2 * processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
11 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc.,
25 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/cpufreq.h>
35 #include <asm/cpufeature.h>
38 #include <acpi/acpi_bus.h>
39 #include <acpi/acpi_drivers.h>
40 #include <acpi/processor.h>
42 #define ACPI_PROCESSOR_CLASS "processor"
43 #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance"
44 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
45 ACPI_MODULE_NAME("processor_perflib");
47 static DEFINE_MUTEX(performance_mutex);
49 /* Use cpufreq debug layer for _PPC changes. */
50 #define cpufreq_printk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
54 * _PPC support is implemented as a CPUfreq policy notifier:
55 * This means each time a CPUfreq driver registered also with
56 * the ACPI core is asked to change the speed policy, the maximum
57 * value is adjusted so that it is within the platform limit.
59 * Also, when a new platform limit value is detected, the CPUfreq
60 * policy is adjusted accordingly.
64 * -1 -> cpufreq low level drivers not initialized -> _PSS, etc. not called yet
66 * 0 -> cpufreq low level drivers initialized -> consider _PPC values
67 * 1 -> ignore _PPC totally -> forced by user through boot param
69 static int ignore_ppc = -1;
70 module_param(ignore_ppc, int, 0644);
71 MODULE_PARM_DESC(ignore_ppc, "If the frequency of your machine gets wrongly" \
72 "limited by BIOS, this should help");
74 #define PPC_REGISTERED 1
77 static int acpi_processor_ppc_status;
79 static int acpi_processor_ppc_notifier(struct notifier_block *nb,
80 unsigned long event, void *data)
82 struct cpufreq_policy *policy = data;
83 struct acpi_processor *pr;
86 if (event == CPUFREQ_START && ignore_ppc <= 0) {
94 if (event != CPUFREQ_INCOMPATIBLE)
97 mutex_lock(&performance_mutex);
99 pr = per_cpu(processors, policy->cpu);
100 if (!pr || !pr->performance)
103 ppc = (unsigned int)pr->performance_platform_limit;
105 if (ppc >= pr->performance->state_count)
108 cpufreq_verify_within_limits(policy, 0,
109 pr->performance->states[ppc].
110 core_frequency * 1000);
113 mutex_unlock(&performance_mutex);
118 static struct notifier_block acpi_ppc_notifier_block = {
119 .notifier_call = acpi_processor_ppc_notifier,
122 static int acpi_processor_get_platform_limit(struct acpi_processor *pr)
124 acpi_status status = 0;
125 unsigned long long ppc = 0;
132 * _PPC indicates the maximum state currently supported by the platform
133 * (e.g. 0 = states 0..n; 1 = states 1..n; etc.
135 status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc);
137 if (status != AE_NOT_FOUND)
138 acpi_processor_ppc_status |= PPC_IN_USE;
140 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
141 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC"));
145 cpufreq_printk("CPU %d: _PPC is %d - frequency %s limited\n", pr->id,
146 (int)ppc, ppc ? "" : "not");
148 pr->performance_platform_limit = (int)ppc;
153 int acpi_processor_ppc_has_changed(struct acpi_processor *pr)
160 ret = acpi_processor_get_platform_limit(pr);
165 return cpufreq_update_policy(pr->id);
168 void acpi_processor_ppc_init(void)
170 if (!cpufreq_register_notifier
171 (&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER))
172 acpi_processor_ppc_status |= PPC_REGISTERED;
175 "Warning: Processor Platform Limit not supported.\n");
178 void acpi_processor_ppc_exit(void)
180 if (acpi_processor_ppc_status & PPC_REGISTERED)
181 cpufreq_unregister_notifier(&acpi_ppc_notifier_block,
182 CPUFREQ_POLICY_NOTIFIER);
184 acpi_processor_ppc_status &= ~PPC_REGISTERED;
187 static int acpi_processor_get_performance_control(struct acpi_processor *pr)
190 acpi_status status = 0;
191 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
192 union acpi_object *pct = NULL;
193 union acpi_object obj = { 0 };
196 status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer);
197 if (ACPI_FAILURE(status)) {
198 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT"));
202 pct = (union acpi_object *)buffer.pointer;
203 if (!pct || (pct->type != ACPI_TYPE_PACKAGE)
204 || (pct->package.count != 2)) {
205 printk(KERN_ERR PREFIX "Invalid _PCT data\n");
214 obj = pct->package.elements[0];
216 if ((obj.type != ACPI_TYPE_BUFFER)
217 || (obj.buffer.length < sizeof(struct acpi_pct_register))
218 || (obj.buffer.pointer == NULL)) {
219 printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n");
223 memcpy(&pr->performance->control_register, obj.buffer.pointer,
224 sizeof(struct acpi_pct_register));
230 obj = pct->package.elements[1];
232 if ((obj.type != ACPI_TYPE_BUFFER)
233 || (obj.buffer.length < sizeof(struct acpi_pct_register))
234 || (obj.buffer.pointer == NULL)) {
235 printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n");
240 memcpy(&pr->performance->status_register, obj.buffer.pointer,
241 sizeof(struct acpi_pct_register));
