Merge branch 'for-linus' of git://www.jni.nu/cris
[linux-2.6] / drivers / net / hamradio / dmascc.c
1 /*
2  * Driver for high-speed SCC boards (those with DMA support)
3  * Copyright (C) 1997-2000 Klaus Kudielka
4  *
5  * S5SCC/DMA support by Janko Koleznik S52HI
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21
22
23 #include <linux/module.h>
24 #include <linux/bitops.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/if_arp.h>
28 #include <linux/in.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/netdevice.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/sockios.h>
37 #include <linux/workqueue.h>
38 #include <asm/atomic.h>
39 #include <asm/dma.h>
40 #include <asm/io.h>
41 #include <asm/irq.h>
42 #include <asm/uaccess.h>
43 #include <net/ax25.h>
44 #include "z8530.h"
45
46
47 /* Number of buffers per channel */
48
49 #define NUM_TX_BUF      2       /* NUM_TX_BUF >= 1 (min. 2 recommended) */
50 #define NUM_RX_BUF      6       /* NUM_RX_BUF >= 1 (min. 2 recommended) */
51 #define BUF_SIZE        1576    /* BUF_SIZE >= mtu + hard_header_len */
52
53
54 /* Cards supported */
55
56 #define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
57                             0, 8, 1843200, 3686400 }
58 #define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
59                             0, 8, 3686400, 7372800 }
60 #define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
61                             0, 4, 6144000, 6144000 }
62 #define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
63                           0, 8, 4915200, 9830400 }
64
65 #define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
66
67 #define TMR_0_HZ        25600   /* Frequency of timer 0 */
68
69 #define TYPE_PI         0
70 #define TYPE_PI2        1
71 #define TYPE_TWIN       2
72 #define TYPE_S5         3
73 #define NUM_TYPES       4
74
75 #define MAX_NUM_DEVS    32
76
77
78 /* SCC chips supported */
79
80 #define Z8530           0
81 #define Z85C30          1
82 #define Z85230          2
83
84 #define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
85
86
87 /* I/O registers */
88
89 /* 8530 registers relative to card base */
90 #define SCCB_CMD        0x00
91 #define SCCB_DATA       0x01
92 #define SCCA_CMD        0x02
93 #define SCCA_DATA       0x03
94
95 /* 8253/8254 registers relative to card base */
96 #define TMR_CNT0        0x00
97 #define TMR_CNT1        0x01
98 #define TMR_CNT2        0x02
99 #define TMR_CTRL        0x03
100
101 /* Additional PI/PI2 registers relative to card base */
102 #define PI_DREQ_MASK    0x04
103
104 /* Additional PackeTwin registers relative to card base */
105 #define TWIN_INT_REG    0x08
106 #define TWIN_CLR_TMR1   0x09
107 #define TWIN_CLR_TMR2   0x0a
108 #define TWIN_SPARE_1    0x0b
109 #define TWIN_DMA_CFG    0x08
110 #define TWIN_SERIAL_CFG 0x09
111 #define TWIN_DMA_CLR_FF 0x0a
112 #define TWIN_SPARE_2    0x0b
113
114
115 /* PackeTwin I/O register values */
116
117 /* INT_REG */
118 #define TWIN_SCC_MSK       0x01
119 #define TWIN_TMR1_MSK      0x02
120 #define TWIN_TMR2_MSK      0x04
121 #define TWIN_INT_MSK       0x07
122
123 /* SERIAL_CFG */
124 #define TWIN_DTRA_ON       0x01
125 #define TWIN_DTRB_ON       0x02
126 #define TWIN_EXTCLKA       0x04
127 #define TWIN_EXTCLKB       0x08
128 #define TWIN_LOOPA_ON      0x10
129 #define TWIN_LOOPB_ON      0x20
130 #define TWIN_EI            0x80
131
132 /* DMA_CFG */
133 #define TWIN_DMA_HDX_T1    0x08
134 #define TWIN_DMA_HDX_R1    0x0a
135 #define TWIN_DMA_HDX_T3    0x14
136 #define TWIN_DMA_HDX_R3    0x16
137 #define TWIN_DMA_FDX_T3R1  0x1b
138 #define TWIN_DMA_FDX_T1R3  0x1d
139
140
141 /* Status values */
142
143 #define IDLE      0
144 #define TX_HEAD   1
145 #define TX_DATA   2
146 #define TX_PAUSE  3
147 #define TX_TAIL   4
148 #define RTS_OFF   5
149 #define WAIT      6
150 #define DCD_ON    7
151 #define RX_ON     8
152 #define DCD_OFF   9
153
154
155 /* Ioctls */
156
157 #define SIOCGSCCPARAM SIOCDEVPRIVATE
158 #define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
159
160
161 /* Data types */
162
163 struct scc_param {
164         int pclk_hz;            /* frequency of BRG input (don't change) */
165         int brg_tc;             /* BRG terminal count; BRG disabled if < 0 */
166         int nrzi;               /* 0 (nrz), 1 (nrzi) */
167         int clocks;             /* see dmascc_cfg documentation */
168         int txdelay;            /* [1/TMR_0_HZ] */
169         int txtimeout;          /* [1/HZ] */
170         int txtail;             /* [1/TMR_0_HZ] */
171         int waittime;           /* [1/TMR_0_HZ] */
172         int slottime;           /* [1/TMR_0_HZ] */
173         int persist;            /* 1 ... 256 */
174         int dma;                /* -1 (disable), 0, 1, 3 */
175         int txpause;            /* [1/TMR_0_HZ] */
176         int rtsoff;             /* [1/TMR_0_HZ] */
177         int dcdon;              /* [1/TMR_0_HZ] */
178         int dcdoff;             /* [1/TMR_0_HZ] */
179 };
180
181 struct scc_hardware {
182         char *name;
183         int io_region;
184         int io_delta;
185         int io_size;
186         int num_devs;
187         int scc_offset;
188         int tmr_offset;
189         int tmr_hz;
190         int pclk_hz;
191 };
192
193 struct scc_priv {
194         int type;
195         int chip;
196         struct net_device *dev;
197         struct scc_info *info;
198         struct net_device_stats stats;
199         int channel;
200         int card_base, scc_cmd, scc_data;
201         int tmr_cnt, tmr_ctrl, tmr_mode;
202         struct scc_param param;
203         char rx_buf[NUM_RX_BUF][BUF_SIZE];
204         int rx_len[NUM_RX_BUF];
205         int rx_ptr;
206         struct work_struct rx_work;
207         int rx_head, rx_tail, rx_count;
208         int rx_over;
209         char tx_buf[NUM_TX_BUF][BUF_SIZE];
210         int tx_len[NUM_TX_BUF];
211         int tx_ptr;
212         int tx_head, tx_tail, tx_count;
213         int state;
214         unsigned long tx_start;
215         int rr0;
216         spinlock_t *register_lock;      /* Per scc_info */
217         spinlock_t ring_lock;
218 };
219
220 struct scc_info {
221         int irq_used;
222         int twin_serial_cfg;
223         struct net_device *dev[2];
224         struct scc_priv priv[2];
225         struct scc_info *next;
226         spinlock_t register_lock;       /* Per device register lock */
227 };
228
229
230 /* Function declarations */
231 static int setup_adapter(int card_base, int type, int n) __init;
232
233 static void write_scc(struct scc_priv *priv, int reg, int val);
234 static void write_scc_data(struct scc_priv *priv, int val, int fast);
235 static int read_scc(struct scc_priv *priv, int reg);
236 static int read_scc_data(struct scc_priv *priv);
237
238 static int scc_open(struct net_device *dev);
239 static int scc_close(struct net_device *dev);
240 static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
241 static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
242 static struct net_device_stats *scc_get_stats(struct net_device *dev);
243 static int scc_set_mac_address(struct net_device *dev, void *sa);
244
245 static inline void tx_on(struct scc_priv *priv);
246 static inline void rx_on(struct scc_priv *priv);
