1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
47 #define DRV_VERSION "1.0.8-k2"
48 char igb_driver_name[] = "igb";
49 char igb_driver_version[] = DRV_VERSION;
50 static const char igb_driver_string[] =
51 "Intel(R) Gigabit Ethernet Network Driver";
52 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
55 static const struct e1000_info *igb_info_tbl[] = {
56 [board_82575] = &e1000_82575_info,
59 static struct pci_device_id igb_pci_tbl[] = {
60 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63 /* required last entry */
67 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
69 void igb_reset(struct igb_adapter *);
70 static int igb_setup_all_tx_resources(struct igb_adapter *);
71 static int igb_setup_all_rx_resources(struct igb_adapter *);
72 static void igb_free_all_tx_resources(struct igb_adapter *);
73 static void igb_free_all_rx_resources(struct igb_adapter *);
74 static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75 static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76 void igb_update_stats(struct igb_adapter *);
77 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78 static void __devexit igb_remove(struct pci_dev *pdev);
79 static int igb_sw_init(struct igb_adapter *);
80 static int igb_open(struct net_device *);
81 static int igb_close(struct net_device *);
82 static void igb_configure_tx(struct igb_adapter *);
83 static void igb_configure_rx(struct igb_adapter *);
84 static void igb_setup_rctl(struct igb_adapter *);
85 static void igb_clean_all_tx_rings(struct igb_adapter *);
86 static void igb_clean_all_rx_rings(struct igb_adapter *);
87 static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88 static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89 static void igb_set_multi(struct net_device *);
90 static void igb_update_phy_info(unsigned long);
91 static void igb_watchdog(unsigned long);
92 static void igb_watchdog_task(struct work_struct *);
93 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
95 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96 static struct net_device_stats *igb_get_stats(struct net_device *);
97 static int igb_change_mtu(struct net_device *, int);
98 static int igb_set_mac(struct net_device *, void *);
99 static irqreturn_t igb_intr(int irq, void *);
100 static irqreturn_t igb_intr_msi(int irq, void *);
101 static irqreturn_t igb_msix_other(int irq, void *);
102 static irqreturn_t igb_msix_rx(int irq, void *);
103 static irqreturn_t igb_msix_tx(int irq, void *);
104 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105 static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106 static int igb_clean(struct napi_struct *, int);
107 static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108 struct igb_ring *, int *, int);
109 static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110 struct igb_ring *, int);
111 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112 static void igb_tx_timeout(struct net_device *);
113 static void igb_reset_task(struct work_struct *);
114 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115 static void igb_vlan_rx_add_vid(struct net_device *, u16);
116 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117 static void igb_restore_vlan(struct igb_adapter *);
119 static int igb_suspend(struct pci_dev *, pm_message_t);
121 static int igb_resume(struct pci_dev *);
123 static void igb_shutdown(struct pci_dev *);
125 #ifdef CONFIG_NET_POLL_CONTROLLER
126 /* for netdump / net console */
127 static void igb_netpoll(struct net_device *);
130 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131 pci_channel_state_t);
132 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133 static void igb_io_resume(struct pci_dev *);
135 static struct pci_error_handlers igb_err_handler = {
136 .error_detected = igb_io_error_detected,
137 .slot_reset = igb_io_slot_reset,
138 .resume = igb_io_resume,
142 static struct pci_driver igb_driver = {
143 .name = igb_driver_name,
144 .id_table = igb_pci_tbl,
146 .remove = __devexit_p(igb_remove),
148 /* Power Managment Hooks */
149 .suspend = igb_suspend,
150 .resume = igb_resume,
152 .shutdown = igb_shutdown,
153 .err_handler = &igb_err_handler
156 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158 MODULE_LICENSE("GPL");
159 MODULE_VERSION(DRV_VERSION);
163 * igb_get_hw_dev_name - return device name string
164 * used by hardware layer to print debugging information
166 char *igb_get_hw_dev_name(struct e1000_hw *hw)
168 struct igb_adapter *adapter = hw->back;
169 return adapter->netdev->name;
174 * igb_init_module - Driver Registration Routine
176 * igb_init_module is the first routine called when the driver is
177 * loaded. All it does is register with the PCI subsystem.
179 static int __init igb_init_module(void)
182 printk(KERN_INFO "%s - version %s\n",
183 igb_driver_string, igb_driver_version);
185 printk(KERN_INFO "%s\n", igb_copyright);
187 ret = pci_register_driver(&igb_driver);
191 module_init(igb_init_module);
194 * igb_exit_module - Driver Exit Cleanup Routine
196 * igb_exit_module is called just before the driver is removed
199 static void __exit igb_exit_module(void)
201 pci_unregister_driver(&igb_driver);
204 module_exit(igb_exit_module);
207 * igb_alloc_queues - Allocate memory for all rings
208 * @adapter: board private structure to initialize
210 * We allocate one ring per queue at run-time since we don't know the
211 * number of queues at compile-time.
213 static int igb_alloc_queues(struct igb_adapter *adapter)
217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218 sizeof(struct igb_ring), GFP_KERNEL);
219 if (!adapter->tx_ring)
222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223 sizeof(struct igb_ring), GFP_KERNEL);
224 if (!adapter->rx_ring) {
225 kfree(adapter->tx_ring);
229 for (i = 0; i < adapter->num_rx_queues; i++) {
230 struct igb_ring *ring = &(adapter->rx_ring[i]);
231 ring->adapter = adapter;
232 ring->itr_register = E1000_ITR;
234 if (!ring->napi.poll)
235 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236 adapter->napi.weight /
237 adapter->num_rx_queues);
242 #define IGB_N0_QUEUE -1
243 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244 int tx_queue, int msix_vector)
247 struct e1000_hw *hw = &adapter->hw;
248 /* The 82575 assigns vectors using a bitmask, which matches the
249 bitmask for the EICR/EIMS/EIMC registers. To assign one
250 or more queues to a vector, we write the appropriate bits
251 into the MSIXBM register for that vector. */
252 if (rx_queue > IGB_N0_QUEUE) {
253 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254 adapter->rx_ring[rx_queue].eims_value = msixbm;
256 if (tx_queue > IGB_N0_QUEUE) {
257 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258 adapter->tx_ring[tx_queue].eims_value =
259 E1000_EICR_TX_QUEUE0 << tx_queue;
261 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
265 * igb_configure_msix - Configure MSI-X hardware
267 * igb_configure_msix sets up the hardware to properly
268 * generate MSI-X interrupts.
270 static void igb_configure_msix(struct igb_adapter *adapter)
274 struct e1000_hw *hw = &adapter->hw;
276 adapter->eims_enable_mask = 0;
278 for (i = 0; i < adapter->num_tx_queues; i++) {
279 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281 adapter->eims_enable_mask |= tx_ring->eims_value;
282 if (tx_ring->itr_val)
283 writel(1000000000 / (tx_ring->itr_val * 256),
284 hw->hw_addr + tx_ring->itr_register);
286 writel(1, hw->hw_addr + tx_ring->itr_register);
289 for (i = 0; i < adapter->num_rx_queues; i++) {
290 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292 adapter->eims_enable_mask |= rx_ring->eims_value;
293 if (rx_ring->itr_val)
294 writel(1000000000 / (rx_ring->itr_val * 256),
295 hw->hw_addr + rx_ring->itr_register);
297 writel(1, hw->hw_addr + rx_ring->itr_register);
301 /* set vector for other causes, i.e. link changes */
302 array_wr32(E1000_MSIXBM(0), vector++,
305 /* disable IAM for ICR interrupt bits */
308 tmp = rd32(E1000_CTRL_EXT);
309 /* enable MSI-X PBA support*/
310 tmp |= E1000_CTRL_EXT_PBA_CLR;
312 /* Auto-Mask interrupts upon ICR read. */
313 tmp |= E1000_CTRL_EXT_EIAME;
314 tmp |= E1000_CTRL_EXT_IRCA;
316 wr32(E1000_CTRL_EXT, tmp);
317 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
323 * igb_request_msix - Initialize MSI-X interrupts
325 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
328 static int igb_request_msix(struct igb_adapter *adapter)
330 struct net_device *netdev = adapter->netdev;
331 int i, err = 0, vector = 0;
335 for (i = 0; i < adapter->num_tx_queues; i++) {
336 struct igb_ring *ring = &(adapter->tx_ring[i]);
337 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338 err = request_irq(adapter->msix_entries[vector].vector,
339 &igb_msix_tx, 0, ring->name,
340 &(adapter->tx_ring[i]));
343 ring->itr_register = E1000_EITR(0) + (vector << 2);
344 ring->itr_val = adapter->itr;
347 for (i = 0; i < adapter->num_rx_queues; i++) {
348 struct igb_ring *ring = &(adapter->rx_ring[i]);
349 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350 sprintf(ring->name, "%s-rx%d", netdev->name, i);
352 memcpy(ring->name, netdev->name, IFNAMSIZ);
353 err = request_irq(adapter->msix_entries[vector].vector,
354 &igb_msix_rx, 0, ring->name,
355 &(adapter->rx_ring[i]));
358 ring->itr_register = E1000_EITR(0) + (vector << 2);
359 ring->itr_val = adapter->itr;
363 err = request_irq(adapter->msix_entries[vector].vector,
364 &igb_msix_other, 0, netdev->name, netdev);
368 adapter->napi.poll = igb_clean_rx_ring_msix;
369 for (i = 0; i < adapter->num_rx_queues; i++)
370 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371 igb_configure_msix(adapter);
377 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
379 if (adapter->msix_entries) {
380 pci_disable_msix(adapter->pdev);
381 kfree(adapter->msix_entries);
382 adapter->msix_entries = NULL;
383 } else if (adapter->msi_enabled)
384 pci_disable_msi(adapter->pdev);
390 * igb_set_interrupt_capability - set MSI or MSI-X if supported
392 * Attempt to configure interrupts using the best available
393 * capabilities of the hardware and kernel.
