[SK_BUFF]: Introduce ipipv6_hdr(), remove skb->h.ipv6h
[linux-2.6] / include / linux / list.h
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3
4 #ifdef __KERNEL__
5
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
10
11 /*
12  * Simple doubly linked list implementation.
13  *
14  * Some of the internal functions ("__xxx") are useful when
15  * manipulating whole lists rather than single entries, as
16  * sometimes we already know the next/prev entries and we can
17  * generate better code by using them directly rather than
18  * using the generic single-entry routines.
19  */
20
21 struct list_head {
22         struct list_head *next, *prev;
23 };
24
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
26
27 #define LIST_HEAD(name) \
28         struct list_head name = LIST_HEAD_INIT(name)
29
30 static inline void INIT_LIST_HEAD(struct list_head *list)
31 {
32         list->next = list;
33         list->prev = list;
34 }
35
36 /*
37  * Insert a new entry between two known consecutive entries.
38  *
39  * This is only for internal list manipulation where we know
40  * the prev/next entries already!
41  */
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44                               struct list_head *prev,
45                               struct list_head *next)
46 {
47         next->prev = new;
48         new->next = next;
49         new->prev = prev;
50         prev->next = new;
51 }
52 #else
53 extern void __list_add(struct list_head *new,
54                               struct list_head *prev,
55                               struct list_head *next);
56 #endif
57
58 /**
59  * list_add - add a new entry
60  * @new: new entry to be added
61  * @head: list head to add it after
62  *
63  * Insert a new entry after the specified head.
64  * This is good for implementing stacks.
65  */
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
68 {
69         __list_add(new, head, head->next);
70 }
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
74
75
76 /**
77  * list_add_tail - add a new entry
78  * @new: new entry to be added
79  * @head: list head to add it before
80  *
81  * Insert a new entry before the specified head.
82  * This is useful for implementing queues.
83  */
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
85 {
86         __list_add(new, head->prev, head);
87 }
88
89 /*
90  * Insert a new entry between two known consecutive entries.
91  *
92  * This is only for internal list manipulation where we know
93  * the prev/next entries already!
94  */
95 static inline void __list_add_rcu(struct list_head * new,
96                 struct list_head * prev, struct list_head * next)
97 {
98         new->next = next;
99         new->prev = prev;
100         smp_wmb();
101         next->prev = new;
102         prev->next = new;
103 }
104
105 /**
106  * list_add_rcu - add a new entry to rcu-protected list
107  * @new: new entry to be added
108  * @head: list head to add it after
109  *
110  * Insert a new entry after the specified head.
111  * This is good for implementing stacks.
112  *
113  * The caller must take whatever precautions are necessary
114  * (such as holding appropriate locks) to avoid racing
115  * with another list-mutation primitive, such as list_add_rcu()
116  * or list_del_rcu(), running on this same list.
117  * However, it is perfectly legal to run concurrently with
118  * the _rcu list-traversal primitives, such as
119  * list_for_each_entry_rcu().
120  */
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
122 {
123         __list_add_rcu(new, head, head->next);
124 }
125
126 /**
127  * list_add_tail_rcu - add a new entry to rcu-protected list
128  * @new: new entry to be added
129  * @head: list head to add it before
130  *
131  * Insert a new entry before the specified head.
132  * This is useful for implementing queues.
133  *
134  * The caller must take whatever precautions are necessary
135  * (such as holding appropriate locks) to avoid racing
136  * with another list-mutation primitive, such as list_add_tail_rcu()
137  * or list_del_rcu(), running on this same list.
138  * However, it is perfectly legal to run concurrently with
139  * the _rcu list-traversal primitives, such as
140  * list_for_each_entry_rcu().
141  */
142 static inline void list_add_tail_rcu(struct list_head *new,
143                                         struct list_head *head)
144 {
145         __list_add_rcu(new, head->prev, head);
146 }
147
148 /*
149  * Delete a list entry by making the prev/next entries
150  * point to each other.