247 static inline void rx_off(struct scc_priv *priv);
248 static void start_timer(struct scc_priv *priv, int t, int r15);
249 static inline unsigned char random(void);
250
251 static inline void z8530_isr(struct scc_info *info);
252 static irqreturn_t scc_isr(int irq, void *dev_id);
253 static void rx_isr(struct scc_priv *priv);
254 static void special_condition(struct scc_priv *priv, int rc);
255 static void rx_bh(struct work_struct *);
256 static void tx_isr(struct scc_priv *priv);
257 static void es_isr(struct scc_priv *priv);
258 static void tm_isr(struct scc_priv *priv);
259
260
261 /* Initialization variables */
262
263 static int io[MAX_NUM_DEVS] __initdata = { 0, };
264
265 /* Beware! hw[] is also used in dmascc_exit(). */
266 static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
267
268
269 /* Global variables */
270
271 static struct scc_info *first;
272 static unsigned long rand;
273
274
275 MODULE_AUTHOR("Klaus Kudielka");
276 MODULE_DESCRIPTION("Driver for high-speed SCC boards");
277 module_param_array(io, int, NULL, 0);
278 MODULE_LICENSE("GPL");
279
280 static void __exit dmascc_exit(void)
281 {
282         int i;
283         struct scc_info *info;
284
285         while (first) {
286                 info = first;
287
288                 /* Unregister devices */
289                 for (i = 0; i < 2; i++)
290                         unregister_netdev(info->dev[i]);
291
292                 /* Reset board */
293                 if (info->priv[0].type == TYPE_TWIN)
294                         outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
295                 write_scc(&info->priv[0], R9, FHWRES);
296                 release_region(info->dev[0]->base_addr,
297                                hw[info->priv[0].type].io_size);
298
299                 for (i = 0; i < 2; i++)
300                         free_netdev(info->dev[i]);
301
302                 /* Free memory */
303                 first = info->next;
304                 kfree(info);
305         }
306 }
307
308 static int __init dmascc_init(void)
309 {
310         int h, i, j, n;
311         int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
312             t1[MAX_NUM_DEVS];
313         unsigned t_val;
314         unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
315             counting[MAX_NUM_DEVS];
316
317         /* Initialize random number generator */
318         rand = jiffies;
319         /* Cards found = 0 */
320         n = 0;
321         /* Warning message */
322         if (!io[0])
323                 printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
324
325         /* Run autodetection for each card type */
326         for (h = 0; h < NUM_TYPES; h++) {
327
328                 if (io[0]) {
329                         /* User-specified I/O address regions */
330                         for (i = 0; i < hw[h].num_devs; i++)
331                                 base[i] = 0;
332                         for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
333                                 j = (io[i] -
334                                      hw[h].io_region) / hw[h].io_delta;
335                                 if (j >= 0 && j < hw[h].num_devs
336                                     && hw[h].io_region +
337                                     j * hw[h].io_delta == io[i]) {
338                                         base[j] = io[i];
339                                 }
340                         }
341                 } else {
342                         /* Default I/O address regions */
343                         for (i = 0; i < hw[h].num_devs; i++) {
344                                 base[i] =
345                                     hw[h].io_region + i * hw[h].io_delta;
346                         }
347                 }
348
349                 /* Check valid I/O address regions */
350                 for (i = 0; i < hw[h].num_devs; i++)
351                         if (base[i]) {
352                                 if (!request_region
353                                     (base[i], hw[h].io_size, "dmascc"))
354                                         base[i] = 0;
355                                 else {
356                                         tcmd[i] =
357                                             base[i] + hw[h].tmr_offset +
358                                             TMR_CTRL;
359                                         t0[i] =
360                                             base[i] + hw[h].tmr_offset +
361                                             TMR_CNT0;
362                                         t1[i] =
363                                             base[i] + hw[h].tmr_offset +
364                                             TMR_CNT1;
365                                 }
366                         }
367
368                 /* Start timers */
369                 for (i = 0; i < hw[h].num_devs; i++)
370                         if (base[i]) {
371                                 /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
372                                 outb(0x36, tcmd[i]);
373                                 outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
374                                      t0[i]);
375                                 outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
376                                      t0[i]);
377                                 /* Timer 1: LSB+MSB, Mode 0, HZ/10 */
378                                 outb(0x70, tcmd[i]);
379                                 outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
380                                 outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
381                                 start[i] = jiffies;
382                                 delay[i] = 0;
383                                 counting[i] = 1;
384                                 /* Timer 2: LSB+MSB, Mode 0 */
385                                 outb(0xb0, tcmd[i]);
386                         }
387                 time = jiffies;
388                 /* Wait until counter registers are loaded */
389                 udelay(2000000 / TMR_0_HZ);
390
391                 /* Timing loop */
392                 while (jiffies - time < 13) {
393                         for (i = 0; i < hw[h].num_devs; i++)
394                                 if (base[i] && counting[i]) {
395                                         /* Read back Timer 1: latch; read LSB; read MSB */
396                                         outb(0x40, tcmd[i]);
397                                         t_val =
398                                             inb(t1[i]) + (inb(t1[i]) << 8);
399                                         /* Also check whether counter did wrap */
400                                         if (t_val == 0
401                                             || t_val > TMR_0_HZ / HZ * 10)
402                                                 counting[i] = 0;
403                                         delay[i] = jiffies - start[i];
404                                 }
405                 }
406
407                 /* Evaluate measurements */
408                 for (i = 0; i < hw[h].num_devs; i++)
409                         if (base[i]) {
410                                 if ((delay[i] >= 9 && delay[i] <= 11) &&
