2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/compiler.h>
16 #include <linux/sched.h> /* For cond_resched() */
21 * jffs2_reserve_space - request physical space to write nodes to flash
23 * @minsize: Minimum acceptable size of allocation
24 * @len: Returned value of allocation length
25 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
27 * Requests a block of physical space on the flash. Returns zero for success
28 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
29 * error if appropriate. Doesn't return len since that's
31 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
32 * allocation semaphore, to prevent more than one allocation from being
33 * active at any time. The semaphore is later released by jffs2_commit_allocation()
35 * jffs2_reserve_space() may trigger garbage collection in order to make room
36 * for the requested allocation.
39 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
40 uint32_t *len, uint32_t sumsize);
42 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
43 uint32_t *len, int prio, uint32_t sumsize)
46 int blocksneeded = c->resv_blocks_write;
48 minsize = PAD(minsize);
50 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51 mutex_lock(&c->alloc_sem);
53 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
55 spin_lock(&c->erase_completion_lock);
57 /* this needs a little more thought (true <tglx> :)) */
58 while(ret == -EAGAIN) {
59 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60 uint32_t dirty, avail;
62 /* calculate real dirty size
63 * dirty_size contains blocks on erase_pending_list
64 * those blocks are counted in c->nr_erasing_blocks.
65 * If one block is actually erased, it is not longer counted as dirty_space
66 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
67 * with c->nr_erasing_blocks * c->sector_size again.
68 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
69 * This helps us to force gc and pick eventually a clean block to spread the load.
70 * We add unchecked_size here, as we hopefully will find some space to use.
71 * This will affect the sum only once, as gc first finishes checking
74 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
75 if (dirty < c->nospc_dirty_size) {
76 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
77 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
80 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
81 dirty, c->unchecked_size, c->sector_size));
83 spin_unlock(&c->erase_completion_lock);
84 mutex_unlock(&c->alloc_sem);
88 /* Calc possibly available space. Possibly available means that we
89 * don't know, if unchecked size contains obsoleted nodes, which could give us some
90 * more usable space. This will affect the sum only once, as gc first finishes checking
92 + Return -ENOSPC, if the maximum possibly available space is less or equal than
93 * blocksneeded * sector_size.
94 * This blocks endless gc looping on a filesystem, which is nearly full, even if
95 * the check above passes.
97 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
98 if ( (avail / c->sector_size) <= blocksneeded) {
99 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
100 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
104 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
105 avail, blocksneeded * c->sector_size));
106 spin_unlock(&c->erase_completion_lock);
107 mutex_unlock(&c->alloc_sem);
111 mutex_unlock(&c->alloc_sem);
113 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
114 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
115 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
116 spin_unlock(&c->erase_completion_lock);
118 ret = jffs2_garbage_collect_pass(c);
121 jffs2_erase_pending_blocks(c, 1);
127 if (signal_pending(current))
130 mutex_lock(&c->alloc_sem);
131 spin_lock(&c->erase_completion_lock);
134 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
136 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
139 spin_unlock(&c->erase_completion_lock);
141 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
143 mutex_unlock(&c->alloc_sem);
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 uint32_t *len, uint32_t sumsize)
151 minsize = PAD(minsize);
153 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
155 spin_lock(&c->erase_completion_lock);
156 while(ret == -EAGAIN) {
157 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
159 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
162 spin_unlock(&c->erase_completion_lock);
164 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
175 if (c->nextblock == NULL) {
176 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
180 /* Check, if we have a dirty block now, or if it was dirty already */
181 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
182 c->dirty_size += jeb->wasted_size;
183 c->wasted_size -= jeb->wasted_size;
184 jeb->dirty_size += jeb->wasted_size;
185 jeb->wasted_size = 0;
186 if (VERYDIRTY(c, jeb->dirty_size)) {
187 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
188 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
189 list_add_tail(&jeb->list, &c->very_dirty_list);
191 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 list_add_tail(&jeb->list, &c->dirty_list);
196 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
197 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
198 list_add_tail(&jeb->list, &c->clean_list);
204 /* Select a new jeb for nextblock */
206 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
208 struct list_head *next;
210 /* Take the next block off the 'free' list */
212 if (list_empty(&c->free_list)) {
214 if (!c->nr_erasing_blocks &&
215 !list_empty(&c->erasable_list)) {
216 struct jffs2_eraseblock *ejeb;
218 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
219 list_move_tail(&ejeb->list, &c->erase_pending_list);
220 c->nr_erasing_blocks++;
221 jffs2_erase_pending_trigger(c);
222 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
226 if (!c->nr_erasing_blocks &&
227 !list_empty(&c->erasable_pending_wbuf_list)) {
228 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
229 /* c->nextblock is NULL, no update to c->nextblock allowed */
230 spin_unlock(&c->erase_completion_lock);
231 jffs2_flush_wbuf_pad(c);
232 spin_lock(&c->erase_completion_lock);
233 /* Have another go. It'll be on the erasable_list now */
237 if (!c->nr_erasing_blocks) {
238 /* Ouch. We're in GC, or we wouldn't have got here.