151  *
152  * This is only for internal list manipulation where we know
153  * the prev/next entries already!
154  */
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
156 {
157         next->prev = prev;
158         prev->next = next;
159 }
160
161 /**
162  * list_del - deletes entry from list.
163  * @entry: the element to delete from the list.
164  * Note: list_empty() on entry does not return true after this, the entry is
165  * in an undefined state.
166  */
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
169 {
170         __list_del(entry->prev, entry->next);
171         entry->next = LIST_POISON1;
172         entry->prev = LIST_POISON2;
173 }
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
177
178 /**
179  * list_del_rcu - deletes entry from list without re-initialization
180  * @entry: the element to delete from the list.
181  *
182  * Note: list_empty() on entry does not return true after this,
183  * the entry is in an undefined state. It is useful for RCU based
184  * lockfree traversal.
185  *
186  * In particular, it means that we can not poison the forward
187  * pointers that may still be used for walking the list.
188  *
189  * The caller must take whatever precautions are necessary
190  * (such as holding appropriate locks) to avoid racing
191  * with another list-mutation primitive, such as list_del_rcu()
192  * or list_add_rcu(), running on this same list.
193  * However, it is perfectly legal to run concurrently with
194  * the _rcu list-traversal primitives, such as
195  * list_for_each_entry_rcu().
196  *
197  * Note that the caller is not permitted to immediately free
198  * the newly deleted entry.  Instead, either synchronize_rcu()
199  * or call_rcu() must be used to defer freeing until an RCU
200  * grace period has elapsed.
201  */
202 static inline void list_del_rcu(struct list_head *entry)
203 {
204         __list_del(entry->prev, entry->next);
205         entry->prev = LIST_POISON2;
206 }
207
208 /**
209  * list_replace - replace old entry by new one
210  * @old : the element to be replaced
211  * @new : the new element to insert
212  *
213  * If @old was empty, it will be overwritten.
214  */
215 static inline void list_replace(struct list_head *old,
216                                 struct list_head *new)
217 {
218         new->next = old->next;
219         new->next->prev = new;
220         new->prev = old->prev;
221         new->prev->next = new;
222 }
223
224 static inline void list_replace_init(struct list_head *old,
225                                         struct list_head *new)
226 {
227         list_replace(old, new);
228         INIT_LIST_HEAD(old);
229 }
230
231 /**
232  * list_replace_rcu - replace old entry by new one
233  * @old : the element to be replaced
234  * @new : the new element to insert
235  *
236  * The @old entry will be replaced with the @new entry atomically.
237  * Note: @old should not be empty.
238  */
239 static inline void list_replace_rcu(struct list_head *old,
240                                 struct list_head *new)
241 {
242         new->next = old->next;
243         new->prev = old->prev;
244         smp_wmb();
245         new->next->prev = new;
246         new->prev->next = new;
247         old->prev = LIST_POISON2;
248 }
249
250 /**
251  * list_del_init - deletes entry from list and reinitialize it.
252  * @entry: the element to delete from the list.
253  */
254 static inline void list_del_init(struct list_head *entry)
255 {
256         __list_del(entry->prev, entry->next);
257         INIT_LIST_HEAD(entry);
258 }
259
260 /**
261  * list_move - delete from one list and add as another's head
262  * @list: the entry to move
263  * @head: the head that will precede our entry
264  */
265 static inline void list_move(struct list_head *list, struct list_head *head)
266 {
267         __list_del(list->prev, list->next);
268         list_add(list, head);
269 }
270
271 /**
272  * list_move_tail - delete from one list and add as another's tail
273  * @list: the entry to move
274  * @head: the head that will follow our entry
275  */
276 static inline void list_move_tail(struct list_head *list,
277                                   struct list_head *head)
278 {
279         __list_del(list->prev, list->next);
280         list_add_tail(list, head);
281 }
282
283 /**
284  * list_is_last - tests whether @list is the last entry in list @head
285  * @list: the entry to test
286  * @head: the head of the list
287  */
288 static inline int list_is_last(const struct list_head *list,
289                                 const struct list_head *head)
290 {
291         return list->next == head;
292 }
293
294 /**
295  * list_empty - tests whether a list is empty
296  * @head: the list to test.