411                                     /* Ok, we have found an adapter */
412                                     (setup_adapter(base[i], h, n) == 0))
413                                         n++;
414                                 else
415                                         release_region(base[i],
416                                                        hw[h].io_size);
417                         }
418
419         }                       /* NUM_TYPES */
420
421         /* If any adapter was successfully initialized, return ok */
422         if (n)
423                 return 0;
424
425         /* If no adapter found, return error */
426         printk(KERN_INFO "dmascc: no adapters found\n");
427         return -EIO;
428 }
429
430 module_init(dmascc_init);
431 module_exit(dmascc_exit);
432
433 static void __init dev_setup(struct net_device *dev)
434 {
435         dev->type = ARPHRD_AX25;
436         dev->hard_header_len = AX25_MAX_HEADER_LEN;
437         dev->mtu = 1500;
438         dev->addr_len = AX25_ADDR_LEN;
439         dev->tx_queue_len = 64;
440         memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
441         memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
442 }
443
444 static int __init setup_adapter(int card_base, int type, int n)
445 {
446         int i, irq, chip;
447         struct scc_info *info;
448         struct net_device *dev;
449         struct scc_priv *priv;
450         unsigned long time;
451         unsigned int irqs;
452         int tmr_base = card_base + hw[type].tmr_offset;
453         int scc_base = card_base + hw[type].scc_offset;
454         char *chipnames[] = CHIPNAMES;
455
456         /* Initialize what is necessary for write_scc and write_scc_data */
457         info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
458         if (!info) {
459                 printk(KERN_ERR "dmascc: "
460                        "could not allocate memory for %s at %#3x\n",
461                        hw[type].name, card_base);
462                 goto out;
463         }
464
465
466         info->dev[0] = alloc_netdev(0, "", dev_setup);
467         if (!info->dev[0]) {
468                 printk(KERN_ERR "dmascc: "
469                        "could not allocate memory for %s at %#3x\n",
470                        hw[type].name, card_base);
471                 goto out1;
472         }
473
474         info->dev[1] = alloc_netdev(0, "", dev_setup);
475         if (!info->dev[1]) {
476                 printk(KERN_ERR "dmascc: "
477                        "could not allocate memory for %s at %#3x\n",
478                        hw[type].name, card_base);
479                 goto out2;
480         }
481         spin_lock_init(&info->register_lock);
482
483         priv = &info->priv[0];
484         priv->type = type;
485         priv->card_base = card_base;
486         priv->scc_cmd = scc_base + SCCA_CMD;
487         priv->scc_data = scc_base + SCCA_DATA;
488         priv->register_lock = &info->register_lock;
489
490         /* Reset SCC */
491         write_scc(priv, R9, FHWRES | MIE | NV);
492
493         /* Determine type of chip by enabling SDLC/HDLC enhancements */
494         write_scc(priv, R15, SHDLCE);
495         if (!read_scc(priv, R15)) {
496                 /* WR7' not present. This is an ordinary Z8530 SCC. */
497                 chip = Z8530;
498         } else {
499                 /* Put one character in TX FIFO */
500                 write_scc_data(priv, 0, 0);
501                 if (read_scc(priv, R0) & Tx_BUF_EMP) {
502                         /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
503                         chip = Z85230;
504                 } else {
505                         /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
506                         chip = Z85C30;
507                 }
508         }
509         write_scc(priv, R15, 0);
510
511         /* Start IRQ auto-detection */
512         irqs = probe_irq_on();
513
514         /* Enable interrupts */
515         if (type == TYPE_TWIN) {
516                 outb(0, card_base + TWIN_DMA_CFG);
517                 inb(card_base + TWIN_CLR_TMR1);
518                 inb(card_base + TWIN_CLR_TMR2);
519                 info->twin_serial_cfg = TWIN_EI;
520                 outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
521         } else {
522                 write_scc(priv, R15, CTSIE);
523                 write_scc(priv, R0, RES_EXT_INT);
524                 write_scc(priv, R1, EXT_INT_ENAB);
525         }
526
527         /* Start timer */
528         outb(1, tmr_base + TMR_CNT1);
529         outb(0, tmr_base + TMR_CNT1);
530
531         /* Wait and detect IRQ */
532         time = jiffies;
533         while (jiffies - time < 2 + HZ / TMR_0_HZ);
534         irq = probe_irq_off(irqs);
535
536         /* Clear pending interrupt, disable interrupts */
537         if (type == TYPE_TWIN) {
538                 inb(card_base + TWIN_CLR_TMR1);
539         } else {
540                 write_scc(priv, R1, 0);
541                 write_scc(priv, R15, 0);
542                 write_scc(priv, R0, RES_EXT_INT);
543         }
544
545         if (irq <= 0) {
546                 printk(KERN_ERR
547                        "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
548                        hw[type].name, card_base, irq);
549                 goto out3;
550         }
551
552         /* Set up data structures */
553         for (i = 0; i < 2; i++) {
554                 dev = info->dev[i];
555                 priv = &info->priv[i];
556                 priv->type = type;
557                 priv->chip = chip;
558                 priv->dev = dev;
559                 priv->info = info;
560                 priv->channel = i;
561                 spin_lock_init(&priv->ring_lock);
562                 priv->register_lock = &info->register_lock;
563                 priv->card_base = card_base;
564                 priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
565                 priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
566                 priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
567                 priv->tmr_ctrl = tmr_base + TMR_CTRL;
568                 priv->tmr_mode = i ? 0xb0 : 0x70;
569                 priv->param.pclk_hz = hw[type].pclk_hz;
570                 priv->param.brg_tc = -1;
571                 priv->param.clocks = TCTRxCP | RCRTxCP;
572                 priv->param.persist = 256;
573                 priv->param.dma = -1;
574                 INIT_WORK(&priv->rx_work, rx_bh);
575                 dev->priv = priv;
576                 sprintf(dev->name, "dmascc%i", 2 * n + i);
577                 dev->base_addr = card_base;
578                 dev->irq = irq;
579                 dev->open = scc_open;
580                 dev->stop = scc_close;
581                 dev->do_ioctl = scc_ioctl;
582                 dev->hard_start_xmit = scc_send_packet;
583                 dev->get_stats = scc_get_stats;
584                 dev->header_ops = &ax25_header_ops;
585                 dev->set_mac_address = scc_set_mac_address;
586         }
587         if (register_netdev(info->dev[0])) {
588                 printk(KERN_ERR "dmascc: could not register %s\n",