395 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
400 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
403 if (!adapter->msix_entries)
406 for (i = 0; i < numvecs; i++)
407 adapter->msix_entries[i].entry = i;
409 err = pci_enable_msix(adapter->pdev,
410 adapter->msix_entries,
415 igb_reset_interrupt_capability(adapter);
417 /* If we can't do MSI-X, try MSI */
419 adapter->num_rx_queues = 1;
420 if (!pci_enable_msi(adapter->pdev))
421 adapter->msi_enabled = 1;
426 * igb_request_irq - initialize interrupts
428 * Attempts to configure interrupts using the best available
429 * capabilities of the hardware and kernel.
431 static int igb_request_irq(struct igb_adapter *adapter)
433 struct net_device *netdev = adapter->netdev;
434 struct e1000_hw *hw = &adapter->hw;
437 if (adapter->msix_entries) {
438 err = igb_request_msix(adapter);
440 /* enable IAM, auto-mask,
441 * DO NOT USE EIAM or IAM in legacy mode */
442 wr32(E1000_IAM, IMS_ENABLE_MASK);
445 /* fall back to MSI */
446 igb_reset_interrupt_capability(adapter);
447 if (!pci_enable_msi(adapter->pdev))
448 adapter->msi_enabled = 1;
449 igb_free_all_tx_resources(adapter);
450 igb_free_all_rx_resources(adapter);
451 adapter->num_rx_queues = 1;
452 igb_alloc_queues(adapter);
454 if (adapter->msi_enabled) {
455 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456 netdev->name, netdev);
459 /* fall back to legacy interrupts */
460 igb_reset_interrupt_capability(adapter);
461 adapter->msi_enabled = 0;
464 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465 netdev->name, netdev);
468 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
475 static void igb_free_irq(struct igb_adapter *adapter)
477 struct net_device *netdev = adapter->netdev;
479 if (adapter->msix_entries) {
482 for (i = 0; i < adapter->num_tx_queues; i++)
483 free_irq(adapter->msix_entries[vector++].vector,
484 &(adapter->tx_ring[i]));
485 for (i = 0; i < adapter->num_rx_queues; i++)
486 free_irq(adapter->msix_entries[vector++].vector,
487 &(adapter->rx_ring[i]));
489 free_irq(adapter->msix_entries[vector++].vector, netdev);
493 free_irq(adapter->pdev->irq, netdev);
497 * igb_irq_disable - Mask off interrupt generation on the NIC
498 * @adapter: board private structure
500 static void igb_irq_disable(struct igb_adapter *adapter)
502 struct e1000_hw *hw = &adapter->hw;
504 if (adapter->msix_entries) {
505 wr32(E1000_EIMC, ~0);
510 synchronize_irq(adapter->pdev->irq);
514 * igb_irq_enable - Enable default interrupt generation settings
515 * @adapter: board private structure
517 static void igb_irq_enable(struct igb_adapter *adapter)
519 struct e1000_hw *hw = &adapter->hw;
521 if (adapter->msix_entries) {
523 adapter->eims_enable_mask);
525 adapter->eims_enable_mask);
526 wr32(E1000_IMS, E1000_IMS_LSC);
528 wr32(E1000_IMS, IMS_ENABLE_MASK);
531 static void igb_update_mng_vlan(struct igb_adapter *adapter)
533 struct net_device *netdev = adapter->netdev;
534 u16 vid = adapter->hw.mng_cookie.vlan_id;
535 u16 old_vid = adapter->mng_vlan_id;
536 if (adapter->vlgrp) {
537 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538 if (adapter->hw.mng_cookie.status &
539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540 igb_vlan_rx_add_vid(netdev, vid);
541 adapter->mng_vlan_id = vid;
543 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
545 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
547 !vlan_group_get_device(adapter->vlgrp, old_vid))
548 igb_vlan_rx_kill_vid(netdev, old_vid);
550 adapter->mng_vlan_id = vid;
555 * igb_release_hw_control - release control of the h/w to f/w
556 * @adapter: address of board private structure
558 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559 * For ASF and Pass Through versions of f/w this means that the
560 * driver is no longer loaded.
563 static void igb_release_hw_control(struct igb_adapter *adapter)
565 struct e1000_hw *hw = &adapter->hw;
568 /* Let firmware take over control of h/w */
569 ctrl_ext = rd32(E1000_CTRL_EXT);
571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
576 * igb_get_hw_control - get control of the h/w from f/w
577 * @adapter: address of board private structure
579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580 * For ASF and Pass Through versions of f/w this means that
581 * the driver is loaded.
584 static void igb_get_hw_control(struct igb_adapter *adapter)
586 struct e1000_hw *hw = &adapter->hw;
589 /* Let firmware know the driver has taken over */
590 ctrl_ext = rd32(E1000_CTRL_EXT);
592 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
595 static void igb_init_manageability(struct igb_adapter *adapter)
597 struct e1000_hw *hw = &adapter->hw;
599 if (adapter->en_mng_pt) {
600 u32 manc2h = rd32(E1000_MANC2H);
601 u32 manc = rd32(E1000_MANC);
603 /* enable receiving management packets to the host */
604 /* this will probably generate destination unreachable messages
605 * from the host OS, but the packets will be handled on SMBUS */
606 manc |= E1000_MANC_EN_MNG2HOST;
607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
609 manc2h |= E1000_MNG2HOST_PORT_623;
610 manc2h |= E1000_MNG2HOST_PORT_664;
611 wr32(E1000_MANC2H, manc2h);
613 wr32(E1000_MANC, manc);
618 * igb_configure - configure the hardware for RX and TX
619 * @adapter: private board structure
621 static void igb_configure(struct igb_adapter *adapter)
623 struct net_device *netdev = adapter->netdev;
626 igb_get_hw_control(adapter);
627 igb_set_multi(netdev);
629 igb_restore_vlan(adapter);
630 igb_init_manageability(adapter);
632 igb_configure_tx(adapter);
633 igb_setup_rctl(adapter);
634 igb_configure_rx(adapter);
635 /* call IGB_DESC_UNUSED which always leaves
636 * at least 1 descriptor unused to make sure
637 * next_to_use != next_to_clean */
638 for (i = 0; i < adapter->num_rx_queues; i++) {
639 struct igb_ring *ring = &adapter->rx_ring[i];
640 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
644 adapter->tx_queue_len = netdev->tx_queue_len;
649 * igb_up - Open the interface and prepare it to handle traffic
650 * @adapter: board private structure
653 int igb_up(struct igb_adapter *adapter)
655 struct e1000_hw *hw = &adapter->hw;
658 /* hardware has been reset, we need to reload some things */
659 igb_configure(adapter);
661 clear_bit(__IGB_DOWN, &adapter->state);
663 napi_enable(&adapter->napi);
665 if (adapter->msix_entries) {
666 for (i = 0; i < adapter->num_rx_queues; i++)
667 napi_enable(&adapter->rx_ring[i].napi);
668 igb_configure_msix(adapter);
671 /* Clear any pending interrupts. */
673 igb_irq_enable(adapter);
675 /* Fire a link change interrupt to start the watchdog. */
676 wr32(E1000_ICS, E1000_ICS_LSC);
680 void igb_down(struct igb_adapter *adapter)
682 struct e1000_hw *hw = &adapter->hw;
683 struct net_device *netdev = adapter->netdev;
687 /* signal that we're down so the interrupt handler does not
688 * reschedule our watchdog timer */
689 set_bit(__IGB_DOWN, &adapter->state);
691 /* disable receives in the hardware */
692 rctl = rd32(E1000_RCTL);
693 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694 /* flush and sleep below */
696 netif_stop_queue(netdev);
698 /* disable transmits in the hardware */
699 tctl = rd32(E1000_TCTL);
700 tctl &= ~E1000_TCTL_EN;
701 wr32(E1000_TCTL, tctl);
702 /* flush both disables and wait for them to finish */
706 napi_disable(&adapter->napi);
708 if (adapter->msix_entries)
709 for (i = 0; i < adapter->num_rx_queues; i++)
710 napi_disable(&adapter->rx_ring[i].napi);
711 igb_irq_disable(adapter);
713 del_timer_sync(&adapter->watchdog_timer);
714 del_timer_sync(&adapter->phy_info_timer);
716 netdev->tx_queue_len = adapter->tx_queue_len;
717 netif_carrier_off(netdev);
718 adapter->link_speed = 0;
719 adapter->link_duplex = 0;
721 if (!pci_channel_offline(adapter->pdev))
723 igb_clean_all_tx_rings(adapter);
724 igb_clean_all_rx_rings(adapter);
727 void igb_reinit_locked(struct igb_adapter *adapter)
729 WARN_ON(in_interrupt());
730 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
734 clear_bit(__IGB_RESETTING, &adapter->state);
737 void igb_reset(struct igb_adapter *adapter)
739 struct e1000_hw *hw = &adapter->hw;
740 struct e1000_fc_info *fc = &adapter->hw.fc;
741 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
744 /* Repartition Pba for greater than 9k mtu
745 * To take effect CTRL.RST is required.