239 And there's no space left. At all. */
240 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
241 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
242 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
246 spin_unlock(&c->erase_completion_lock);
247 /* Don't wait for it; just erase one right now */
248 jffs2_erase_pending_blocks(c, 1);
249 spin_lock(&c->erase_completion_lock);
251 /* An erase may have failed, decreasing the
252 amount of free space available. So we must
253 restart from the beginning */
257 next = c->free_list.next;
259 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
262 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
264 /* adjust write buffer offset, else we get a non contiguous write bug */
265 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
266 c->wbuf_ofs = 0xffffffff;
268 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
273 /* Called with alloc sem _and_ erase_completion_lock */
274 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
275 uint32_t *len, uint32_t sumsize)
277 struct jffs2_eraseblock *jeb = c->nextblock;
278 uint32_t reserved_size; /* for summary information at the end of the jeb */
284 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
285 /* NOSUM_SIZE means not to generate summary */
288 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
289 dbg_summary("minsize=%d , jeb->free=%d ,"
290 "summary->size=%d , sumsize=%d\n",
291 minsize, jeb->free_size,
292 c->summary->sum_size, sumsize);
295 /* Is there enough space for writing out the current node, or we have to
296 write out summary information now, close this jeb and select new nextblock? */
297 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
298 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
300 /* Has summary been disabled for this jeb? */
301 if (jffs2_sum_is_disabled(c->summary)) {
302 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
306 /* Writing out the collected summary information */
307 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
308 ret = jffs2_sum_write_sumnode(c);
313 if (jffs2_sum_is_disabled(c->summary)) {
314 /* jffs2_write_sumnode() couldn't write out the summary information
315 diabling summary for this jeb and free the collected information
317 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
321 jffs2_close_nextblock(c, jeb);
323 /* keep always valid value in reserved_size */
324 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
327 if (jeb && minsize > jeb->free_size) {
330 /* Skip the end of this block and file it as having some dirty space */
331 /* If there's a pending write to it, flush now */
333 if (jffs2_wbuf_dirty(c)) {
334 spin_unlock(&c->erase_completion_lock);
335 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
336 jffs2_flush_wbuf_pad(c);
337 spin_lock(&c->erase_completion_lock);
342 spin_unlock(&c->erase_completion_lock);
344 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
347 /* Just lock it again and continue. Nothing much can change because
348 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
349 we hold c->erase_completion_lock in the majority of this function...
350 but that's a question for another (more caffeine-rich) day. */
351 spin_lock(&c->erase_completion_lock);
353 waste = jeb->free_size;
354 jffs2_link_node_ref(c, jeb,
355 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
357 /* FIXME: that made it count as dirty. Convert to wasted */
358 jeb->dirty_size -= waste;
359 c->dirty_size -= waste;
360 jeb->wasted_size += waste;
361 c->wasted_size += waste;
363 jffs2_close_nextblock(c, jeb);
370 ret = jffs2_find_nextblock(c);
376 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
377 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
381 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
383 *len = jeb->free_size - reserved_size;
385 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
386 !jeb->first_node->next_in_ino) {
387 /* Only node in it beforehand was a CLEANMARKER node (we think).
388 So mark it obsolete now that there's going to be another node
389 in the block. This will reduce used_size to zero but We've
390 already set c->nextblock so that jffs2_mark_node_obsolete()
391 won't try to refile it to the dirty_list.