589                        info->dev[0]->name);
590                 goto out3;
591         }
592         if (register_netdev(info->dev[1])) {
593                 printk(KERN_ERR "dmascc: could not register %s\n",
594                        info->dev[1]->name);
595                 goto out4;
596         }
597
598
599         info->next = first;
600         first = info;
601         printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
602                hw[type].name, chipnames[chip], card_base, irq);
603         return 0;
604
605       out4:
606         unregister_netdev(info->dev[0]);
607       out3:
608         if (info->priv[0].type == TYPE_TWIN)
609                 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
610         write_scc(&info->priv[0], R9, FHWRES);
611         free_netdev(info->dev[1]);
612       out2:
613         free_netdev(info->dev[0]);
614       out1:
615         kfree(info);
616       out:
617         return -1;
618 }
619
620
621 /* Driver functions */
622
623 static void write_scc(struct scc_priv *priv, int reg, int val)
624 {
625         unsigned long flags;
626         switch (priv->type) {
627         case TYPE_S5:
628                 if (reg)
629                         outb(reg, priv->scc_cmd);
630                 outb(val, priv->scc_cmd);
631                 return;
632         case TYPE_TWIN:
633                 if (reg)
634                         outb_p(reg, priv->scc_cmd);
635                 outb_p(val, priv->scc_cmd);
636                 return;
637         default:
638                 spin_lock_irqsave(priv->register_lock, flags);
639                 outb_p(0, priv->card_base + PI_DREQ_MASK);
640                 if (reg)
641                         outb_p(reg, priv->scc_cmd);
642                 outb_p(val, priv->scc_cmd);
643                 outb(1, priv->card_base + PI_DREQ_MASK);
644                 spin_unlock_irqrestore(priv->register_lock, flags);
645                 return;
646         }
647 }
648
649
650 static void write_scc_data(struct scc_priv *priv, int val, int fast)
651 {
652         unsigned long flags;
653         switch (priv->type) {
654         case TYPE_S5:
655                 outb(val, priv->scc_data);
656                 return;
657         case TYPE_TWIN:
658                 outb_p(val, priv->scc_data);
659                 return;
660         default:
661                 if (fast)
662                         outb_p(val, priv->scc_data);
663                 else {
664                         spin_lock_irqsave(priv->register_lock, flags);
665                         outb_p(0, priv->card_base + PI_DREQ_MASK);
666                         outb_p(val, priv->scc_data);
667                         outb(1, priv->card_base + PI_DREQ_MASK);
668                         spin_unlock_irqrestore(priv->register_lock, flags);
669                 }
670                 return;
671         }
672 }
673
674
675 static int read_scc(struct scc_priv *priv, int reg)
676 {
677         int rc;
678         unsigned long flags;
679         switch (priv->type) {
680         case TYPE_S5:
681                 if (reg)
682                         outb(reg, priv->scc_cmd);
683                 return inb(priv->scc_cmd);
684         case TYPE_TWIN:
685                 if (reg)
686                         outb_p(reg, priv->scc_cmd);
687                 return inb_p(priv->scc_cmd);
688         default:
689                 spin_lock_irqsave(priv->register_lock, flags);
690                 outb_p(0, priv->card_base + PI_DREQ_MASK);
691                 if (reg)
692                         outb_p(reg, priv->scc_cmd);
693                 rc = inb_p(priv->scc_cmd);
694                 outb(1, priv->card_base + PI_DREQ_MASK);
695                 spin_unlock_irqrestore(priv->register_lock, flags);
696                 return rc;
697         }
698 }
699
700
701 static int read_scc_data(struct scc_priv *priv)
702 {
703         int rc;
704         unsigned long flags;
705         switch (priv->type) {
706         case TYPE_S5:
707                 return inb(priv->scc_data);
708         case TYPE_TWIN:
709                 return inb_p(priv->scc_data);
710         default:
711                 spin_lock_irqsave(priv->register_lock, flags);
712                 outb_p(0, priv->card_base + PI_DREQ_MASK);
713                 rc = inb_p(priv->scc_data);
714                 outb(1, priv->card_base + PI_DREQ_MASK);
715                 spin_unlock_irqrestore(priv->register_lock, flags);
716                 return rc;
717         }
718 }
719
720
721 static int scc_open(struct net_device *dev)
722 {
723         struct scc_priv *priv = dev->priv;
724         struct scc_info *info = priv->info;
725         int card_base = priv->card_base;
726
727         /* Request IRQ if not already used by other channel */
728         if (!info->irq_used) {
729                 if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
730                         return -EAGAIN;
731                 }
732         }
733         info->irq_used++;
734
735         /* Request DMA if required */
736         if (priv->param.dma >= 0) {
737                 if (request_dma(priv->param.dma, "dmascc")) {
738                         if (--info->irq_used == 0)
739                                 free_irq(dev->irq, info);
740                         return -EAGAIN;
741                 } else {
742                         unsigned long flags = claim_dma_lock();
743                         clear_dma_ff(priv->param.dma);
744                         release_dma_lock(flags);
745                 }
746         }
747
748         /* Initialize local variables */
749         priv->rx_ptr = 0;
750         priv->rx_over = 0;
751         priv->rx_head = priv->rx_tail = priv->rx_count = 0;
752         priv->state = IDLE;
753         priv->tx_head = priv->tx_tail = priv->tx_count = 0;
754         priv->tx_ptr = 0;
755
756         /* Reset channel */
757         write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
758         /* X1 clock, SDLC mode */
759         write_scc(priv, R4, SDLC | X1CLK);
760         /* DMA */
761         write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
762         /* 8 bit RX char, RX disable */
763         write_scc(priv, R3, Rx8);
764         /* 8 bit TX char, TX disable */
765         write_scc(priv, R5, Tx8);
766         /* SDLC address field */
767         write_scc(priv, R6, 0);
768         /* SDLC flag */
769         write_scc(priv, R7, FLAG);
770         switch (priv->chip) {
771         case Z85C30:
772                 /* Select WR7' */
773                 write_scc(priv, R15, SHDLCE);
774                 /* Auto EOM reset */
775                 write_scc(priv, R7, AUTOEOM);
776                 write_scc(priv, R15, 0);
777                 break;
778         case Z85230:
779                 /* Select WR7' */
780                 write_scc(priv, R15, SHDLCE);
781                 /* The following bits are set (see 2.5.2.1):
782                    - Automatic EOM reset
783                    - Interrupt request if RX FIFO is half full
784                    This bit should be ignored in DMA mode (according to the
785                    documentation), but actually isn't. The receiver doesn't work if
786                    it is set. Thus, we have to clear it in DMA mode.