749 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
750 /* adjust PBA for jumbo frames */
751 wr32(E1000_PBA, pba);
753 /* To maintain wire speed transmits, the Tx FIFO should be
754 * large enough to accommodate two full transmit packets,
755 * rounded up to the next 1KB and expressed in KB. Likewise,
756 * the Rx FIFO should be large enough to accommodate at least
757 * one full receive packet and is similarly rounded up and
758 * expressed in KB. */
759 pba = rd32(E1000_PBA);
760 /* upper 16 bits has Tx packet buffer allocation size in KB */
761 tx_space = pba >> 16;
762 /* lower 16 bits has Rx packet buffer allocation size in KB */
764 /* the tx fifo also stores 16 bytes of information about the tx
765 * but don't include ethernet FCS because hardware appends it */
766 min_tx_space = (adapter->max_frame_size +
767 sizeof(struct e1000_tx_desc) -
769 min_tx_space = ALIGN(min_tx_space, 1024);
771 /* software strips receive CRC, so leave room for it */
772 min_rx_space = adapter->max_frame_size;
773 min_rx_space = ALIGN(min_rx_space, 1024);
776 /* If current Tx allocation is less than the min Tx FIFO size,
777 * and the min Tx FIFO size is less than the current Rx FIFO
778 * allocation, take space away from current Rx allocation */
779 if (tx_space < min_tx_space &&
780 ((min_tx_space - tx_space) < pba)) {
781 pba = pba - (min_tx_space - tx_space);
783 /* if short on rx space, rx wins and must trump tx
785 if (pba < min_rx_space)
789 wr32(E1000_PBA, pba);
791 /* flow control settings */
792 /* The high water mark must be low enough to fit one full frame
793 * (or the size used for early receive) above it in the Rx FIFO.
794 * Set it to the lower of:
795 * - 90% of the Rx FIFO size, or
796 * - the full Rx FIFO size minus one full frame */
797 hwm = min(((pba << 10) * 9 / 10),
798 ((pba << 10) - adapter->max_frame_size));
800 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
801 fc->low_water = fc->high_water - 8;
802 fc->pause_time = 0xFFFF;
804 fc->type = fc->original_type;
806 /* Allow time for pending master requests to run */
807 adapter->hw.mac.ops.reset_hw(&adapter->hw);
810 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
811 dev_err(&adapter->pdev->dev, "Hardware Error\n");
813 igb_update_mng_vlan(adapter);
815 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
816 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
818 igb_reset_adaptive(&adapter->hw);
819 if (adapter->hw.phy.ops.get_phy_info)
820 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
824 * igb_probe - Device Initialization Routine
825 * @pdev: PCI device information struct
826 * @ent: entry in igb_pci_tbl
828 * Returns 0 on success, negative on failure
830 * igb_probe initializes an adapter identified by a pci_dev structure.
831 * The OS initialization, configuring of the adapter private structure,
832 * and a hardware reset occur.
834 static int __devinit igb_probe(struct pci_dev *pdev,
835 const struct pci_device_id *ent)
837 struct net_device *netdev;
838 struct igb_adapter *adapter;
840 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
841 unsigned long mmio_start, mmio_len;
842 static int cards_found;
843 int i, err, pci_using_dac;
845 u16 eeprom_apme_mask = IGB_EEPROM_APME;
848 err = pci_enable_device(pdev);
853 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
855 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
859 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
861 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
863 dev_err(&pdev->dev, "No usable DMA "
864 "configuration, aborting\n");
870 err = pci_request_regions(pdev, igb_driver_name);
874 pci_set_master(pdev);
875 pci_save_state(pdev);
878 netdev = alloc_etherdev(sizeof(struct igb_adapter));
880 goto err_alloc_etherdev;
882 SET_NETDEV_DEV(netdev, &pdev->dev);
884 pci_set_drvdata(pdev, netdev);
885 adapter = netdev_priv(netdev);
886 adapter->netdev = netdev;
887 adapter->pdev = pdev;
890 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
892 mmio_start = pci_resource_start(pdev, 0);
893 mmio_len = pci_resource_len(pdev, 0);
896 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
897 if (!adapter->hw.hw_addr)
900 netdev->open = &igb_open;
901 netdev->stop = &igb_close;
902 netdev->get_stats = &igb_get_stats;
903 netdev->set_multicast_list = &igb_set_multi;
904 netdev->set_mac_address = &igb_set_mac;
905 netdev->change_mtu = &igb_change_mtu;
906 netdev->do_ioctl = &igb_ioctl;
907 igb_set_ethtool_ops(netdev);
908 netdev->tx_timeout = &igb_tx_timeout;
909 netdev->watchdog_timeo = 5 * HZ;
910 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
911 netdev->vlan_rx_register = igb_vlan_rx_register;
912 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
913 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
914 #ifdef CONFIG_NET_POLL_CONTROLLER
915 netdev->poll_controller = igb_netpoll;
917 netdev->hard_start_xmit = &igb_xmit_frame_adv;
919 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
921 netdev->mem_start = mmio_start;
922 netdev->mem_end = mmio_start + mmio_len;
924 adapter->bd_number = cards_found;
926 /* PCI config space info */
927 hw->vendor_id = pdev->vendor;
928 hw->device_id = pdev->device;
929 hw->revision_id = pdev->revision;
930 hw->subsystem_vendor_id = pdev->subsystem_vendor;
931 hw->subsystem_device_id = pdev->subsystem_device;
933 /* setup the private structure */
935 /* Copy the default MAC, PHY and NVM function pointers */
936 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
937 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
938 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
939 /* Initialize skew-specific constants */
940 err = ei->get_invariants(hw);
944 err = igb_sw_init(adapter);
948 igb_get_bus_info_pcie(hw);
950 hw->phy.autoneg_wait_to_complete = false;
951 hw->mac.adaptive_ifs = true;
954 if (hw->phy.media_type == e1000_media_type_copper) {
955 hw->phy.mdix = AUTO_ALL_MODES;
956 hw->phy.disable_polarity_correction = false;
957 hw->phy.ms_type = e1000_ms_hw_default;
960 if (igb_check_reset_block(hw))
962 "PHY reset is blocked due to SOL/IDER session.\n");
964 netdev->features = NETIF_F_SG |
968 NETIF_F_HW_VLAN_FILTER;
970 netdev->features |= NETIF_F_TSO;
972 netdev->features |= NETIF_F_TSO6;
974 netdev->features |= NETIF_F_HIGHDMA;
976 netdev->features |= NETIF_F_LLTX;
977 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
979 /* before reading the NVM, reset the controller to put the device in a
980 * known good starting state */
981 hw->mac.ops.reset_hw(hw);
983 /* make sure the NVM is good */
984 if (igb_validate_nvm_checksum(hw) < 0) {
985 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
990 /* copy the MAC address out of the NVM */
991 if (hw->mac.ops.read_mac_addr(hw))
992 dev_err(&pdev->dev, "NVM Read Error\n");
994 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
995 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
997 if (!is_valid_ether_addr(netdev->perm_addr)) {
998 dev_err(&pdev->dev, "Invalid MAC Address\n");
1003 init_timer(&adapter->watchdog_timer);
1004 adapter->watchdog_timer.function = &igb_watchdog;
1005 adapter->watchdog_timer.data = (unsigned long) adapter;
1007 init_timer(&adapter->phy_info_timer);
1008 adapter->phy_info_timer.function = &igb_update_phy_info;
1009 adapter->phy_info_timer.data = (unsigned long) adapter;
1011 INIT_WORK(&adapter->reset_task, igb_reset_task);
1012 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1014 /* Initialize link & ring properties that are user-changeable */
1015 adapter->tx_ring->count = 256;
1016 for (i = 0; i < adapter->num_tx_queues; i++)
1017 adapter->tx_ring[i].count = adapter->tx_ring->count;
1018 adapter->rx_ring->count = 256;
1019 for (i = 0; i < adapter->num_rx_queues; i++)
1020 adapter->rx_ring[i].count = adapter->rx_ring->count;
1022 adapter->fc_autoneg = true;
1023 hw->mac.autoneg = true;
1024 hw->phy.autoneg_advertised = 0x2f;
1026 hw->fc.original_type = e1000_fc_default;
1027 hw->fc.type = e1000_fc_default;
1029 adapter->itr_setting = 3;
1030 adapter->itr = IGB_START_ITR;
1032 igb_validate_mdi_setting(hw);
1034 adapter->rx_csum = 1;
1036 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1037 * enable the ACPI Magic Packet filter
1040 if (hw->bus.func == 0 ||
1041 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1042 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1045 if (eeprom_data & eeprom_apme_mask)
1046 adapter->eeprom_wol |= E1000_WUFC_MAG;
1048 /* now that we have the eeprom settings, apply the special cases where
1049 * the eeprom may be wrong or the board simply won't support wake on
1050 * lan on a particular port */
1051 switch (pdev->device) {
1052 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1053 adapter->eeprom_wol = 0;
1055 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1056 /* Wake events only supported on port A for dual fiber
1057 * regardless of eeprom setting */
1058 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1059 adapter->eeprom_wol = 0;
1063 /* initialize the wol settings based on the eeprom settings */
1064 adapter->wol = adapter->eeprom_wol;
1066 /* reset the hardware with the new settings */
1069 /* let the f/w know that the h/w is now under the control of the
1071 igb_get_hw_control(adapter);
1073 /* tell the stack to leave us alone until igb_open() is called */
1074 netif_carrier_off(netdev);
1075 netif_stop_queue(netdev);
1077 strcpy(netdev->name, "eth%d");
1078 err = register_netdev(netdev);
1082 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1083 /* print bus type/speed/width info */
1084 dev_info(&pdev->dev,
1085 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1087 ((hw->bus.speed == e1000_bus_speed_2500)
1088 ? "2.5Gb/s" : "unknown"),
1089 ((hw->bus.width == e1000_bus_width_pcie_x4)
1090 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1091 ? "Width x1" : "unknown"),
1092 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1093 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1095 igb_read_part_num(hw, &part_num);
1096 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1097 (part_num >> 8), (part_num & 0xff));
1099 dev_info(&pdev->dev,
1100 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1101 adapter->msix_entries ? "MSI-X" :
1102 adapter->msi_enabled ? "MSI" : "legacy",
1103 adapter->num_rx_queues, adapter->num_tx_queues);
1109 igb_release_hw_control(adapter);
1111 if (!igb_check_reset_block(hw))
1112 hw->phy.ops.reset_phy(hw);
1114 if (hw->flash_address)
1115 iounmap(hw->flash_address);
1117 igb_remove_device(hw);
1118 kfree(adapter->tx_ring);
1119 kfree(adapter->rx_ring);
1122 iounmap(hw->hw_addr);
1124 free_netdev(netdev);
1126 pci_release_regions(pdev);
1129 pci_disable_device(pdev);
1134 * igb_remove - Device Removal Routine
1135 * @pdev: PCI device information struct
1137 * igb_remove is called by the PCI subsystem to alert the driver
1138 * that it should release a PCI device. The could be caused by a
1139 * Hot-Plug event, or because the driver is going to be removed from
1142 static void __devexit igb_remove(struct pci_dev *pdev)
1144 struct net_device *netdev = pci_get_drvdata(pdev);
1145 struct igb_adapter *adapter = netdev_priv(netdev);
1147 /* flush_scheduled work may reschedule our watchdog task, so
1148 * explicitly disable watchdog tasks from being rescheduled */
1149 set_bit(__IGB_DOWN, &adapter->state);
1150 del_timer_sync(&adapter->watchdog_timer);
1151 del_timer_sync(&adapter->phy_info_timer);
1153 flush_scheduled_work();
1155 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1156 * would have already happened in close and is redundant. */
1157 igb_release_hw_control(adapter);
1159 unregister_netdev(netdev);
1161 if (!igb_check_reset_block(&adapter->hw))
1162 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1164 igb_remove_device(&adapter->hw);
1165 igb_reset_interrupt_capability(adapter);
1167 kfree(adapter->tx_ring);
1168 kfree(adapter->rx_ring);
1170 iounmap(adapter->hw.hw_addr);
1171 if (adapter->hw.flash_address)
1172 iounmap(adapter->hw.flash_address);
1173 pci_release_regions(pdev);
1175 free_netdev(netdev);
1177 pci_disable_device(pdev);
1181 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1182 * @adapter: board private structure to initialize
1184 * igb_sw_init initializes the Adapter private data structure.