297  */
298 static inline int list_empty(const struct list_head *head)
299 {
300         return head->next == head;
301 }
302
303 /**
304  * list_empty_careful - tests whether a list is empty and not being modified
305  * @head: the list to test
306  *
307  * Description:
308  * tests whether a list is empty _and_ checks that no other CPU might be
309  * in the process of modifying either member (next or prev)
310  *
311  * NOTE: using list_empty_careful() without synchronization
312  * can only be safe if the only activity that can happen
313  * to the list entry is list_del_init(). Eg. it cannot be used
314  * if another CPU could re-list_add() it.
315  */
316 static inline int list_empty_careful(const struct list_head *head)
317 {
318         struct list_head *next = head->next;
319         return (next == head) && (next == head->prev);
320 }
321
322 static inline void __list_splice(struct list_head *list,
323                                  struct list_head *head)
324 {
325         struct list_head *first = list->next;
326         struct list_head *last = list->prev;
327         struct list_head *at = head->next;
328
329         first->prev = head;
330         head->next = first;
331
332         last->next = at;
333         at->prev = last;
334 }
335
336 /**
337  * list_splice - join two lists
338  * @list: the new list to add.
339  * @head: the place to add it in the first list.
340  */
341 static inline void list_splice(struct list_head *list, struct list_head *head)
342 {
343         if (!list_empty(list))
344                 __list_splice(list, head);
345 }
346
347 /**
348  * list_splice_init - join two lists and reinitialise the emptied list.
349  * @list: the new list to add.
350  * @head: the place to add it in the first list.
351  *
352  * The list at @list is reinitialised
353  */
354 static inline void list_splice_init(struct list_head *list,
355                                     struct list_head *head)
356 {
357         if (!list_empty(list)) {
358                 __list_splice(list, head);
359                 INIT_LIST_HEAD(list);
360         }
361 }
362
363 /**
364  * list_splice_init_rcu - splice an RCU-protected list into an existing list.
365  * @list:       the RCU-protected list to splice
366  * @head:       the place in the list to splice the first list into
367  * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
368  *
369  * @head can be RCU-read traversed concurrently with this function.
370  *
371  * Note that this function blocks.
372  *
373  * Important note: the caller must take whatever action is necessary to
374  *      prevent any other updates to @head.  In principle, it is possible
375  *      to modify the list as soon as sync() begins execution.
376  *      If this sort of thing becomes necessary, an alternative version
377  *      based on call_rcu() could be created.  But only if -really-
378  *      needed -- there is no shortage of RCU API members.
379  */
380 static inline void list_splice_init_rcu(struct list_head *list,
381                                         struct list_head *head,
382                                         void (*sync)(void))
383 {
384         struct list_head *first = list->next;
385         struct list_head *last = list->prev;
386         struct list_head *at = head->next;
387
388         if (list_empty(head))
389                 return;
390
391         /* "first" and "last" tracking list, so initialize it. */
392
393         INIT_LIST_HEAD(list);
394
395         /*
396          * At this point, the list body still points to the source list.
397          * Wait for any readers to finish using the list before splicing
398          * the list body into the new list.  Any new readers will see
399          * an empty list.
400          */
401
402         sync();
403
404         /*
405          * Readers are finished with the source list, so perform splice.
406          * The order is important if the new list is global and accessible
407          * to concurrent RCU readers.  Note that RCU readers are not
408          * permitted to traverse the prev pointers without excluding
409          * this function.
410          */
411
412         last->next = at;
413         smp_wmb();
414         head->next = first;
415         first->prev = head;
416         at->prev = last;
417 }
418
419 /**
420  * list_entry - get the struct for this entry
421  * @ptr:        the &struct list_head pointer.