787                    - Interrupt/DMA request if TX FIFO is completely empty
788                    a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
789                    compatibility).
790                    b) If cleared, DMA requests may follow each other very quickly,
791                    filling up the TX FIFO.
792                    Advantage: TX works even in case of high bus latency.
793                    Disadvantage: Edge-triggered DMA request circuitry may miss
794                    a request. No more data is delivered, resulting
795                    in a TX FIFO underrun.
796                    Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
797                    The PackeTwin doesn't. I don't know about the PI, but let's
798                    assume it behaves like the PI2.
799                  */
800                 if (priv->param.dma >= 0) {
801                         if (priv->type == TYPE_TWIN)
802                                 write_scc(priv, R7, AUTOEOM | TXFIFOE);
803                         else
804                                 write_scc(priv, R7, AUTOEOM);
805                 } else {
806                         write_scc(priv, R7, AUTOEOM | RXFIFOH);
807                 }
808                 write_scc(priv, R15, 0);
809                 break;
810         }
811         /* Preset CRC, NRZ(I) encoding */
812         write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
813
814         /* Configure baud rate generator */
815         if (priv->param.brg_tc >= 0) {
816                 /* Program BR generator */
817                 write_scc(priv, R12, priv->param.brg_tc & 0xFF);
818                 write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
819                 /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
820                    PackeTwin, not connected on the PI2); set DPLL source to BRG */
821                 write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
822                 /* Enable DPLL */
823                 write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
824         } else {
825                 /* Disable BR generator */
826                 write_scc(priv, R14, DTRREQ | BRSRC);
827         }
828
829         /* Configure clocks */
830         if (priv->type == TYPE_TWIN) {
831                 /* Disable external TX clock receiver */
832                 outb((info->twin_serial_cfg &=
833                       ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
834                      card_base + TWIN_SERIAL_CFG);
835         }
836         write_scc(priv, R11, priv->param.clocks);
837         if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
838                 /* Enable external TX clock receiver */
839                 outb((info->twin_serial_cfg |=
840                       (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
841                      card_base + TWIN_SERIAL_CFG);
842         }
843
844         /* Configure PackeTwin */
845         if (priv->type == TYPE_TWIN) {
846                 /* Assert DTR, enable interrupts */
847                 outb((info->twin_serial_cfg |= TWIN_EI |
848                       (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
849                      card_base + TWIN_SERIAL_CFG);
850         }
851
852         /* Read current status */
853         priv->rr0 = read_scc(priv, R0);
854         /* Enable DCD interrupt */
855         write_scc(priv, R15, DCDIE);
856
857         netif_start_queue(dev);
858
859         return 0;
860 }
861
862
863 static int scc_close(struct net_device *dev)
864 {
865         struct scc_priv *priv = dev->priv;
866         struct scc_info *info = priv->info;
867         int card_base = priv->card_base;
868
869         netif_stop_queue(dev);
870
871         if (priv->type == TYPE_TWIN) {
872                 /* Drop DTR */
873                 outb((info->twin_serial_cfg &=
874                       (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
875                      card_base + TWIN_SERIAL_CFG);
876         }
877
878         /* Reset channel, free DMA and IRQ */
879         write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
880         if (priv->param.dma >= 0) {
881                 if (priv->type == TYPE_TWIN)
882                         outb(0, card_base + TWIN_DMA_CFG);
883                 free_dma(priv->param.dma);
884         }
885         if (--info->irq_used == 0)
886                 free_irq(dev->irq, info);
887
888         return 0;
889 }
890
891
892 static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
893 {
894         struct scc_priv *priv = dev->priv;
895
896         switch (cmd) {
897         case SIOCGSCCPARAM:
898                 if (copy_to_user
899                     (ifr->ifr_data, &priv->param,
900                      sizeof(struct scc_param)))
901                         return -EFAULT;
902                 return 0;
903         case SIOCSSCCPARAM:
904                 if (!capable(CAP_NET_ADMIN))
905                         return -EPERM;
906                 if (netif_running(dev))
907                         return -EAGAIN;
908                 if (copy_from_user
909                     (&priv->param, ifr->ifr_data,
910                      sizeof(struct scc_param)))
911                         return -EFAULT;
912                 return 0;
913         default:
914                 return -EINVAL;
915         }
916 }
917
918
919 static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
920 {
921         struct scc_priv *priv = dev->priv;
922         unsigned long flags;
923         int i;
924
925         /* Temporarily stop the scheduler feeding us packets */
926         netif_stop_queue(dev);
927
928         /* Transfer data to DMA buffer */
929         i = priv->tx_head;
930         skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
931         priv->tx_len[i] = skb->len - 1;
932
933         /* Clear interrupts while we touch our circular buffers */
934
935         spin_lock_irqsave(&priv->ring_lock, flags);
936         /* Move the ring buffer's head */
937         priv->tx_head = (i + 1) % NUM_TX_BUF;
938         priv->tx_count++;
939
940         /* If we just filled up the last buffer, leave queue stopped.