1185 * Fields are initialized based on PCI device information and
1186 * OS network device settings (MTU size).
1188 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1190 struct e1000_hw *hw = &adapter->hw;
1191 struct net_device *netdev = adapter->netdev;
1192 struct pci_dev *pdev = adapter->pdev;
1194 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1196 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1197 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1198 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1199 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1201 /* Number of supported queues. */
1202 /* Having more queues than CPUs doesn't make sense. */
1203 adapter->num_tx_queues = 1;
1204 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1206 igb_set_interrupt_capability(adapter);
1208 if (igb_alloc_queues(adapter)) {
1209 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1213 /* Explicitly disable IRQ since the NIC can be in any state. */
1214 igb_irq_disable(adapter);
1216 set_bit(__IGB_DOWN, &adapter->state);
1221 * igb_open - Called when a network interface is made active
1222 * @netdev: network interface device structure
1224 * Returns 0 on success, negative value on failure
1226 * The open entry point is called when a network interface is made
1227 * active by the system (IFF_UP). At this point all resources needed
1228 * for transmit and receive operations are allocated, the interrupt
1229 * handler is registered with the OS, the watchdog timer is started,
1230 * and the stack is notified that the interface is ready.
1232 static int igb_open(struct net_device *netdev)
1234 struct igb_adapter *adapter = netdev_priv(netdev);
1235 struct e1000_hw *hw = &adapter->hw;
1239 /* disallow open during test */
1240 if (test_bit(__IGB_TESTING, &adapter->state))
1243 /* allocate transmit descriptors */
1244 err = igb_setup_all_tx_resources(adapter);
1248 /* allocate receive descriptors */
1249 err = igb_setup_all_rx_resources(adapter);
1253 /* e1000_power_up_phy(adapter); */
1255 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1256 if ((adapter->hw.mng_cookie.status &
1257 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1258 igb_update_mng_vlan(adapter);
1260 /* before we allocate an interrupt, we must be ready to handle it.
1261 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1262 * as soon as we call pci_request_irq, so we have to setup our
1263 * clean_rx handler before we do so. */
1264 igb_configure(adapter);
1266 err = igb_request_irq(adapter);
1270 /* From here on the code is the same as igb_up() */
1271 clear_bit(__IGB_DOWN, &adapter->state);
1273 napi_enable(&adapter->napi);
1274 if (adapter->msix_entries)
1275 for (i = 0; i < adapter->num_rx_queues; i++)
1276 napi_enable(&adapter->rx_ring[i].napi);
1278 igb_irq_enable(adapter);
1280 /* Clear any pending interrupts. */
1282 /* Fire a link status change interrupt to start the watchdog. */
1283 wr32(E1000_ICS, E1000_ICS_LSC);
1288 igb_release_hw_control(adapter);
1289 /* e1000_power_down_phy(adapter); */
1290 igb_free_all_rx_resources(adapter);
1292 igb_free_all_tx_resources(adapter);
1300 * igb_close - Disables a network interface
1301 * @netdev: network interface device structure
1303 * Returns 0, this is not allowed to fail
1305 * The close entry point is called when an interface is de-activated
1306 * by the OS. The hardware is still under the driver's control, but
1307 * needs to be disabled. A global MAC reset is issued to stop the
1308 * hardware, and all transmit and receive resources are freed.
1310 static int igb_close(struct net_device *netdev)
1312 struct igb_adapter *adapter = netdev_priv(netdev);
1314 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1317 igb_free_irq(adapter);
1319 igb_free_all_tx_resources(adapter);
1320 igb_free_all_rx_resources(adapter);
1322 /* kill manageability vlan ID if supported, but not if a vlan with
1323 * the same ID is registered on the host OS (let 8021q kill it) */
1324 if ((adapter->hw.mng_cookie.status &
1325 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1327 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1328 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1334 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1335 * @adapter: board private structure
1336 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1338 * Return 0 on success, negative on failure
1341 int igb_setup_tx_resources(struct igb_adapter *adapter,
1342 struct igb_ring *tx_ring)
1344 struct pci_dev *pdev = adapter->pdev;
1347 size = sizeof(struct igb_buffer) * tx_ring->count;
1348 tx_ring->buffer_info = vmalloc(size);
1349 if (!tx_ring->buffer_info)
1351 memset(tx_ring->buffer_info, 0, size);
1353 /* round up to nearest 4K */
1354 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1356 tx_ring->size = ALIGN(tx_ring->size, 4096);
1358 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1364 tx_ring->adapter = adapter;
1365 tx_ring->next_to_use = 0;
1366 tx_ring->next_to_clean = 0;
1367 spin_lock_init(&tx_ring->tx_clean_lock);
1368 spin_lock_init(&tx_ring->tx_lock);
1372 vfree(tx_ring->buffer_info);
1373 dev_err(&adapter->pdev->dev,
1374 "Unable to allocate memory for the transmit descriptor ring\n");
1379 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1380 * (Descriptors) for all queues
1381 * @adapter: board private structure
1383 * Return 0 on success, negative on failure
1385 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1389 for (i = 0; i < adapter->num_tx_queues; i++) {
1390 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1392 dev_err(&adapter->pdev->dev,
1393 "Allocation for Tx Queue %u failed\n", i);
1394 for (i--; i >= 0; i--)
1395 igb_free_tx_resources(adapter,
1396 &adapter->tx_ring[i]);
1405 * igb_configure_tx - Configure transmit Unit after Reset
1406 * @adapter: board private structure
1408 * Configure the Tx unit of the MAC after a reset.
1410 static void igb_configure_tx(struct igb_adapter *adapter)
1413 struct e1000_hw *hw = &adapter->hw;
1418 for (i = 0; i < adapter->num_tx_queues; i++) {
1419 struct igb_ring *ring = &(adapter->tx_ring[i]);
1421 wr32(E1000_TDLEN(i),
1422 ring->count * sizeof(struct e1000_tx_desc));
1424 wr32(E1000_TDBAL(i),
1425 tdba & 0x00000000ffffffffULL);
1426 wr32(E1000_TDBAH(i), tdba >> 32);
1428 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1429 tdwba |= 1; /* enable head wb */
1430 wr32(E1000_TDWBAL(i),
1431 tdwba & 0x00000000ffffffffULL);
1432 wr32(E1000_TDWBAH(i), tdwba >> 32);
1434 ring->head = E1000_TDH(i);
1435 ring->tail = E1000_TDT(i);
1436 writel(0, hw->hw_addr + ring->tail);
1437 writel(0, hw->hw_addr + ring->head);
1438 txdctl = rd32(E1000_TXDCTL(i));
1439 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1440 wr32(E1000_TXDCTL(i), txdctl);
1442 /* Turn off Relaxed Ordering on head write-backs. The
1443 * writebacks MUST be delivered in order or it will
1444 * completely screw up our bookeeping.