422  * @type:       the type of the struct this is embedded in.
423  * @member:     the name of the list_struct within the struct.
424  */
425 #define list_entry(ptr, type, member) \
426         container_of(ptr, type, member)
427
428 /**
429  * list_for_each        -       iterate over a list
430  * @pos:        the &struct list_head to use as a loop cursor.
431  * @head:       the head for your list.
432  */
433 #define list_for_each(pos, head) \
434         for (pos = (head)->next; prefetch(pos->next), pos != (head); \
435                 pos = pos->next)
436
437 /**
438  * __list_for_each      -       iterate over a list
439  * @pos:        the &struct list_head to use as a loop cursor.
440  * @head:       the head for your list.
441  *
442  * This variant differs from list_for_each() in that it's the
443  * simplest possible list iteration code, no prefetching is done.
444  * Use this for code that knows the list to be very short (empty
445  * or 1 entry) most of the time.
446  */
447 #define __list_for_each(pos, head) \
448         for (pos = (head)->next; pos != (head); pos = pos->next)
449
450 /**
451  * list_for_each_prev   -       iterate over a list backwards
452  * @pos:        the &struct list_head to use as a loop cursor.
453  * @head:       the head for your list.
454  */
455 #define list_for_each_prev(pos, head) \
456         for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
457                 pos = pos->prev)
458
459 /**
460  * list_for_each_safe - iterate over a list safe against removal of list entry
461  * @pos:        the &struct list_head to use as a loop cursor.
462  * @n:          another &struct list_head to use as temporary storage
463  * @head:       the head for your list.
464  */
465 #define list_for_each_safe(pos, n, head) \
466         for (pos = (head)->next, n = pos->next; pos != (head); \
467                 pos = n, n = pos->next)
468
469 /**
470  * list_for_each_entry  -       iterate over list of given type
471  * @pos:        the type * to use as a loop cursor.
472  * @head:       the head for your list.
473  * @member:     the name of the list_struct within the struct.
474  */
475 #define list_for_each_entry(pos, head, member)                          \
476         for (pos = list_entry((head)->next, typeof(*pos), member);      \
477              prefetch(pos->member.next), &pos->member != (head);        \
478              pos = list_entry(pos->member.next, typeof(*pos), member))
479
480 /**
481  * list_for_each_entry_reverse - iterate backwards over list of given type.
482  * @pos:        the type * to use as a loop cursor.
483  * @head:       the head for your list.
484  * @member:     the name of the list_struct within the struct.
485  */
486 #define list_for_each_entry_reverse(pos, head, member)                  \
487         for (pos = list_entry((head)->prev, typeof(*pos), member);      \
488              prefetch(pos->member.prev), &pos->member != (head);        \
489              pos = list_entry(pos->member.prev, typeof(*pos), member))
490
491 /**
492  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
493  * @pos:        the type * to use as a start point
494  * @head:       the head of the list
495  * @member:     the name of the list_struct within the struct.
496  *
497  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
498  */
499 #define list_prepare_entry(pos, head, member) \
500         ((pos) ? : list_entry(head, typeof(*pos), member))
501
502 /**
503  * list_for_each_entry_continue - continue iteration over list of given type
504  * @pos:        the type * to use as a loop cursor.
505  * @head:       the head for your list.
506  * @member:     the name of the list_struct within the struct.
507  *
508  * Continue to iterate over list of given type, continuing after
509  * the current position.
510  */
511 #define list_for_each_entry_continue(pos, head, member)                 \
512         for (pos = list_entry(pos->member.next, typeof(*pos), member);  \
513              prefetch(pos->member.next), &pos->member != (head);        \
514              pos = list_entry(pos->member.next, typeof(*pos), member))
515
516 /**
517  * list_for_each_entry_from - iterate over list of given type from the current point
518  * @pos:        the type * to use as a loop cursor.