941            The higher layers must wait until we have a DMA buffer
942            to accept the data. */
943         if (priv->tx_count < NUM_TX_BUF)
944                 netif_wake_queue(dev);
945
946         /* Set new TX state */
947         if (priv->state == IDLE) {
948                 /* Assert RTS, start timer */
949                 priv->state = TX_HEAD;
950                 priv->tx_start = jiffies;
951                 write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
952                 write_scc(priv, R15, 0);
953                 start_timer(priv, priv->param.txdelay, 0);
954         }
955
956         /* Turn interrupts back on and free buffer */
957         spin_unlock_irqrestore(&priv->ring_lock, flags);
958         dev_kfree_skb(skb);
959
960         return 0;
961 }
962
963
964 static struct net_device_stats *scc_get_stats(struct net_device *dev)
965 {
966         struct scc_priv *priv = dev->priv;
967
968         return &priv->stats;
969 }
970
971
972 static int scc_set_mac_address(struct net_device *dev, void *sa)
973 {
974         memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
975                dev->addr_len);
976         return 0;
977 }
978
979
980 static inline void tx_on(struct scc_priv *priv)
981 {
982         int i, n;
983         unsigned long flags;
984
985         if (priv->param.dma >= 0) {
986                 n = (priv->chip == Z85230) ? 3 : 1;
987                 /* Program DMA controller */
988                 flags = claim_dma_lock();
989                 set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
990                 set_dma_addr(priv->param.dma,
991                              (int) priv->tx_buf[priv->tx_tail] + n);
992                 set_dma_count(priv->param.dma,
993                               priv->tx_len[priv->tx_tail] - n);
994                 release_dma_lock(flags);
995                 /* Enable TX underrun interrupt */
996                 write_scc(priv, R15, TxUIE);
997                 /* Configure DREQ */
998                 if (priv->type == TYPE_TWIN)
999                         outb((priv->param.dma ==
1000                               1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
1001                              priv->card_base + TWIN_DMA_CFG);
1002                 else
1003                         write_scc(priv, R1,
1004                                   EXT_INT_ENAB | WT_FN_RDYFN |
1005                                   WT_RDY_ENAB);
1006                 /* Write first byte(s) */
1007                 spin_lock_irqsave(priv->register_lock, flags);
1008                 for (i = 0; i < n; i++)
1009                         write_scc_data(priv,
1010                                        priv->tx_buf[priv->tx_tail][i], 1);
1011                 enable_dma(priv->param.dma);
1012                 spin_unlock_irqrestore(priv->register_lock, flags);
1013         } else {
1014                 write_scc(priv, R15, TxUIE);
1015                 write_scc(priv, R1,
1016                           EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
1017                 tx_isr(priv);
1018         }
1019         /* Reset EOM latch if we do not have the AUTOEOM feature */
1020         if (priv->chip == Z8530)
1021                 write_scc(priv, R0, RES_EOM_L);
1022 }
1023
1024
1025 static inline void rx_on(struct scc_priv *priv)
1026 {
1027         unsigned long flags;
1028
1029         /* Clear RX FIFO */
1030         while (read_scc(priv, R0) & Rx_CH_AV)
1031                 read_scc_data(priv);
1032         priv->rx_over = 0;
1033         if (priv->param.dma >= 0) {
1034                 /* Program DMA controller */
1035                 flags = claim_dma_lock();
1036                 set_dma_mode(priv->param.dma, DMA_MODE_READ);
1037                 set_dma_addr(priv->param.dma,
1038                              (int) priv->rx_buf[priv->rx_head]);
1039                 set_dma_count(priv->param.dma, BUF_SIZE);
1040                 release_dma_lock(flags);
1041                 enable_dma(priv->param.dma);
1042                 /* Configure PackeTwin DMA */
1043                 if (priv->type == TYPE_TWIN) {
1044                         outb((priv->param.dma ==
1045                               1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
1046                              priv->card_base + TWIN_DMA_CFG);
1047                 }
1048                 /* Sp. cond. intr. only, ext int enable, RX DMA enable */
1049                 write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
1050                           WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
1051         } else {
1052                 /* Reset current frame */
1053                 priv->rx_ptr = 0;
1054                 /* Intr. on all Rx characters and Sp. cond., ext int enable */
1055                 write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
1056                           WT_FN_RDYFN);
1057         }
1058         write_scc(priv, R0, ERR_RES);
1059         write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
1060 }
1061
1062
1063 static inline void rx_off(struct scc_priv *priv)
1064 {
1065         /* Disable receiver */
1066         write_scc(priv, R3, Rx8);
1067         /* Disable DREQ / RX interrupt */
1068         if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1069                 outb(0, priv->card_base + TWIN_DMA_CFG);
1070         else
1071                 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1072         /* Disable DMA */
1073         if (priv->param.dma >= 0)
1074                 disable_dma(priv->param.dma);
1075 }
1076
1077
1078 static void start_timer(struct scc_priv *priv, int t, int r15)
1079 {
1080         outb(priv->tmr_mode, priv->tmr_ctrl);
1081         if (t == 0) {
1082                 tm_isr(priv);
1083         } else if (t > 0) {
1084                 outb(t & 0xFF, priv->tmr_cnt);
1085                 outb((t >> 8) & 0xFF, priv->tmr_cnt);
1086                 if (priv->type != TYPE_TWIN) {
1087                         write_scc(priv, R15, r15 | CTSIE);
1088                         priv->rr0 |= CTS;
1089                 }
1090         }
1091 }
1092
1093
1094 static inline unsigned char random(void)
1095 {
1096         /* See "Numerical Recipes in C", second edition, p. 284 */
1097         rand = rand * 1664525L + 1013904223L;
1098         return (unsigned char) (rand >> 24);
1099 }
1100
1101 static inline void z8530_isr(struct scc_info *info)
1102 {
1103         int is, i = 100;
1104
1105         while ((is = read_scc(&info->priv[0], R3)) && i--) {
1106                 if (is & CHARxIP) {
1107                         rx_isr(&info->priv[0]);
1108                 } else if (is & CHATxIP) {
1109                         tx_isr(&info->priv[0]);
1110                 } else if (is & CHAEXT) {
1111                         es_isr(&info->priv[0]);
1112                 } else if (is & CHBRxIP) {
1113                         rx_isr(&info->priv[1]);
1114                 } else if (is & CHBTxIP) {
1115                         tx_isr(&info->priv[1]);
1116                 } else {
1117                         es_isr(&info->priv[1]);
1118                 }
1119                 write_scc(&info->priv[0], R0, RES_H_IUS);
1120                 i++;
1121         }
1122         if (i < 0) {
1123                 printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
1124                        is);
1125         }
1126         /* Ok, no interrupts pending from this 8530. The INT line should
1127            be inactive now. */
1128 }
1129
1130
1131 static irqreturn_t scc_isr(int irq, void *dev_id)
1132 {
1133         struct scc_info *info = dev_id;
1134
1135         spin_lock(info->priv[0].register_lock);
1136         /* At this point interrupts are enabled, and the interrupt under service
1137            is already acknowledged, but masked off.
