CORE_XFPREG_TYPE,
1801                           sizeof(*info->xfpu), info->xfpu);
1802 #endif
1803
1804         return 1;
1805
1806 #undef NUM_NOTES
1807 }
1808
1809 static size_t get_note_info_size(struct elf_note_info *info)
1810 {
1811         int sz = 0;
1812         int i;
1813
1814         for (i = 0; i < info->numnote; i++)
1815                 sz += notesize(info->notes + i);
1816
1817         sz += info->thread_status_size;
1818
1819         return sz;
1820 }
1821
1822 static int write_note_info(struct elf_note_info *info,
1823                            struct file *file, loff_t *foffset)
1824 {
1825         int i;
1826         struct list_head *t;
1827
1828         for (i = 0; i < info->numnote; i++)
1829                 if (!writenote(info->notes + i, file, foffset))
1830                         return 0;
1831
1832         /* write out the thread status notes section */
1833         list_for_each(t, &info->thread_list) {
1834                 struct elf_thread_status *tmp =
1835                                 list_entry(t, struct elf_thread_status, list);
1836
1837                 for (i = 0; i < tmp->num_notes; i++)
1838                         if (!writenote(&tmp->notes[i], file, foffset))
1839                                 return 0;
1840         }
1841
1842         return 1;
1843 }
1844
1845 static void free_note_info(struct elf_note_info *info)
1846 {
1847         while (!list_empty(&info->thread_list)) {
1848                 struct list_head *tmp = info->thread_list.next;
1849                 list_del(tmp);
1850                 kfree(list_entry(tmp, struct elf_thread_status, list));
1851         }
1852
1853         kfree(info->prstatus);
1854         kfree(info->psinfo);
1855         kfree(info->notes);
1856         kfree(info->fpu);
1857 #ifdef ELF_CORE_COPY_XFPREGS
1858         kfree(info->xfpu);
1859 #endif
1860 }
1861
1862 #endif
1863
1864 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1865                                         struct vm_area_struct *gate_vma)
1866 {
1867         struct vm_area_struct *ret = tsk->mm->mmap;
1868
1869         if (ret)
1870                 return ret;
1871         return gate_vma;
1872 }
1873 /*
1874  * Helper function for iterating across a vma list.  It ensures that the caller
1875  * will visit `gate_vma' prior to terminating the search.
1876  */
1877 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1878                                         struct vm_area_struct *gate_vma)
1879 {
1880         struct vm_area_struct *ret;
1881
1882         ret = this_vma->vm_next;
1883         if (ret)
1884                 return ret;
1885         if (this_vma == gate_vma)
1886                 return NULL;
1887         return gate_vma;
1888 }
1889
1890 /*
1891  * Actual dumper
1892  *
1893  * This is a two-pass process; first we find the offsets of the bits,
1894  * and then they are actually written out.  If we run out of core limit
1895  * we just truncate.
1896  */
1897 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1898 {
1899         int has_dumped = 0;
1900         mm_segment_t fs;
1901         int segs;
1902         size_t size = 0;
1903         struct vm_area_struct *vma, *gate_vma;
1904         struct elfhdr *elf = NULL;
1905         loff_t offset = 0, dataoff, foffset;
1906         unsigned long mm_flags;
1907         struct elf_note_info info;
1908
1909         /*
1910          * We no longer stop all VM operations.
1911          * 
1912          * This is because those proceses that could possibly change map_count
1913          * or the mmap / vma pages are now blocked in do_exit on current
1914          * finishing this core dump.
1915          *
1916          * Only ptrace can touch these memory addresses, but it doesn't change
1917          * the map_count or the pages allocated. So no possibility of crashing
1918          * exists while dumping the mm->vm_next areas to the core file.
1919          */
1920   
1921         /* alloc memory for large data structures: too large to be on stack */
1922         elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1923         if (!elf)
1924                 goto out;
1925         
1926         segs = current->mm->map_count;
1927 #ifdef ELF_CORE_EXTRA_PHDRS
1928         segs += ELF_CORE_EXTRA_PHDRS;
1929 #endif
1930
1931         gate_vma = get_gate_vma(current);
1932         if (gate_vma != NULL)
1933                 segs++;
1934
1935         /*
1936          * Collect all the non-memory information about the process for the
1937          * notes.  This also sets up the file header.