1446 txctrl = rd32(E1000_DCA_TXCTRL(i));
1447 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1448 wr32(E1000_DCA_TXCTRL(i), txctrl);
1453 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1455 /* Program the Transmit Control Register */
1457 tctl = rd32(E1000_TCTL);
1458 tctl &= ~E1000_TCTL_CT;
1459 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1460 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1462 igb_config_collision_dist(hw);
1464 /* Setup Transmit Descriptor Settings for eop descriptor */
1465 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1467 /* Enable transmits */
1468 tctl |= E1000_TCTL_EN;
1470 wr32(E1000_TCTL, tctl);
1474 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1475 * @adapter: board private structure
1476 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1478 * Returns 0 on success, negative on failure
1481 int igb_setup_rx_resources(struct igb_adapter *adapter,
1482 struct igb_ring *rx_ring)
1484 struct pci_dev *pdev = adapter->pdev;
1487 size = sizeof(struct igb_buffer) * rx_ring->count;
1488 rx_ring->buffer_info = vmalloc(size);
1489 if (!rx_ring->buffer_info)
1491 memset(rx_ring->buffer_info, 0, size);
1493 desc_len = sizeof(union e1000_adv_rx_desc);
1495 /* Round up to nearest 4K */
1496 rx_ring->size = rx_ring->count * desc_len;
1497 rx_ring->size = ALIGN(rx_ring->size, 4096);
1499 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1505 rx_ring->next_to_clean = 0;
1506 rx_ring->next_to_use = 0;
1507 rx_ring->pending_skb = NULL;
1509 rx_ring->adapter = adapter;
1510 /* FIXME: do we want to setup ring->napi->poll here? */
1511 rx_ring->napi.poll = adapter->napi.poll;
1516 vfree(rx_ring->buffer_info);
1517 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1518 "the receive descriptor ring\n");
1523 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1524 * (Descriptors) for all queues
1525 * @adapter: board private structure
1527 * Return 0 on success, negative on failure
1529 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1533 for (i = 0; i < adapter->num_rx_queues; i++) {
1534 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1536 dev_err(&adapter->pdev->dev,
1537 "Allocation for Rx Queue %u failed\n", i);
1538 for (i--; i >= 0; i--)
1539 igb_free_rx_resources(adapter,
1540 &adapter->rx_ring[i]);
1549 * igb_setup_rctl - configure the receive control registers
1550 * @adapter: Board private structure
1552 static void igb_setup_rctl(struct igb_adapter *adapter)
1554 struct e1000_hw *hw = &adapter->hw;
1559 rctl = rd32(E1000_RCTL);
1561 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1563 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1564 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1565 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1567 /* disable the stripping of CRC because it breaks
1568 * BMC firmware connected over SMBUS
1569 rctl |= E1000_RCTL_SECRC;
1572 rctl &= ~E1000_RCTL_SBP;
1574 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1575 rctl &= ~E1000_RCTL_LPE;
1577 rctl |= E1000_RCTL_LPE;
1578 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1579 /* Setup buffer sizes */
1580 rctl &= ~E1000_RCTL_SZ_4096;
1581 rctl |= E1000_RCTL_BSEX;
1582 switch (adapter->rx_buffer_len) {
1583 case IGB_RXBUFFER_256:
1584 rctl |= E1000_RCTL_SZ_256;
1585 rctl &= ~E1000_RCTL_BSEX;
1587 case IGB_RXBUFFER_512:
1588 rctl |= E1000_RCTL_SZ_512;
1589 rctl &= ~E1000_RCTL_BSEX;
1591 case IGB_RXBUFFER_1024:
1592 rctl |= E1000_RCTL_SZ_1024;
1593 rctl &= ~E1000_RCTL_BSEX;
1595 case IGB_RXBUFFER_2048:
1597 rctl |= E1000_RCTL_SZ_2048;
1598 rctl &= ~E1000_RCTL_BSEX;
1600 case IGB_RXBUFFER_4096:
1601 rctl |= E1000_RCTL_SZ_4096;
1603 case IGB_RXBUFFER_8192:
1604 rctl |= E1000_RCTL_SZ_8192;
1606 case IGB_RXBUFFER_16384:
1607 rctl |= E1000_RCTL_SZ_16384;
1611 rctl &= ~E1000_RCTL_BSEX;
1612 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1615 /* 82575 and greater support packet-split where the protocol
1616 * header is placed in skb->data and the packet data is
1617 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1618 * In the case of a non-split, skb->data is linearly filled,
1619 * followed by the page buffers. Therefore, skb->data is
1620 * sized to hold the largest protocol header.
1622 /* allocations using alloc_page take too long for regular MTU
1623 * so only enable packet split for jumbo frames */
1624 if (rctl & E1000_RCTL_LPE) {
1625 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1626 srrctl = adapter->rx_ps_hdr_size <<
1627 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1628 /* buffer size is ALWAYS one page */
1629 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1630 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1632 adapter->rx_ps_hdr_size = 0;
1633 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1636 for (i = 0; i < adapter->num_rx_queues; i++)
1637 wr32(E1000_SRRCTL(i), srrctl);
1639 wr32(E1000_RCTL, rctl);
1643 * igb_configure_rx - Configure receive Unit after Reset
1644 * @adapter: board private structure
1646 * Configure the Rx unit of the MAC after a reset.
1648 static void igb_configure_rx(struct igb_adapter *adapter)
1651 struct e1000_hw *hw = &adapter->hw;
1656 /* disable receives while setting up the descriptors */
1657 rctl = rd32(E1000_RCTL);
1658 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1662 if (adapter->itr_setting > 3)
1664 1000000000 / (adapter->itr * 256));
1666 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1667 * the Base and Length of the Rx Descriptor Ring */
1668 for (i = 0; i < adapter->num_rx_queues; i++) {
1669 struct igb_ring *ring = &(adapter->rx_ring[i]);
1671 wr32(E1000_RDBAL(i),
1672 rdba & 0x00000000ffffffffULL);
1673 wr32(E1000_RDBAH(i), rdba >> 32);
1674 wr32(E1000_RDLEN(i),
1675 ring->count * sizeof(union e1000_adv_rx_desc));
1677 ring->head = E1000_RDH(i);
1678 ring->tail = E1000_RDT(i);
1679 writel(0, hw->hw_addr + ring->tail);
1680 writel(0, hw->hw_addr + ring->head);
1682 rxdctl = rd32(E1000_RXDCTL(i));
1683 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1684 rxdctl &= 0xFFF00000;
1685 rxdctl |= IGB_RX_PTHRESH;
1686 rxdctl |= IGB_RX_HTHRESH << 8;
1687 rxdctl |= IGB_RX_WTHRESH << 16;
1688 wr32(E1000_RXDCTL(i), rxdctl);
1691 if (adapter->num_rx_queues > 1) {
1700 get_random_bytes(&random[0], 40);
1703 for (j = 0; j < (32 * 4); j++) {
1705 (j % adapter->num_rx_queues) << shift;
1708 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1710 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1712 /* Fill out hash function seeds */
1713 for (j = 0; j < 10; j++)
1714 array_wr32(E1000_RSSRK(0), j, random[j]);
1716 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1717 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1718 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1719 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1720 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1721 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1722 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1723 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1726 wr32(E1000_MRQC, mrqc);
1728 /* Multiqueue and raw packet checksumming are mutually
1729 * exclusive. Note that this not the same as TCP/IP
1730 * checksumming, which works fine. */
1731 rxcsum = rd32(E1000_RXCSUM);
1732 rxcsum |= E1000_RXCSUM_PCSD;
1733 wr32(E1000_RXCSUM, rxcsum);
1735 /* Enable Receive Checksum Offload for TCP and UDP */
1736 rxcsum = rd32(E1000_RXCSUM);
1737 if (adapter->rx_csum) {
1738 rxcsum |= E1000_RXCSUM_TUOFL;
1740 /* Enable IPv4 payload checksum for UDP fragments
1741 * Must be used in conjunction with packet-split. */
1742 if (adapter->rx_ps_hdr_size)
1743 rxcsum |= E1000_RXCSUM_IPPCSE;
1745 rxcsum &= ~E1000_RXCSUM_TUOFL;
1746 /* don't need to clear IPPCSE as it defaults to 0 */
1748 wr32(E1000_RXCSUM, rxcsum);
1753 adapter->max_frame_size + VLAN_TAG_SIZE);
1755 wr32(E1000_RLPML, adapter->max_frame_size);
1757 /* Enable Receives */
1758 wr32(E1000_RCTL, rctl);
1762 * igb_free_tx_resources - Free Tx Resources per Queue
1763 * @adapter: board private structure
1764 * @tx_ring: Tx descriptor ring for a specific queue
1766 * Free all transmit software resources
1768 static void igb_free_tx_resources(struct igb_adapter *adapter,
1769 struct igb_ring *tx_ring)
1771 struct pci_dev *pdev = adapter->pdev;
1773 igb_clean_tx_ring(adapter, tx_ring);
1775 vfree(tx_ring->buffer_info);
1776 tx_ring->buffer_info = NULL;
1778 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1780 tx_ring->desc = NULL;
1784 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1785 * @adapter: board private structure
1787 * Free all transmit software resources
1789 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1793 for (i = 0; i < adapter->num_tx_queues; i++)
1794 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1797 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1798 struct igb_buffer *buffer_info)
1800 if (buffer_info->dma) {
1801 pci_unmap_page(adapter->pdev,
1803 buffer_info->length,
1805 buffer_info->dma = 0;
1807 if (buffer_info->skb) {
1808 dev_kfree_skb_any(buffer_info->skb);
1809 buffer_info->skb = NULL;
1811 buffer_info->time_stamp = 0;
1812 /* buffer_info must be completely set up in the transmit path */
1816 * igb_clean_tx_ring - Free Tx Buffers
1817 * @adapter: board private structure
1818 * @tx_ring: ring to be cleaned
1820 static void igb_clean_tx_ring(struct igb_adapter *adapter,
1821 struct igb_ring *tx_ring)