1138
1139            Interrupt processing: We loop until we know that the IRQ line is
1140            low. If another positive edge occurs afterwards during the ISR,
1141            another interrupt will be triggered by the interrupt controller
1142            as soon as the IRQ level is enabled again (see asm/irq.h).
1143
1144            Bottom-half handlers will be processed after scc_isr(). This is
1145            important, since we only have small ringbuffers and want new data
1146            to be fetched/delivered immediately. */
1147
1148         if (info->priv[0].type == TYPE_TWIN) {
1149                 int is, card_base = info->priv[0].card_base;
1150                 while ((is = ~inb(card_base + TWIN_INT_REG)) &
1151                        TWIN_INT_MSK) {
1152                         if (is & TWIN_SCC_MSK) {
1153                                 z8530_isr(info);
1154                         } else if (is & TWIN_TMR1_MSK) {
1155                                 inb(card_base + TWIN_CLR_TMR1);
1156                                 tm_isr(&info->priv[0]);
1157                         } else {
1158                                 inb(card_base + TWIN_CLR_TMR2);
1159                                 tm_isr(&info->priv[1]);
1160                         }
1161                 }
1162         } else
1163                 z8530_isr(info);
1164         spin_unlock(info->priv[0].register_lock);
1165         return IRQ_HANDLED;
1166 }
1167
1168
1169 static void rx_isr(struct scc_priv *priv)
1170 {
1171         if (priv->param.dma >= 0) {
1172                 /* Check special condition and perform error reset. See 2.4.7.5. */
1173                 special_condition(priv, read_scc(priv, R1));
1174                 write_scc(priv, R0, ERR_RES);
1175         } else {
1176                 /* Check special condition for each character. Error reset not necessary.
1177                    Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
1178                 int rc;
1179                 while (read_scc(priv, R0) & Rx_CH_AV) {
1180                         rc = read_scc(priv, R1);
1181                         if (priv->rx_ptr < BUF_SIZE)
1182                                 priv->rx_buf[priv->rx_head][priv->
1183                                                             rx_ptr++] =
1184                                     read_scc_data(priv);
1185                         else {
1186                                 priv->rx_over = 2;
1187                                 read_scc_data(priv);
1188                         }
1189                         special_condition(priv, rc);
1190                 }
1191         }
1192 }
1193
1194
1195 static void special_condition(struct scc_priv *priv, int rc)
1196 {
1197         int cb;
1198         unsigned long flags;
1199
1200         /* See Figure 2-15. Only overrun and EOF need to be checked. */
1201
1202         if (rc & Rx_OVR) {
1203                 /* Receiver overrun */
1204                 priv->rx_over = 1;
1205                 if (priv->param.dma < 0)
1206                         write_scc(priv, R0, ERR_RES);
1207         } else if (rc & END_FR) {
1208                 /* End of frame. Get byte count */
1209                 if (priv->param.dma >= 0) {
1210                         flags = claim_dma_lock();
1211                         cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
1212                             2;
1213                         release_dma_lock(flags);
1214                 } else {
1215                         cb = priv->rx_ptr - 2;
1216                 }
1217                 if (priv->rx_over) {
1218                         /* We had an overrun */
1219                         priv->stats.rx_errors++;
1220                         if (priv->rx_over == 2)
1221                                 priv->stats.rx_length_errors++;
1222                         else
1223                                 priv->stats.rx_fifo_errors++;
1224                         priv->rx_over = 0;
1225                 } else if (rc & CRC_ERR) {
1226                         /* Count invalid CRC only if packet length >= minimum */
1227                         if (cb >= 15) {
1228                                 priv->stats.rx_errors++;
1229                                 priv->stats.rx_crc_errors++;
1230                         }
1231                 } else {
1232                         if (cb >= 15) {
1233                                 if (priv->rx_count < NUM_RX_BUF - 1) {
1234                                         /* Put good frame in FIFO */
1235                                         priv->rx_len[priv->rx_head] = cb;
1236                                         priv->rx_head =
1237                                             (priv->rx_head +
1238                                              1) % NUM_RX_BUF;
1239                                         priv->rx_count++;
1240                                         schedule_work(&priv->rx_work);
1241                                 } else {
1242                                         priv->stats.rx_errors++;
1243                                         priv->stats.rx_over_errors++;
1244                                 }
1245                         }
1246                 }
1247                 /* Get ready for new frame */
1248                 if (priv->param.dma >= 0) {
1249                         flags = claim_dma_lock();
1250                         set_dma_addr(priv->param.dma,
1251                                      (int) priv->rx_buf[priv->rx_head]);
1252                         set_dma_count(priv->param.dma, BUF_SIZE);
1253                         release_dma_lock(flags);
1254                 } else {
1255                         priv->rx_ptr = 0;
1256                 }
1257         }
1258 }
1259
1260
1261 static void rx_bh(struct work_struct *ugli_api)
1262 {
1263         struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
1264         int i = priv->rx_tail;
1265         int cb;
1266         unsigned long flags;
1267         struct sk_buff *skb;
1268         unsigned char *data;
1269
1270         spin_lock_irqsave(&priv->ring_lock, flags);
1271         while (priv->rx_count) {
1272                 spin_unlock_irqrestore(&priv->ring_lock, flags);
1273                 cb = priv->rx_len[i];
1274                 /* Allocate buffer */
1275                 skb = dev_alloc_skb(cb + 1);
1276                 if (skb == NULL) {
1277                         /* Drop packet */
1278                         priv->stats.rx_dropped++;
1279                 } else {
1280                         /* Fill buffer */
1281                         data = skb_put(skb, cb + 1);
1282                         data[0] = 0;
1283                         memcpy(&data[1], priv->rx_buf[i], cb);
1284                         skb->protocol = ax25_type_trans(skb, priv->dev);
1285                         netif_rx(skb);
1286                         priv->dev->last_rx = jiffies;
1287                         priv->stats.rx_packets++;
1288                         priv->stats.rx_bytes += cb;
1289                 }
1290                 spin_lock_irqsave(&priv->ring_lock, flags);
1291                 /* Move tail */
1292                 priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
1293                 priv->rx_count--;
1294         }
1295         spin_unlock_irqrestore(&priv->ring_lock, flags);
1296 }
1297
1298
1299 static void tx_isr(struct scc_priv *priv)
1300 {
1301         int i = priv->tx_tail, p = priv->tx_ptr;
1302
1303         /* Suspend TX interrupts if we don't want to send anything.