1938          */
1939         if (!fill_note_info(elf, segs + 1, /* including notes section */
1940                             &info, signr, regs))
1941                 goto cleanup;
1942
1943         has_dumped = 1;
1944         current->flags |= PF_DUMPCORE;
1945   
1946         fs = get_fs();
1947         set_fs(KERNEL_DS);
1948
1949         DUMP_WRITE(elf, sizeof(*elf));
1950         offset += sizeof(*elf);                         /* Elf header */
1951         offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1952         foffset = offset;
1953
1954         /* Write notes phdr entry */
1955         {
1956                 struct elf_phdr phdr;
1957                 size_t sz = get_note_info_size(&info);
1958
1959                 sz += elf_coredump_extra_notes_size();
1960
1961                 fill_elf_note_phdr(&phdr, sz, offset);
1962                 offset += sz;
1963                 DUMP_WRITE(&phdr, sizeof(phdr));
1964         }
1965
1966         dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1967
1968         /*
1969          * We must use the same mm->flags while dumping core to avoid
1970          * inconsistency between the program headers and bodies, otherwise an
1971          * unusable core file can be generated.
1972          */
1973         mm_flags = current->mm->flags;
1974
1975         /* Write program headers for segments dump */
1976         for (vma = first_vma(current, gate_vma); vma != NULL;
1977                         vma = next_vma(vma, gate_vma)) {
1978                 struct elf_phdr phdr;
1979
1980                 phdr.p_type = PT_LOAD;
1981                 phdr.p_offset = offset;
1982                 phdr.p_vaddr = vma->vm_start;
1983                 phdr.p_paddr = 0;
1984                 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1985                 phdr.p_memsz = vma->vm_end - vma->vm_start;
1986                 offset += phdr.p_filesz;
1987                 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1988                 if (vma->vm_flags & VM_WRITE)
1989                         phdr.p_flags |= PF_W;
1990                 if (vma->vm_flags & VM_EXEC)
1991                         phdr.p_flags |= PF_X;
1992                 phdr.p_align = ELF_EXEC_PAGESIZE;
1993
1994                 DUMP_WRITE(&phdr, sizeof(phdr));
1995         }
1996
1997 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1998         ELF_CORE_WRITE_EXTRA_PHDRS;
1999 #endif
2000
2001         /* write out the notes section */
2002         if (!write_note_info(&info, file, &foffset))
2003                 goto end_coredump;
2004
2005         if (elf_coredump_extra_notes_write(file, &foffset))
2006                 goto end_coredump;
2007
2008         /* Align to page */
2009         DUMP_SEEK(dataoff - foffset);
2010
2011         for (vma = first_vma(current, gate_vma); vma != NULL;
2012                         vma = next_vma(vma, gate_vma)) {
2013                 unsigned long addr;
2014                 unsigned long end;
2015
2016                 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2017
2018                 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2019                         struct page *page;
2020                         struct vm_area_struct *tmp_vma;
2021
2022                         if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2023                                                 &page, &tmp_vma) <= 0) {
2024                                 DUMP_SEEK(PAGE_SIZE);
2025                         } else {
2026                                 if (page == ZERO_PAGE(0)) {
2027                                         if (!dump_seek(file, PAGE_SIZE)) {
2028                                                 page_cache_release(page);
2029                                                 goto end_coredump;
2030                                         }
2031                                 } else {
2032                                         void *kaddr;
2033                                         flush_cache_page(tmp_vma, addr,
2034                                                          page_to_pfn(page));
2035                                         kaddr = kmap(page);
2036                                         if ((size += PAGE_SIZE) > limit ||
2037                                             !dump_write(file, kaddr,
2038                                             PAGE_SIZE)) {
2039                                                 kunmap(page);
2040                                                 page_cache_release(page);
2041                                                 goto end_coredump;
2042                                         }
2043                                         kunmap(page);
2044                                 }
2045                                 page_cache_release(page);
2046                         }
2047                 }
2048         }
2049
2050 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2051         ELF_CORE_WRITE_EXTRA_DATA;
2052 #endif
2053
2054 end_coredump:
2055         set_fs(fs);
2056
2057 cleanup:
2058         free_note_info(&info);
2059         kfree(elf);
2060 out:
2061         return has_dumped;
2062 }
2063
2064 #endif          /* USE_ELF_CORE_DUMP */
2065
2066 static int __init init_elf_binfmt(void)
2067 {
2068         return register_binfmt(&elf_format);
2069 }
2070
2071 static void __exit exit_elf_binfmt(void)
2072 {
2073         /* Remove the COFF and ELF loaders. */
2074         unregister_binfmt(&elf_format);
2075 }
2076
2077 core_initcall(init_elf_binfmt);
2078 module_exit(exit_elf_binfmt);
2079 MODULE_LICENSE("GPL");