393 spin_unlock(&c->erase_completion_lock);
394 jffs2_mark_node_obsolete(c, jeb->first_node);
395 spin_lock(&c->erase_completion_lock);
398 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
399 *len, jeb->offset + (c->sector_size - jeb->free_size)));
404 * jffs2_add_physical_node_ref - add a physical node reference to the list
405 * @c: superblock info
406 * @new: new node reference to add
407 * @len: length of this physical node
409 * Should only be used to report nodes for which space has been allocated
410 * by jffs2_reserve_space.
412 * Must be called with the alloc_sem held.
415 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
416 uint32_t ofs, uint32_t len,
417 struct jffs2_inode_cache *ic)
419 struct jffs2_eraseblock *jeb;
420 struct jffs2_raw_node_ref *new;
422 jeb = &c->blocks[ofs / c->sector_size];
424 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
425 ofs & ~3, ofs & 3, len));
427 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
428 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
429 even after refiling c->nextblock */
430 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
431 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
432 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
434 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
436 printk(KERN_WARNING "No nextblock");
437 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
438 return ERR_PTR(-EINVAL);
441 spin_lock(&c->erase_completion_lock);
443 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
445 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
446 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
447 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
448 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
449 if (jffs2_wbuf_dirty(c)) {
450 /* Flush the last write in the block if it's outstanding */
451 spin_unlock(&c->erase_completion_lock);
452 jffs2_flush_wbuf_pad(c);
453 spin_lock(&c->erase_completion_lock);
456 list_add_tail(&jeb->list, &c->clean_list);
459 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
460 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
462 spin_unlock(&c->erase_completion_lock);
468 void jffs2_complete_reservation(struct jffs2_sb_info *c)
470 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
471 jffs2_garbage_collect_trigger(c);
472 mutex_unlock(&c->alloc_sem);
475 static inline int on_list(struct list_head *obj, struct list_head *head)
477 struct list_head *this;
479 list_for_each(this, head) {
481 D1(printk("%p is on list at %p\n", obj, head));
489 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
491 struct jffs2_eraseblock *jeb;
493 struct jffs2_unknown_node n;
499 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
502 if (ref_obsolete(ref)) {
503 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
506 blocknr = ref->flash_offset / c->sector_size;
507 if (blocknr >= c->nr_blocks) {
508 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
511 jeb = &c->blocks[blocknr];
513 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
514 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
515 /* Hm. This may confuse static lock analysis. If any of the above
516 three conditions is false, we're going to return from this
517 function without actually obliterating any nodes or freeing
518 any jffs2_raw_node_refs. So we don't need to stop erases from
519 happening, or protect against people holding an obsolete
520 jffs2_raw_node_ref without the erase_completion_lock. */
521 mutex_lock(&c->erase_free_sem);
524 spin_lock(&c->erase_completion_lock);
526 freed_len = ref_totlen(c, jeb, ref);
528 if (ref_flags(ref) == REF_UNCHECKED) {
529 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
530 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
531 freed_len, blocknr, ref->flash_offset, jeb->used_size);
534 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
535 jeb->unchecked_size -= freed_len;
536 c->unchecked_size -= freed_len;
538 D1(if (unlikely(jeb->used_size < freed_len)) {
539 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
540 freed_len, blocknr, ref->flash_offset, jeb->used_size);
543 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
544 jeb->used_size -= freed_len;
545 c->used_size -= freed_len;
548 // Take care, that wasted size is taken into concern
549 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
550 D1(printk("Dirtying\n"));
551 addedsize = freed_len;
552 jeb->dirty_size += freed_len;
553 c->dirty_size += freed_len;
555 /* Convert wasted space to dirty, if not a bad block */
556 if (jeb->wasted_size) {
557 if (on_list(&jeb->list, &c->bad_used_list)) {
558 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
560 addedsize = 0; /* To fool the refiling code later */
562 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
563 jeb->wasted_size, jeb->offset));
564 addedsize += jeb->wasted_size;
565 jeb->dirty_size += jeb->wasted_size;
566 c->dirty_size += jeb->wasted_size;
567 c->wasted_size -= jeb->wasted_size;
568 jeb->wasted_size = 0;
572 D1(printk("Wasting\n"));
574 jeb->wasted_size += freed_len;
575 c->wasted_size += freed_len;
577 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
579 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
580 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
582 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
583 /* Flash scanning is in progress. Don't muck about with the block
584 lists because they're not ready yet, and don't actually
585 obliterate nodes that look obsolete. If they weren't