1304            See Figure 2-22. */
1305         if (p == priv->tx_len[i]) {
1306                 write_scc(priv, R0, RES_Tx_P);
1307                 return;
1308         }
1309
1310         /* Write characters */
1311         while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
1312                 write_scc_data(priv, priv->tx_buf[i][p++], 0);
1313         }
1314
1315         /* Reset EOM latch of Z8530 */
1316         if (!priv->tx_ptr && p && priv->chip == Z8530)
1317                 write_scc(priv, R0, RES_EOM_L);
1318
1319         priv->tx_ptr = p;
1320 }
1321
1322
1323 static void es_isr(struct scc_priv *priv)
1324 {
1325         int i, rr0, drr0, res;
1326         unsigned long flags;
1327
1328         /* Read status, reset interrupt bit (open latches) */
1329         rr0 = read_scc(priv, R0);
1330         write_scc(priv, R0, RES_EXT_INT);
1331         drr0 = priv->rr0 ^ rr0;
1332         priv->rr0 = rr0;
1333
1334         /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
1335            it might have already been cleared again by AUTOEOM. */
1336         if (priv->state == TX_DATA) {
1337                 /* Get remaining bytes */
1338                 i = priv->tx_tail;
1339                 if (priv->param.dma >= 0) {
1340                         disable_dma(priv->param.dma);
1341                         flags = claim_dma_lock();
1342                         res = get_dma_residue(priv->param.dma);
1343                         release_dma_lock(flags);
1344                 } else {
1345                         res = priv->tx_len[i] - priv->tx_ptr;
1346                         priv->tx_ptr = 0;
1347                 }
1348                 /* Disable DREQ / TX interrupt */
1349                 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1350                         outb(0, priv->card_base + TWIN_DMA_CFG);
1351                 else
1352                         write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1353                 if (res) {
1354                         /* Update packet statistics */
1355                         priv->stats.tx_errors++;
1356                         priv->stats.tx_fifo_errors++;
1357                         /* Other underrun interrupts may already be waiting */
1358                         write_scc(priv, R0, RES_EXT_INT);
1359                         write_scc(priv, R0, RES_EXT_INT);
1360                 } else {
1361                         /* Update packet statistics */
1362                         priv->stats.tx_packets++;
1363                         priv->stats.tx_bytes += priv->tx_len[i];
1364                         /* Remove frame from FIFO */
1365                         priv->tx_tail = (i + 1) % NUM_TX_BUF;
1366                         priv->tx_count--;
1367                         /* Inform upper layers */
1368                         netif_wake_queue(priv->dev);
1369                 }
1370                 /* Switch state */
1371                 write_scc(priv, R15, 0);
1372                 if (priv->tx_count &&
1373                     (jiffies - priv->tx_start) < priv->param.txtimeout) {
1374                         priv->state = TX_PAUSE;
1375                         start_timer(priv, priv->param.txpause, 0);
1376                 } else {
1377                         priv->state = TX_TAIL;
1378                         start_timer(priv, priv->param.txtail, 0);
1379                 }
1380         }
1381
1382         /* DCD transition */
1383         if (drr0 & DCD) {
1384                 if (rr0 & DCD) {
1385                         switch (priv->state) {
1386                         case IDLE:
1387                         case WAIT:
1388                                 priv->state = DCD_ON;
1389                                 write_scc(priv, R15, 0);
1390                                 start_timer(priv, priv->param.dcdon, 0);
1391                         }
1392                 } else {
1393                         switch (priv->state) {
1394                         case RX_ON:
1395                                 rx_off(priv);
1396                                 priv->state = DCD_OFF;
1397                                 write_scc(priv, R15, 0);
1398                                 start_timer(priv, priv->param.dcdoff, 0);
1399                         }
1400                 }
1401         }
1402
1403         /* CTS transition */
1404         if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
1405                 tm_isr(priv);
1406
1407 }
1408
1409
1410 static void tm_isr(struct scc_priv *priv)
1411 {
1412         switch (priv->state) {
1413         case TX_HEAD:
1414         case TX_PAUSE:
1415                 tx_on(priv);
1416                 priv->state = TX_DATA;
1417                 break;
1418         case TX_TAIL:
1419                 write_scc(priv, R5, TxCRC_ENAB | Tx8);
1420                 priv->state = RTS_OFF;
1421                 if (priv->type != TYPE_TWIN)
1422                         write_scc(priv, R15, 0);
1423                 start_timer(priv, priv->param.rtsoff, 0);
1424                 break;
1425         case RTS_OFF:
1426                 write_scc(priv, R15, DCDIE);
1427                 priv->rr0 = read_scc(priv, R0);
1428                 if (priv->rr0 & DCD) {
1429                         priv->stats.collisions++;
1430                         rx_on(priv);
1431                         priv->state = RX_ON;
1432                 } else {
1433                         priv->state = WAIT;
1434                         start_timer(priv, priv->param.waittime, DCDIE);
1435                 }
1436                 break;
1437         case WAIT:
1438                 if (priv->tx_count) {
1439                         priv->state = TX_HEAD;
1440                         priv->tx_start = jiffies;
1441                         write_scc(priv, R5,
1442                                   TxCRC_ENAB | RTS | TxENAB | Tx8);
1443                         write_scc(priv, R15, 0);
1444                         start_timer(priv, priv->param.txdelay, 0);
1445                 } else {
1446                         priv->state = IDLE;
1447                         if (priv->type != TYPE_TWIN)
1448                                 write_scc(priv, R15, DCDIE);
1449                 }
1450                 break;
1451         case DCD_ON:
1452         case DCD_OFF:
1453                 write_scc(priv, R15, DCDIE);
1454                 priv->rr0 = read_scc(priv, R0);
1455                 if (priv->rr0 & DCD) {
1456                         rx_on(priv);
1457                         priv->state = RX_ON;
1458                 } else {
1459                         priv->state = WAIT;
1460                         start_timer(priv,
1461                                     random() / priv->param.persist *
1462                                     priv->param.slottime, DCDIE);
1463                 }
1464                 break;
1465         }
1466 }