244 kfree(buffer.pointer);
249 static int acpi_processor_get_performance_states(struct acpi_processor *pr)
252 acpi_status status = AE_OK;
253 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
254 struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" };
255 struct acpi_buffer state = { 0, NULL };
256 union acpi_object *pss = NULL;
260 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
261 if (ACPI_FAILURE(status)) {
262 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS"));
266 pss = buffer.pointer;
267 if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) {
268 printk(KERN_ERR PREFIX "Invalid _PSS data\n");
273 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n",
274 pss->package.count));
276 pr->performance->state_count = pss->package.count;
277 pr->performance->states =
278 kmalloc(sizeof(struct acpi_processor_px) * pss->package.count,
280 if (!pr->performance->states) {
285 for (i = 0; i < pr->performance->state_count; i++) {
287 struct acpi_processor_px *px = &(pr->performance->states[i]);
289 state.length = sizeof(struct acpi_processor_px);
292 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i));
294 status = acpi_extract_package(&(pss->package.elements[i]),
296 if (ACPI_FAILURE(status)) {
297 ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data"));
299 kfree(pr->performance->states);
303 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
304 "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n",
306 (u32) px->core_frequency,
308 (u32) px->transition_latency,
309 (u32) px->bus_master_latency,
310 (u32) px->control, (u32) px->status));
312 if (!px->core_frequency) {
313 printk(KERN_ERR PREFIX
314 "Invalid _PSS data: freq is zero\n");
316 kfree(pr->performance->states);
322 kfree(buffer.pointer);
327 static int acpi_processor_get_performance_info(struct acpi_processor *pr)
330 acpi_status status = AE_OK;
331 acpi_handle handle = NULL;
333 if (!pr || !pr->performance || !pr->handle)
336 status = acpi_get_handle(pr->handle, "_PCT", &handle);
337 if (ACPI_FAILURE(status)) {
338 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
339 "ACPI-based processor performance control unavailable\n"));
343 result = acpi_processor_get_performance_control(pr);
347 result = acpi_processor_get_performance_states(pr);
354 * Having _PPC but missing frequencies (_PSS, _PCT) is a very good hint that
355 * the BIOS is older than the CPU and does not know its frequencies
359 if (ACPI_SUCCESS(acpi_get_handle(pr->handle, "_PPC", &handle))){
360 if(boot_cpu_has(X86_FEATURE_EST))
361 printk(KERN_WARNING FW_BUG "BIOS needs update for CPU "
362 "frequency support\n");
368 int acpi_processor_notify_smm(struct module *calling_module)
371 static int is_done = 0;
374 if (!(acpi_processor_ppc_status & PPC_REGISTERED))
377 if (!try_module_get(calling_module))
380 /* is_done is set to negative if an error occured,
381 * and to postitive if _no_ error occured, but SMM
382 * was already notified. This avoids double notification
383 * which might lead to unexpected results...
386 module_put(calling_module);
388 } else if (is_done < 0) {
389 module_put(calling_module);
395 /* Can't write pstate_control to smi_command if either value is zero */
396 if ((!acpi_gbl_FADT.smi_command) || (!acpi_gbl_FADT.pstate_control)) {
397 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_control\n"));
398 module_put(calling_module);
402 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
403 "Writing pstate_control [0x%x] to smi_command [0x%x]\n",
404 acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command));
406 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
407 (u32) acpi_gbl_FADT.pstate_control, 8);
408 if (ACPI_FAILURE(status)) {
409 ACPI_EXCEPTION((AE_INFO, status,
410 "Failed to write pstate_control [0x%x] to "
411 "smi_command [0x%x]", acpi_gbl_FADT.pstate_control,
412 acpi_gbl_FADT.smi_command));
413 module_put(calling_module);
417 /* Success. If there's no _PPC, we need to fear nothing, so
418 * we can allow the cpufreq driver to be rmmod'ed. */
421 if (!(acpi_processor_ppc_status & PPC_IN_USE))
422 module_put(calling_module);
427 EXPORT_SYMBOL(acpi_processor_notify_smm);
429 static int acpi_processor_get_psd(struct acpi_processor *pr)
432 acpi_status status = AE_OK;
433 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
434 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
435 struct acpi_buffer state = {0, NULL};
436 union acpi_object *psd = NULL;
437 struct acpi_psd_package *pdomain;
439 status = acpi_evaluate_object(pr->handle, "_PSD", NULL, &buffer);
440 if (ACPI_FAILURE(status)) {
444 psd = buffer.pointer;
445 if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) {
446 printk(KERN_ERR PREFIX "Invalid _PSD data\n");
451 if (psd->package.count != 1) {
452 printk(KERN_ERR PREFIX "Invalid _PSD data\n");
457 pdomain = &(pr->performance->domain_info);