519  * @head:       the head for your list.
520  * @member:     the name of the list_struct within the struct.
521  *
522  * Iterate over list of given type, continuing from current position.
523  */
524 #define list_for_each_entry_from(pos, head, member)                     \
525         for (; prefetch(pos->member.next), &pos->member != (head);      \
526              pos = list_entry(pos->member.next, typeof(*pos), member))
527
528 /**
529  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
530  * @pos:        the type * to use as a loop cursor.
531  * @n:          another type * to use as temporary storage
532  * @head:       the head for your list.
533  * @member:     the name of the list_struct within the struct.
534  */
535 #define list_for_each_entry_safe(pos, n, head, member)                  \
536         for (pos = list_entry((head)->next, typeof(*pos), member),      \
537                 n = list_entry(pos->member.next, typeof(*pos), member); \
538              &pos->member != (head);                                    \
539              pos = n, n = list_entry(n->member.next, typeof(*n), member))
540
541 /**
542  * list_for_each_entry_safe_continue
543  * @pos:        the type * to use as a loop cursor.
544  * @n:          another type * to use as temporary storage
545  * @head:       the head for your list.
546  * @member:     the name of the list_struct within the struct.
547  *
548  * Iterate over list of given type, continuing after current point,
549  * safe against removal of list entry.
550  */
551 #define list_for_each_entry_safe_continue(pos, n, head, member)                 \
552         for (pos = list_entry(pos->member.next, typeof(*pos), member),          \
553                 n = list_entry(pos->member.next, typeof(*pos), member);         \
554              &pos->member != (head);                                            \
555              pos = n, n = list_entry(n->member.next, typeof(*n), member))
556
557 /**
558  * list_for_each_entry_safe_from
559  * @pos:        the type * to use as a loop cursor.
560  * @n:          another type * to use as temporary storage
561  * @head:       the head for your list.
562  * @member:     the name of the list_struct within the struct.
563  *
564  * Iterate over list of given type from current point, safe against
565  * removal of list entry.
566  */
567 #define list_for_each_entry_safe_from(pos, n, head, member)                     \
568         for (n = list_entry(pos->member.next, typeof(*pos), member);            \
569              &pos->member != (head);                                            \
570              pos = n, n = list_entry(n->member.next, typeof(*n), member))
571
572 /**
573  * list_for_each_entry_safe_reverse
574  * @pos:        the type * to use as a loop cursor.
575  * @n:          another type * to use as temporary storage
576  * @head:       the head for your list.
577  * @member:     the name of the list_struct within the struct.
578  *
579  * Iterate backwards over list of given type, safe against removal
580  * of list entry.
581  */
582 #define list_for_each_entry_safe_reverse(pos, n, head, member)          \
583         for (pos = list_entry((head)->prev, typeof(*pos), member),      \
584                 n = list_entry(pos->member.prev, typeof(*pos), member); \
585              &pos->member != (head);                                    \
586              pos = n, n = list_entry(n->member.prev, typeof(*n), member))
587
588 /**
589  * list_for_each_rcu    -       iterate over an rcu-protected list
590  * @pos:        the &struct list_head to use as a loop cursor.
591  * @head:       the head for your list.
592  *
593  * This list-traversal primitive may safely run concurrently with
594  * the _rcu list-mutation primitives such as list_add_rcu()
595  * as long as the traversal is guarded by rcu_read_lock().
596  */
597 #define list_for_each_rcu(pos, head) \
598         for (pos = (head)->next; \
599                 prefetch(rcu_dereference(pos)->next), pos != (head); \
600                 pos = pos->next)
601
602 #define __list_for_each_rcu(pos, head) \
603         for (pos = (head)->next; \
604                 rcu_dereference(pos) != (head); \
605                 pos = pos->next)
606
607 /**
608  * list_for_each_safe_rcu
609  * @pos:        the &struct list_head to use as a loop cursor.
610  * @n:          another &struct list_head to use as temporary storage
611  * @head:       the head for your list.