1823 struct igb_buffer *buffer_info;
1827 if (!tx_ring->buffer_info)
1829 /* Free all the Tx ring sk_buffs */
1831 for (i = 0; i < tx_ring->count; i++) {
1832 buffer_info = &tx_ring->buffer_info[i];
1833 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1836 size = sizeof(struct igb_buffer) * tx_ring->count;
1837 memset(tx_ring->buffer_info, 0, size);
1839 /* Zero out the descriptor ring */
1841 memset(tx_ring->desc, 0, tx_ring->size);
1843 tx_ring->next_to_use = 0;
1844 tx_ring->next_to_clean = 0;
1846 writel(0, adapter->hw.hw_addr + tx_ring->head);
1847 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1851 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1852 * @adapter: board private structure
1854 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1858 for (i = 0; i < adapter->num_tx_queues; i++)
1859 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1863 * igb_free_rx_resources - Free Rx Resources
1864 * @adapter: board private structure
1865 * @rx_ring: ring to clean the resources from
1867 * Free all receive software resources
1869 static void igb_free_rx_resources(struct igb_adapter *adapter,
1870 struct igb_ring *rx_ring)
1872 struct pci_dev *pdev = adapter->pdev;
1874 igb_clean_rx_ring(adapter, rx_ring);
1876 vfree(rx_ring->buffer_info);
1877 rx_ring->buffer_info = NULL;
1879 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1881 rx_ring->desc = NULL;
1885 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1886 * @adapter: board private structure
1888 * Free all receive software resources
1890 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1894 for (i = 0; i < adapter->num_rx_queues; i++)
1895 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1899 * igb_clean_rx_ring - Free Rx Buffers per Queue
1900 * @adapter: board private structure
1901 * @rx_ring: ring to free buffers from
1903 static void igb_clean_rx_ring(struct igb_adapter *adapter,
1904 struct igb_ring *rx_ring)
1906 struct igb_buffer *buffer_info;
1907 struct pci_dev *pdev = adapter->pdev;
1911 if (!rx_ring->buffer_info)
1913 /* Free all the Rx ring sk_buffs */
1914 for (i = 0; i < rx_ring->count; i++) {
1915 buffer_info = &rx_ring->buffer_info[i];
1916 if (buffer_info->dma) {
1917 if (adapter->rx_ps_hdr_size)
1918 pci_unmap_single(pdev, buffer_info->dma,
1919 adapter->rx_ps_hdr_size,
1920 PCI_DMA_FROMDEVICE);
1922 pci_unmap_single(pdev, buffer_info->dma,
1923 adapter->rx_buffer_len,
1924 PCI_DMA_FROMDEVICE);
1925 buffer_info->dma = 0;
1928 if (buffer_info->skb) {
1929 dev_kfree_skb(buffer_info->skb);
1930 buffer_info->skb = NULL;
1932 if (buffer_info->page) {
1933 pci_unmap_page(pdev, buffer_info->page_dma,
1934 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1935 put_page(buffer_info->page);
1936 buffer_info->page = NULL;
1937 buffer_info->page_dma = 0;
1941 /* there also may be some cached data from a chained receive */
1942 if (rx_ring->pending_skb) {
1943 dev_kfree_skb(rx_ring->pending_skb);
1944 rx_ring->pending_skb = NULL;
1947 size = sizeof(struct igb_buffer) * rx_ring->count;
1948 memset(rx_ring->buffer_info, 0, size);
1950 /* Zero out the descriptor ring */
1951 memset(rx_ring->desc, 0, rx_ring->size);
1953 rx_ring->next_to_clean = 0;
1954 rx_ring->next_to_use = 0;
1956 writel(0, adapter->hw.hw_addr + rx_ring->head);
1957 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1961 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1962 * @adapter: board private structure
1964 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1968 for (i = 0; i < adapter->num_rx_queues; i++)
1969 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1973 * igb_set_mac - Change the Ethernet Address of the NIC
1974 * @netdev: network interface device structure
1975 * @p: pointer to an address structure
1977 * Returns 0 on success, negative on failure
1979 static int igb_set_mac(struct net_device *netdev, void *p)
1981 struct igb_adapter *adapter = netdev_priv(netdev);
1982 struct sockaddr *addr = p;
1984 if (!is_valid_ether_addr(addr->sa_data))
1985 return -EADDRNOTAVAIL;
1987 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1988 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1990 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1996 * igb_set_multi - Multicast and Promiscuous mode set
1997 * @netdev: network interface device structure
1999 * The set_multi entry point is called whenever the multicast address
2000 * list or the network interface flags are updated. This routine is
2001 * responsible for configuring the hardware for proper multicast,
2002 * promiscuous mode, and all-multi behavior.
2004 static void igb_set_multi(struct net_device *netdev)
2006 struct igb_adapter *adapter = netdev_priv(netdev);
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct e1000_mac_info *mac = &hw->mac;
2009 struct dev_mc_list *mc_ptr;
2014 /* Check for Promiscuous and All Multicast modes */
2016 rctl = rd32(E1000_RCTL);
2018 if (netdev->flags & IFF_PROMISC)
2019 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2020 else if (netdev->flags & IFF_ALLMULTI) {
2021 rctl |= E1000_RCTL_MPE;
2022 rctl &= ~E1000_RCTL_UPE;
2024 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2026 wr32(E1000_RCTL, rctl);
2028 if (!netdev->mc_count) {
2029 /* nothing to program, so clear mc list */
2030 igb_update_mc_addr_list(hw, NULL, 0, 1,
2031 mac->rar_entry_count);
2035 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2039 /* The shared function expects a packed array of only addresses. */
2040 mc_ptr = netdev->mc_list;
2042 for (i = 0; i < netdev->mc_count; i++) {
2045 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2046 mc_ptr = mc_ptr->next;
2048 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2052 /* Need to wait a few seconds after link up to get diagnostic information from
2054 static void igb_update_phy_info(unsigned long data)
2056 struct igb_adapter *adapter = (struct igb_adapter *) data;
2057 if (adapter->hw.phy.ops.get_phy_info)
2058 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2062 * igb_watchdog - Timer Call-back
2063 * @data: pointer to adapter cast into an unsigned long
2065 static void igb_watchdog(unsigned long data)
2067 struct igb_adapter *adapter = (struct igb_adapter *)data;
2068 /* Do the rest outside of interrupt context */
2069 schedule_work(&adapter->watchdog_task);
2072 static void igb_watchdog_task(struct work_struct *work)
2074 struct igb_adapter *adapter = container_of(work,
2075 struct igb_adapter, watchdog_task);
2076 struct e1000_hw *hw = &adapter->hw;
2078 struct net_device *netdev = adapter->netdev;
2079 struct igb_ring *tx_ring = adapter->tx_ring;
2080 struct e1000_mac_info *mac = &adapter->hw.mac;
2084 if ((netif_carrier_ok(netdev)) &&
2085 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2088 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2089 if ((ret_val == E1000_ERR_PHY) &&
2090 (hw->phy.type == e1000_phy_igp_3) &&
2092 E1000_PHY_CTRL_GBE_DISABLE))
2093 dev_info(&adapter->pdev->dev,
2094 "Gigabit has been disabled, downgrading speed\n");
2096 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2097 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2098 link = mac->serdes_has_link;
2100 link = rd32(E1000_STATUS) &
2104 if (!netif_carrier_ok(netdev)) {
2106 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2107 &adapter->link_speed,
2108 &adapter->link_duplex);
2110 ctrl = rd32(E1000_CTRL);
2111 dev_info(&adapter->pdev->dev,
2112 "NIC Link is Up %d Mbps %s, "
2113 "Flow Control: %s\n",
2114 adapter->link_speed,
2115 adapter->link_duplex == FULL_DUPLEX ?
2116 "Full Duplex" : "Half Duplex",
2117 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2118 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2119 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2120 E1000_CTRL_TFCE) ? "TX" : "None")));
2122 /* tweak tx_queue_len according to speed/duplex and
2123 * adjust the timeout factor */
2124 netdev->tx_queue_len = adapter->tx_queue_len;
2125 adapter->tx_timeout_factor = 1;
2126 switch (adapter->link_speed) {
2128 netdev->tx_queue_len = 10;
2129 adapter->tx_timeout_factor = 14;
2132 netdev->tx_queue_len = 100;
2133 /* maybe add some timeout factor ? */
2137 netif_carrier_on(netdev);
2138 netif_wake_queue(netdev);
2140 if (!test_bit(__IGB_DOWN, &adapter->state))
2141 mod_timer(&adapter->phy_info_timer,
2142 round_jiffies(jiffies + 2 * HZ));
2145 if (netif_carrier_ok(netdev)) {
2146 adapter->link_speed = 0;
2147 adapter->link_duplex = 0;
2148 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2149 netif_carrier_off(netdev);
2150 netif_stop_queue(netdev);
2151 if (!test_bit(__IGB_DOWN, &adapter->state))
2152 mod_timer(&adapter->phy_info_timer,
2153 round_jiffies(jiffies + 2 * HZ));
2158 igb_update_stats(adapter);
2160 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2161 adapter->tpt_old = adapter->stats.tpt;
2162 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2163 adapter->colc_old = adapter->stats.colc;
2165 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2166 adapter->gorc_old = adapter->stats.gorc;
2167 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2168 adapter->gotc_old = adapter->stats.gotc;
2170 igb_update_adaptive(&adapter->hw);
2172 if (!netif_carrier_ok(netdev)) {
2173 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2174 /* We've lost link, so the controller stops DMA,
2175 * but we've got queued Tx work that's never going
2176 * to get done, so reset controller to flush Tx.