459 state.length = sizeof(struct acpi_psd_package);
460 state.pointer = pdomain;
462 status = acpi_extract_package(&(psd->package.elements[0]),
464 if (ACPI_FAILURE(status)) {
465 printk(KERN_ERR PREFIX "Invalid _PSD data\n");
470 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
471 printk(KERN_ERR PREFIX "Unknown _PSD:num_entries\n");
476 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
477 printk(KERN_ERR PREFIX "Unknown _PSD:revision\n");
483 kfree(buffer.pointer);
487 int acpi_processor_preregister_performance(
488 struct acpi_processor_performance *performance)
490 int count, count_target;
493 cpumask_var_t covered_cpus;
494 struct acpi_processor *pr;
495 struct acpi_psd_package *pdomain;
496 struct acpi_processor *match_pr;
497 struct acpi_psd_package *match_pdomain;
499 if (!alloc_cpumask_var(&covered_cpus, GFP_KERNEL))
502 mutex_lock(&performance_mutex);
506 /* Call _PSD for all CPUs */
507 for_each_possible_cpu(i) {
508 pr = per_cpu(processors, i);
510 /* Look only at processors in ACPI namespace */
514 if (pr->performance) {
519 if (!performance || !percpu_ptr(performance, i)) {
524 pr->performance = percpu_ptr(performance, i);
525 cpumask_set_cpu(i, pr->performance->shared_cpu_map);
526 if (acpi_processor_get_psd(pr)) {
535 * Now that we have _PSD data from all CPUs, lets setup P-state
538 for_each_possible_cpu(i) {
539 pr = per_cpu(processors, i);
543 /* Basic validity check for domain info */
544 pdomain = &(pr->performance->domain_info);
545 if ((pdomain->revision != ACPI_PSD_REV0_REVISION) ||
546 (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES)) {
550 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
551 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
552 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
558 cpumask_clear(covered_cpus);
559 for_each_possible_cpu(i) {
560 pr = per_cpu(processors, i);
564 if (cpumask_test_cpu(i, covered_cpus))
567 pdomain = &(pr->performance->domain_info);
568 cpumask_set_cpu(i, pr->performance->shared_cpu_map);
569 cpumask_set_cpu(i, covered_cpus);
570 if (pdomain->num_processors <= 1)
573 /* Validate the Domain info */
574 count_target = pdomain->num_processors;
576 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
577 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
578 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
579 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW;
580 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
581 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY;
583 for_each_possible_cpu(j) {
587 match_pr = per_cpu(processors, j);
591 match_pdomain = &(match_pr->performance->domain_info);
592 if (match_pdomain->domain != pdomain->domain)
595 /* Here i and j are in the same domain */
597 if (match_pdomain->num_processors != count_target) {
602 if (pdomain->coord_type != match_pdomain->coord_type) {
607 cpumask_set_cpu(j, covered_cpus);
608 cpumask_set_cpu(j, pr->performance->shared_cpu_map);
612 for_each_possible_cpu(j) {
616 match_pr = per_cpu(processors, j);
620 match_pdomain = &(match_pr->performance->domain_info);
621 if (match_pdomain->domain != pdomain->domain)
624 match_pr->performance->shared_type =
625 pr->performance->shared_type;
626 cpumask_copy(match_pr->performance->shared_cpu_map,
627 pr->performance->shared_cpu_map);
632 for_each_possible_cpu(i) {
633 pr = per_cpu(processors, i);
634 if (!pr || !pr->performance)
637 /* Assume no coordination on any error parsing domain info */
639 cpumask_clear(pr->performance->shared_cpu_map);
640 cpumask_set_cpu(i, pr->performance->shared_cpu_map);
641 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
643 pr->performance = NULL; /* Will be set for real in register */
646 mutex_unlock(&performance_mutex);
647 free_cpumask_var(covered_cpus);
650 EXPORT_SYMBOL(acpi_processor_preregister_performance);
653 acpi_processor_register_performance(struct acpi_processor_performance
654 *performance, unsigned int cpu)
656 struct acpi_processor *pr;
658 if (!(acpi_processor_ppc_status & PPC_REGISTERED))
661 mutex_lock(&performance_mutex);
663 pr = per_cpu(processors, cpu);
665 mutex_unlock(&performance_mutex);
669 if (pr->performance) {
670 mutex_unlock(&performance_mutex);
674 WARN_ON(!performance);
676 pr->performance = performance;
678 if (acpi_processor_get_performance_info(pr)) {
679 pr->performance = NULL;
680 mutex_unlock(&performance_mutex);
684 mutex_unlock(&performance_mutex);
688 EXPORT_SYMBOL(acpi_processor_register_performance);
691 acpi_processor_unregister_performance(struct acpi_processor_performance
692 *performance, unsigned int cpu)
694 struct acpi_processor *pr;
696 mutex_lock(&performance_mutex);
698 pr = per_cpu(processors, cpu);
700 mutex_unlock(&performance_mutex);
705 kfree(pr->performance->states);
706 pr->performance = NULL;
708 mutex_unlock(&performance_mutex);
713 EXPORT_SYMBOL(acpi_processor_unregister_performance);