586 marked obsolete on the flash at the time they _became_
587 obsolete, there was probably a reason for that. */
588 spin_unlock(&c->erase_completion_lock);
589 /* We didn't lock the erase_free_sem */
593 if (jeb == c->nextblock) {
594 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
595 } else if (!jeb->used_size && !jeb->unchecked_size) {
596 if (jeb == c->gcblock) {
597 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
600 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
601 list_del(&jeb->list);
603 if (jffs2_wbuf_dirty(c)) {
604 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
605 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
608 /* Most of the time, we just erase it immediately. Otherwise we
609 spend ages scanning it on mount, etc. */
610 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
611 list_add_tail(&jeb->list, &c->erase_pending_list);
612 c->nr_erasing_blocks++;
613 jffs2_erase_pending_trigger(c);
615 /* Sometimes, however, we leave it elsewhere so it doesn't get
616 immediately reused, and we spread the load a bit. */
617 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
618 list_add_tail(&jeb->list, &c->erasable_list);
621 D1(printk(KERN_DEBUG "Done OK\n"));
622 } else if (jeb == c->gcblock) {
623 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
624 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
625 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
626 list_del(&jeb->list);
627 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
628 list_add_tail(&jeb->list, &c->dirty_list);
629 } else if (VERYDIRTY(c, jeb->dirty_size) &&
630 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
631 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
632 list_del(&jeb->list);
633 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
634 list_add_tail(&jeb->list, &c->very_dirty_list);
636 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
637 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
640 spin_unlock(&c->erase_completion_lock);
642 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
643 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
644 /* We didn't lock the erase_free_sem */
648 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
649 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
650 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
651 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
653 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
654 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
656 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
659 if (retlen != sizeof(n)) {
660 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
663 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
664 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
667 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
668 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
671 /* XXX FIXME: This is ugly now */
672 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
673 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
675 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
678 if (retlen != sizeof(n)) {
679 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
683 /* Nodes which have been marked obsolete no longer need to be
684 associated with any inode. Remove them from the per-inode list.
686 Note we can't do this for NAND at the moment because we need
687 obsolete dirent nodes to stay on the lists, because of the
688 horridness in jffs2_garbage_collect_deletion_dirent(). Also
689 because we delete the inocache, and on NAND we need that to
690 stay around until all the nodes are actually erased, in order
691 to stop us from giving the same inode number to another newly
693 if (ref->next_in_ino) {
694 struct jffs2_inode_cache *ic;
695 struct jffs2_raw_node_ref **p;
697 spin_lock(&c->erase_completion_lock);
699 ic = jffs2_raw_ref_to_ic(ref);
700 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
703 *p = ref->next_in_ino;
704 ref->next_in_ino = NULL;
707 #ifdef CONFIG_JFFS2_FS_XATTR
708 case RAWNODE_CLASS_XATTR_DATUM:
709 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
711 case RAWNODE_CLASS_XATTR_REF:
712 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
716 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
717 jffs2_del_ino_cache(c, ic);
720 spin_unlock(&c->erase_completion_lock);
724 mutex_unlock(&c->erase_free_sem);
727 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
731 int nr_very_dirty = 0;
732 struct jffs2_eraseblock *jeb;
734 if (c->unchecked_size) {
735 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
736 c->unchecked_size, c->checked_ino));
740 /* dirty_size contains blocks on erase_pending_list
741 * those blocks are counted in c->nr_erasing_blocks.
742 * If one block is actually erased, it is not longer counted as dirty_space
743 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
744 * with c->nr_erasing_blocks * c->sector_size again.
745 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
746 * This helps us to force gc and pick eventually a clean block to spread the load.
748 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
750 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
751 (dirty > c->nospc_dirty_size))
754 list_for_each_entry(jeb, &c->very_dirty_list, list) {
756 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
758 /* In debug mode, actually go through and count them all */
764 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
765 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));