2177 * (Do the reset outside of interrupt context). */
2178 adapter->tx_timeout_count++;
2179 schedule_work(&adapter->reset_task);
2183 /* Cause software interrupt to ensure rx ring is cleaned */
2184 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2186 /* Force detection of hung controller every watchdog period */
2187 tx_ring->detect_tx_hung = true;
2189 /* Reset the timer */
2190 if (!test_bit(__IGB_DOWN, &adapter->state))
2191 mod_timer(&adapter->watchdog_timer,
2192 round_jiffies(jiffies + 2 * HZ));
2195 enum latency_range {
2199 latency_invalid = 255
2203 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2204 struct igb_ring *rx_ring)
2206 struct e1000_hw *hw = &adapter->hw;
2209 new_val = rx_ring->itr_val / 2;
2210 if (new_val < IGB_MIN_DYN_ITR)
2211 new_val = IGB_MIN_DYN_ITR;
2213 if (new_val != rx_ring->itr_val) {
2214 rx_ring->itr_val = new_val;
2215 wr32(rx_ring->itr_register,
2216 1000000000 / (new_val * 256));
2220 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2221 struct igb_ring *rx_ring)
2223 struct e1000_hw *hw = &adapter->hw;
2226 new_val = rx_ring->itr_val * 2;
2227 if (new_val > IGB_MAX_DYN_ITR)
2228 new_val = IGB_MAX_DYN_ITR;
2230 if (new_val != rx_ring->itr_val) {
2231 rx_ring->itr_val = new_val;
2232 wr32(rx_ring->itr_register,
2233 1000000000 / (new_val * 256));
2238 * igb_update_itr - update the dynamic ITR value based on statistics
2239 * Stores a new ITR value based on packets and byte
2240 * counts during the last interrupt. The advantage of per interrupt
2241 * computation is faster updates and more accurate ITR for the current
2242 * traffic pattern. Constants in this function were computed
2243 * based on theoretical maximum wire speed and thresholds were set based
2244 * on testing data as well as attempting to minimize response time
2245 * while increasing bulk throughput.
2246 * this functionality is controlled by the InterruptThrottleRate module
2247 * parameter (see igb_param.c)
2248 * NOTE: These calculations are only valid when operating in a single-
2249 * queue environment.
2250 * @adapter: pointer to adapter
2251 * @itr_setting: current adapter->itr
2252 * @packets: the number of packets during this measurement interval
2253 * @bytes: the number of bytes during this measurement interval
2255 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2256 int packets, int bytes)
2258 unsigned int retval = itr_setting;
2261 goto update_itr_done;
2263 switch (itr_setting) {
2264 case lowest_latency:
2265 /* handle TSO and jumbo frames */
2266 if (bytes/packets > 8000)
2267 retval = bulk_latency;
2268 else if ((packets < 5) && (bytes > 512))
2269 retval = low_latency;
2271 case low_latency: /* 50 usec aka 20000 ints/s */
2272 if (bytes > 10000) {
2273 /* this if handles the TSO accounting */
2274 if (bytes/packets > 8000) {
2275 retval = bulk_latency;
2276 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2277 retval = bulk_latency;
2278 } else if ((packets > 35)) {
2279 retval = lowest_latency;
2281 } else if (bytes/packets > 2000) {
2282 retval = bulk_latency;
2283 } else if (packets <= 2 && bytes < 512) {
2284 retval = lowest_latency;
2287 case bulk_latency: /* 250 usec aka 4000 ints/s */
2288 if (bytes > 25000) {
2290 retval = low_latency;
2291 } else if (bytes < 6000) {
2292 retval = low_latency;
2301 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2305 u32 new_itr = adapter->itr;
2307 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2308 if (adapter->link_speed != SPEED_1000) {
2314 adapter->rx_itr = igb_update_itr(adapter,
2316 adapter->rx_ring->total_packets,
2317 adapter->rx_ring->total_bytes);
2318 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2319 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2320 adapter->rx_itr = low_latency;
2323 adapter->tx_itr = igb_update_itr(adapter,
2325 adapter->tx_ring->total_packets,
2326 adapter->tx_ring->total_bytes);
2327 /* conservative mode (itr 3) eliminates the
2328 * lowest_latency setting */
2329 if (adapter->itr_setting == 3 &&
2330 adapter->tx_itr == lowest_latency)
2331 adapter->tx_itr = low_latency;
2333 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2335 current_itr = adapter->rx_itr;
2338 switch (current_itr) {
2339 /* counts and packets in update_itr are dependent on these numbers */
2340 case lowest_latency:
2344 new_itr = 20000; /* aka hwitr = ~200 */
2354 if (new_itr != adapter->itr) {
2355 /* this attempts to bias the interrupt rate towards Bulk
2356 * by adding intermediate steps when interrupt rate is
2358 new_itr = new_itr > adapter->itr ?
2359 min(adapter->itr + (new_itr >> 2), new_itr) :
2361 /* Don't write the value here; it resets the adapter's
2362 * internal timer, and causes us to delay far longer than
2363 * we should between interrupts. Instead, we write the ITR
2364 * value at the beginning of the next interrupt so the timing
2365 * ends up being correct.
2367 adapter->itr = new_itr;
2368 adapter->set_itr = 1;
2375 #define IGB_TX_FLAGS_CSUM 0x00000001
2376 #define IGB_TX_FLAGS_VLAN 0x00000002
2377 #define IGB_TX_FLAGS_TSO 0x00000004
2378 #define IGB_TX_FLAGS_IPV4 0x00000008
2379 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2380 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2382 static inline int igb_tso_adv(struct igb_adapter *adapter,
2383 struct igb_ring *tx_ring,
2384 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2386 struct e1000_adv_tx_context_desc *context_desc;
2389 struct igb_buffer *buffer_info;
2390 u32 info = 0, tu_cmd = 0;
2391 u32 mss_l4len_idx, l4len;
2394 if (skb_header_cloned(skb)) {
2395 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2400 l4len = tcp_hdrlen(skb);
2403 if (skb->protocol == htons(ETH_P_IP)) {
2404 struct iphdr *iph = ip_hdr(skb);
2407 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2411 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2412 ipv6_hdr(skb)->payload_len = 0;
2413 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2414 &ipv6_hdr(skb)->daddr,
2418 i = tx_ring->next_to_use;
2420 buffer_info = &tx_ring->buffer_info[i];
2421 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2422 /* VLAN MACLEN IPLEN */
2423 if (tx_flags & IGB_TX_FLAGS_VLAN)
2424 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2425 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2426 *hdr_len += skb_network_offset(skb);
2427 info |= skb_network_header_len(skb);
2428 *hdr_len += skb_network_header_len(skb);
2429 context_desc->vlan_macip_lens = cpu_to_le32(info);
2431 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2432 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2434 if (skb->protocol == htons(ETH_P_IP))
2435 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2436 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2438 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2441 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2442 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2444 /* Context index must be unique per ring. Luckily, so is the interrupt
2446 mss_l4len_idx |= tx_ring->eims_value >> 4;
2448 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2449 context_desc->seqnum_seed = 0;
2451 buffer_info->time_stamp = jiffies;
2452 buffer_info->dma = 0;
2454 if (i == tx_ring->count)
2457 tx_ring->next_to_use = i;
2462 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2463 struct igb_ring *tx_ring,
2464 struct sk_buff *skb, u32 tx_flags)
2466 struct e1000_adv_tx_context_desc *context_desc;
2468 struct igb_buffer *buffer_info;
2469 u32 info = 0, tu_cmd = 0;
2471 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2472 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2473 i = tx_ring->next_to_use;
2474 buffer_info = &tx_ring->buffer_info[i];
2475 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2477 if (tx_flags & IGB_TX_FLAGS_VLAN)
2478 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2479 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2480 if (skb->ip_summed == CHECKSUM_PARTIAL)
2481 info |= skb_network_header_len(skb);
2483 context_desc->vlan_macip_lens = cpu_to_le32(info);
2485 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2487 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2488 switch (skb->protocol) {
2489 case __constant_htons(ETH_P_IP):
2490 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2491 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2492 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2494 case __constant_htons(ETH_P_IPV6):
2495 /* XXX what about other V6 headers?? */
2496 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2497 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2500 if (unlikely(net_ratelimit()))
2501 dev_warn(&adapter->pdev->dev,
2502 "partial checksum but proto=%x!\n",
2508 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2509 context_desc->seqnum_seed = 0;
2510 context_desc->mss_l4len_idx =
2511 cpu_to_le32(tx_ring->eims_value >> 4);
2513 buffer_info->time_stamp = jiffies;
2514 buffer_info->dma = 0;
2517 if (i == tx_ring->count)
2519 tx_ring->next_to_use = i;
2528 #define IGB_MAX_TXD_PWR 16
2529 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2531 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2532 struct igb_ring *tx_ring,
2533 struct sk_buff *skb)
2535 struct igb_buffer *buffer_info;
2536 unsigned int len = skb_headlen(skb);
2537 unsigned int count = 0, i;
2540 i = tx_ring->next_to_use;
2542 buffer_info = &tx_ring->buffer_info[i];
2543 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2544 buffer_info->length = len;
2545 /* set time_stamp *before* dma to help avoid a possible race */
2546 buffer_info->time_stamp = jiffies;
2547 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2551 if (i == tx_ring->count)
2554 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2555 struct skb_frag_struct *frag;
2557 frag = &skb_shinfo(skb)->frags[f];
2560 buffer_info = &tx_ring->buffer_info[i];
2561 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2562 buffer_info->length = len;
2563 buffer_info->time_stamp = jiffies;
2564 buffer_info->dma = pci_map_page(adapter->pdev,
2572 if (i == tx_ring->count)
2576 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2577 tx_ring->buffer_info[i].skb = skb;
2582 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2583 struct igb_ring *tx_ring,
2584 int tx_flags, int count, u32 paylen,
2587 union e1000_adv_tx_desc *tx_desc = NULL;
2588 struct igb_buffer *buffer_info;
2589 u32 olinfo_status = 0, cmd_type_len;
2592 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2593 E1000_ADVTXD_DCMD_DEXT);
2595 if (tx_flags & IGB_TX_FLAGS_VLAN)
2596 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2598 if (tx_flags & IGB_TX_FLAGS_TSO) {
2599 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2601 /* insert tcp checksum */
2602 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2604 /* insert ip checksum */
2605 if (tx_flags & IGB_TX_FLAGS_IPV4)
2606 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2608 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2609 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2612 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2614 olinfo_status |= tx_ring->eims_value >> 4;