612  *
613  * Iterate over an rcu-protected list, safe against removal of list entry.
614  *
615  * This list-traversal primitive may safely run concurrently with
616  * the _rcu list-mutation primitives such as list_add_rcu()
617  * as long as the traversal is guarded by rcu_read_lock().
618  */
619 #define list_for_each_safe_rcu(pos, n, head) \
620         for (pos = (head)->next; \
621                 n = rcu_dereference(pos)->next, pos != (head); \
622                 pos = n)
623
624 /**
625  * list_for_each_entry_rcu      -       iterate over rcu list of given type
626  * @pos:        the type * to use as a loop cursor.
627  * @head:       the head for your list.
628  * @member:     the name of the list_struct within the struct.
629  *
630  * This list-traversal primitive may safely run concurrently with
631  * the _rcu list-mutation primitives such as list_add_rcu()
632  * as long as the traversal is guarded by rcu_read_lock().
633  */
634 #define list_for_each_entry_rcu(pos, head, member) \
635         for (pos = list_entry((head)->next, typeof(*pos), member); \
636                 prefetch(rcu_dereference(pos)->member.next), \
637                         &pos->member != (head); \
638                 pos = list_entry(pos->member.next, typeof(*pos), member))
639
640
641 /**
642  * list_for_each_continue_rcu
643  * @pos:        the &struct list_head to use as a loop cursor.
644  * @head:       the head for your list.
645  *
646  * Iterate over an rcu-protected list, continuing after current point.
647  *
648  * This list-traversal primitive may safely run concurrently with
649  * the _rcu list-mutation primitives such as list_add_rcu()
650  * as long as the traversal is guarded by rcu_read_lock().
651  */
652 #define list_for_each_continue_rcu(pos, head) \
653         for ((pos) = (pos)->next; \
654                 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
655                 (pos) = (pos)->next)
656
657 /*
658  * Double linked lists with a single pointer list head.
659  * Mostly useful for hash tables where the two pointer list head is
660  * too wasteful.
661  * You lose the ability to access the tail in O(1).
662  */
663
664 struct hlist_head {
665         struct hlist_node *first;
666 };
667
668 struct hlist_node {
669         struct hlist_node *next, **pprev;
670 };
671
672 #define HLIST_HEAD_INIT { .first = NULL }
673 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
674 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
675 static inline void INIT_HLIST_NODE(struct hlist_node *h)
676 {
677         h->next = NULL;
678         h->pprev = NULL;
679 }
680
681 static inline int hlist_unhashed(const struct hlist_node *h)
682 {
683         return !h->pprev;
684 }
685
686 static inline int hlist_empty(const struct hlist_head *h)
687 {
688         return !h->first;
689 }
690
691 static inline void __hlist_del(struct hlist_node *n)
692 {
693         struct hlist_node *next = n->next;
694         struct hlist_node **pprev = n->pprev;
695         *pprev = next;
696         if (next)
697                 next->pprev = pprev;
698 }
699
700 static inline void hlist_del(struct hlist_node *n)
701 {
702         __hlist_del(n);
703         n->next = LIST_POISON1;
704         n->pprev = LIST_POISON2;
705 }
706
707 /**
708  * hlist_del_rcu - deletes entry from hash list without re-initialization
709  * @n: the element to delete from the hash list.
710  *
711  * Note: list_unhashed() on entry does not return true after this,
712  * the entry is in an undefined state. It is useful for RCU based
713  * lockfree traversal.
714  *
715  * In particular, it means that we can not poison the forward
716  * pointers that may still be used for walking the hash list.
717  *
718  * The caller must take whatever precautions are necessary
719  * (such as holding appropriate locks) to avoid racing
720  * with another list-mutation primitive, such as hlist_add_head_rcu()
721  * or hlist_del_rcu(), running on this same list.
722  * However, it is perfectly legal to run concurrently with
723  * the _rcu list-traversal primitives, such as
724  * hlist_for_each_entry().
725  */
726 static inline void hlist_del_rcu(struct hlist_node *n)
727 {
728         __hlist_del(n);
729         n->pprev = LIST_POISON2;
730 }
731
732 static inline void hlist_del_init(struct hlist_node *n)
733 {
734         if (!hlist_unhashed(n)) {
735                 __hlist_del(n);
736                 INIT_HLIST_NODE(n);
737         }
738 }
739
740 /**
741  * hlist_replace_rcu - replace old entry by new one
742  * @old : the element to be replaced
743  * @new : the new element to insert
744  *
745  * The @old entry will be replaced with the @new entry atomically.
746  */
747 static inline void hlist_replace_rcu(struct hlist_node *old,
748                                         struct hlist_node *new)
749 {
750         struct hlist_node *next = old->next;
751
752         new->next = next;
753         new->pprev = old->pprev;
754         smp_wmb();
755         if (next)
756                 new->next->pprev = &new->next;
757         *new->pprev = new;
758         old->pprev = LIST_POISON2;
759 }
760
761 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
762 {
763         struct hlist_node *first = h->first;
764         n->next = first;
765         if (first)
766                 first->pprev = &n->next;
767         h->first = n;
768         n->pprev = &h->first;
769 }
770
771
772 /**
773  * hlist_add_head_rcu
774  * @n: the element to add to the hash list.
775  * @h: the list to add to.
776  *
777  * Description:
778  * Adds the specified element to the specified hlist,
779  * while permitting racing traversals.
780  *
781  * The caller must take whatever precautions are necessary
782  * (such as holding appropriate locks) to avoid racing
783  * with another list-mutation primitive, such as hlist_add_head_rcu()
784  * or hlist_del_rcu(), running on this same list.
785  * However, it is perfectly legal to run concurrently with
786  * the _rcu list-traversal primitives, such as
787  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
788  * problems on Alpha CPUs.  Regardless of the type of CPU, the
789  * list-traversal primitive must be guarded by rcu_read_lock().
790  */
791 static inline void hlist_add_head_rcu(struct hlist_node *n,
792                                         struct hlist_head *h)
793 {
794         struct hlist_node *first = h->first;
795         n->next = first;
796         n->pprev = &h->first;
797         smp_wmb();
798         if (first)
799                 first->pprev = &n->next;
800         h->first = n;
801 }
802
803 /* next must be != NULL */
804 static inline void hlist_add_before(struct hlist_node *n,
805                                         struct hlist_node *next)
806 {
807         n->pprev = next->pprev;
808         n->next = next;
809         next->pprev = &n->next;
810         *(n->pprev) = n;
811 }
812
813 static inline void hlist_add_after(struct hlist_node *n,
814                                         struct hlist_node *next)
815 {
816         next->next = n->next;
817         n->next = next;
818         next->pprev = &n->next;
819
820         if(next->next)
821                 next->next->pprev  = &next->next;
822 }
823
824 /**
825  * hlist_add_before_rcu
826  * @n: the new element to add to the hash list.
827  * @next: the existing element to add the new element before.
828  *
829  * Description:
830  * Adds the specified element to the specified hlist
831  * before the specified node while permitting racing traversals.
832  *
833  * The caller must take whatever precautions are necessary
834  * (such as holding appropriate locks) to avoid racing
835  * with another list-mutation primitive, such as hlist_add_head_rcu()
836  * or hlist_del_rcu(), running on this same list.
837  * However, it is perfectly legal to run concurrently with
838  * the _rcu list-traversal primitives, such as
839  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
840  * problems on Alpha CPUs.
841  */
842 static inline void hlist_add_before_rcu(struct hlist_node *n,
843                                         struct hlist_node *next)
844 {
845         n->pprev = next->pprev;
846         n->next = next;
847         smp_wmb();
848         next->pprev = &n->next;
849         *(n->pprev) = n;
850 }
851
852 /**
853  * hlist_add_after_rcu
854  * @prev: the existing element to add the new element after.
855  * @n: the new element to add to the hash list.
856  *
857  * Description:
858  * Adds the specified element to the specified hlist
859  * after the specified node while permitting racing traversals.
860  *
861  * The caller must take whatever precautions are necessary
862  * (such as holding appropriate locks) to avoid racing
863  * with another list-mutation primitive, such as hlist_add_head_rcu()
864  * or hlist_del_rcu(), running on this same list.
865  * However, it is perfectly legal to run concurrently with
866  * the _rcu list-traversal primitives, such as
867  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
868  * problems on Alpha CPUs.
869  */
870 static inline void hlist_add_after_rcu(struct hlist_node *prev,
871                                        struct hlist_node *n)
872 {
873         n->next = prev->next;
874         n->pprev = &prev->next;
875         smp_wmb();
876         prev->next = n;
877         if (n->next)
878                 n->next->pprev = &n->next;
879 }
880
881 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
882
883 #define hlist_for_each(pos, head) \
884         for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
885              pos = pos->next)
886
887 #define hlist_for_each_safe(pos, n, head) \
888         for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
889              pos = n)
890
891 /**
892  * hlist_for_each_entry - iterate over list of given type
893  * @tpos:       the type * to use as a loop cursor.
894  * @pos:        the &struct hlist_node to use as a loop cursor.
895  * @head:       the head for your list.
896  * @member:     the name of the hlist_node within the struct.
897  */
898 #define hlist_for_each_entry(tpos, pos, head, member)                    \
899         for (pos = (head)->first;                                        \
900              pos && ({ prefetch(pos->next); 1;}) &&                      \
901                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
902              pos = pos->next)
903
904 /**
905  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
906  * @tpos:       the type * to use as a loop cursor.
907  * @pos:        the &struct hlist_node to use as a loop cursor.
908  * @member:     the name of the hlist_node within the struct.
909  */
910 #define hlist_for_each_entry_continue(tpos, pos, member)                 \
911         for (pos = (pos)->next;                                          \
912              pos && ({ prefetch(pos->next); 1;}) &&                      \
913                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
914              pos = pos->next)
915
916 /**
917  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
918  * @tpos:       the type * to use as a loop cursor.
919  * @pos:        the &struct hlist_node to use as a loop cursor.
920  * @member:     the name of the hlist_node within the struct.
921  */
922 #define hlist_for_each_entry_from(tpos, pos, member)                     \
923         for (; pos && ({ prefetch(pos->next); 1;}) &&                    \
924                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
925              pos = pos->next)
926
927 /**
928  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
929  * @tpos:       the type * to use as a loop cursor.
930  * @pos:        the &struct hlist_node to use as a loop cursor.
931  * @n:          another &struct hlist_node to use as temporary storage
932  * @head:       the head for your list.
933  * @member:     the name of the hlist_node within the struct.
934  */
935 #define hlist_for_each_entry_safe(tpos, pos, n, head, member)            \
936         for (pos = (head)->first;                                        \
937              pos && ({ n = pos->next; 1; }) &&                           \
938                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
939              pos = n)
940
941 /**
942  * hlist_for_each_entry_rcu - iterate over rcu list of given type
943  * @tpos:       the type * to use as a loop cursor.
944  * @pos:        the &struct hlist_node to use as a loop cursor.
945  * @head:       the head for your list.
946  * @member:     the name of the hlist_node within the struct.
947  *
948  * This list-traversal primitive may safely run concurrently with
949  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
950  * as long as the traversal is guarded by rcu_read_lock().
951  */
952 #define hlist_for_each_entry_rcu(tpos, pos, head, member)                \
953         for (pos = (head)->first;                                        \
954              rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) &&     \
955                 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
956              pos = pos->next)
957
958 #else
959 #warning "don't include kernel headers in userspace"
960 #endif /* __KERNEL__ */
961 #endif