2616 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2618 i = tx_ring->next_to_use;
2620 buffer_info = &tx_ring->buffer_info[i];
2621 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2622 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2623 tx_desc->read.cmd_type_len =
2624 cpu_to_le32(cmd_type_len | buffer_info->length);
2625 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2627 if (i == tx_ring->count)
2631 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2632 /* Force memory writes to complete before letting h/w
2633 * know there are new descriptors to fetch. (Only
2634 * applicable for weak-ordered memory model archs,
2635 * such as IA-64). */
2638 tx_ring->next_to_use = i;
2639 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2640 /* we need this if more than one processor can write to our tail
2641 * at a time, it syncronizes IO on IA64/Altix systems */
2645 static int __igb_maybe_stop_tx(struct net_device *netdev,
2646 struct igb_ring *tx_ring, int size)
2648 struct igb_adapter *adapter = netdev_priv(netdev);
2650 netif_stop_queue(netdev);
2651 /* Herbert's original patch had:
2652 * smp_mb__after_netif_stop_queue();
2653 * but since that doesn't exist yet, just open code it. */
2656 /* We need to check again in a case another CPU has just
2657 * made room available. */
2658 if (IGB_DESC_UNUSED(tx_ring) < size)
2662 netif_start_queue(netdev);
2663 ++adapter->restart_queue;
2667 static int igb_maybe_stop_tx(struct net_device *netdev,
2668 struct igb_ring *tx_ring, int size)
2670 if (IGB_DESC_UNUSED(tx_ring) >= size)
2672 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2675 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2677 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2678 struct net_device *netdev,
2679 struct igb_ring *tx_ring)
2681 struct igb_adapter *adapter = netdev_priv(netdev);
2682 unsigned int tx_flags = 0;
2684 unsigned long irq_flags;
2688 len = skb_headlen(skb);
2690 if (test_bit(__IGB_DOWN, &adapter->state)) {
2691 dev_kfree_skb_any(skb);
2692 return NETDEV_TX_OK;
2695 if (skb->len <= 0) {
2696 dev_kfree_skb_any(skb);
2697 return NETDEV_TX_OK;
2700 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2701 /* Collision - tell upper layer to requeue */
2702 return NETDEV_TX_LOCKED;
2704 /* need: 1 descriptor per page,
2705 * + 2 desc gap to keep tail from touching head,
2706 * + 1 desc for skb->data,
2707 * + 1 desc for context descriptor,
2708 * otherwise try next time */
2709 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2710 /* this is a hard error */
2711 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2712 return NETDEV_TX_BUSY;
2715 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2716 tx_flags |= IGB_TX_FLAGS_VLAN;
2717 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2720 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2724 dev_kfree_skb_any(skb);
2725 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2726 return NETDEV_TX_OK;
2730 tx_flags |= IGB_TX_FLAGS_TSO;
2731 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2732 if (skb->ip_summed == CHECKSUM_PARTIAL)
2733 tx_flags |= IGB_TX_FLAGS_CSUM;
2735 if (skb->protocol == htons(ETH_P_IP))
2736 tx_flags |= IGB_TX_FLAGS_IPV4;
2738 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2739 igb_tx_map_adv(adapter, tx_ring, skb),
2742 netdev->trans_start = jiffies;
2744 /* Make sure there is space in the ring for the next send. */
2745 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2747 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2748 return NETDEV_TX_OK;
2751 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2753 struct igb_adapter *adapter = netdev_priv(netdev);
2754 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2756 /* This goes back to the question of how to logically map a tx queue
2757 * to a flow. Right now, performance is impacted slightly negatively
2758 * if using multiple tx queues. If the stack breaks away from a
2759 * single qdisc implementation, we can look at this again. */
2760 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2764 * igb_tx_timeout - Respond to a Tx Hang
2765 * @netdev: network interface device structure
2767 static void igb_tx_timeout(struct net_device *netdev)
2769 struct igb_adapter *adapter = netdev_priv(netdev);
2770 struct e1000_hw *hw = &adapter->hw;
2772 /* Do the reset outside of interrupt context */
2773 adapter->tx_timeout_count++;
2774 schedule_work(&adapter->reset_task);
2775 wr32(E1000_EICS, adapter->eims_enable_mask &
2776 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2779 static void igb_reset_task(struct work_struct *work)
2781 struct igb_adapter *adapter;
2782 adapter = container_of(work, struct igb_adapter, reset_task);
2784 igb_reinit_locked(adapter);
2788 * igb_get_stats - Get System Network Statistics
2789 * @netdev: network interface device structure
2791 * Returns the address of the device statistics structure.
2792 * The statistics are actually updated from the timer callback.
2794 static struct net_device_stats *
2795 igb_get_stats(struct net_device *netdev)
2797 struct igb_adapter *adapter = netdev_priv(netdev);
2799 /* only return the current stats */
2800 return &adapter->net_stats;
2804 * igb_change_mtu - Change the Maximum Transfer Unit
2805 * @netdev: network interface device structure
2806 * @new_mtu: new value for maximum frame size
2808 * Returns 0 on success, negative on failure
2810 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2812 struct igb_adapter *adapter = netdev_priv(netdev);
2813 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2815 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2816 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2817 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2821 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2822 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2823 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2827 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2829 /* igb_down has a dependency on max_frame_size */
2830 adapter->max_frame_size = max_frame;
2831 if (netif_running(netdev))
2834 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2835 * means we reserve 2 more, this pushes us to allocate from the next
2837 * i.e. RXBUFFER_2048 --> size-4096 slab
2840 if (max_frame <= IGB_RXBUFFER_256)
2841 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2842 else if (max_frame <= IGB_RXBUFFER_512)
2843 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2844 else if (max_frame <= IGB_RXBUFFER_1024)
2845 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2846 else if (max_frame <= IGB_RXBUFFER_2048)
2847 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2849 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2850 /* adjust allocation if LPE protects us, and we aren't using SBP */
2851 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2852 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2853 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2855 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2856 netdev->mtu, new_mtu);
2857 netdev->mtu = new_mtu;
2859 if (netif_running(netdev))
2864 clear_bit(__IGB_RESETTING, &adapter->state);
2870 * igb_update_stats - Update the board statistics counters
2871 * @adapter: board private structure
2874 void igb_update_stats(struct igb_adapter *adapter)
2876 struct e1000_hw *hw = &adapter->hw;
2877 struct pci_dev *pdev = adapter->pdev;
2880 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2883 * Prevent stats update while adapter is being reset, or if the pci
2884 * connection is down.
2886 if (adapter->link_speed == 0)
2888 if (pci_channel_offline(pdev))
2891 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2892 adapter->stats.gprc += rd32(E1000_GPRC);
2893 adapter->stats.gorc += rd32(E1000_GORCL);
2894 rd32(E1000_GORCH); /* clear GORCL */
2895 adapter->stats.bprc += rd32(E1000_BPRC);
2896 adapter->stats.mprc += rd32(E1000_MPRC);
2897 adapter->stats.roc += rd32(E1000_ROC);
2899 adapter->stats.prc64 += rd32(E1000_PRC64);
2900 adapter->stats.prc127 += rd32(E1000_PRC127);
2901 adapter->stats.prc255 += rd32(E1000_PRC255);
2902 adapter->stats.prc511 += rd32(E1000_PRC511);
2903 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2904 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2905 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2906 adapter->stats.sec += rd32(E1000_SEC);
2908 adapter->stats.mpc += rd32(E1000_MPC);
2909 adapter->stats.scc += rd32(E1000_SCC);
2910 adapter->stats.ecol += rd32(E1000_ECOL);
2911 adapter->stats.mcc += rd32(E1000_MCC);
2912 adapter->stats.latecol += rd32(E1000_LATECOL);
2913 adapter->stats.dc += rd32(E1000_DC);
2914 adapter->stats.rlec += rd32(E1000_RLEC);
2915 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2916 adapter->stats.xontxc += rd32(E1000_XONTXC);
2917 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2918 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2919 adapter->stats.fcruc += rd32(E1000_FCRUC);
2920 adapter->stats.gptc += rd32(E1000_GPTC);
2921 adapter->stats.gotc += rd32(E1000_GOTCL);
2922 rd32(E1000_GOTCH); /* clear GOTCL */
2923 adapter->stats.rnbc += rd32(E1000_RNBC);
2924 adapter->stats.ruc += rd32(E1000_RUC);
2925 adapter->stats.rfc += rd32(E1000_RFC);
2926 adapter->stats.rjc += rd32(E1000_RJC);
2927 adapter->stats.tor += rd32(E1000_TORH);
2928 adapter->stats.tot += rd32(E1000_TOTH);
2929 adapter->stats.tpr += rd32(E1000_TPR);
2931 adapter->stats.ptc64 += rd32(E1000_PTC64);
2932 adapter->stats.ptc127 += rd32(E1000_PTC127);
2933 adapter->stats.ptc255 += rd32(E1000_PTC255);
2934 adapter->stats.ptc511 += rd32(E1000_PTC511);
2935 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2936 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2938 adapter->stats.mptc += rd32(E1000_MPTC);
2939 adapter->stats.bptc += rd32(E1000_BPTC);
2941 /* used for adaptive IFS */
2943 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2944 adapter->stats.tpt += hw->mac.tx_packet_delta;
2945 hw->mac.collision_delta = rd32(E1000_COLC);
2946 adapter->stats.colc += hw->mac.collision_delta;
2948 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2949 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2950 adapter->stats.tncrs += rd32(E1000_TNCRS);
2951 adapter->stats.tsctc += rd32(E1000_TSCTC);
2952 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2954 adapter->stats.iac += rd32(E1000_IAC);
2955 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2956 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2957 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2958 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2959 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2960 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2961 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2962 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2964 /* Fill out the OS statistics structure */
2965 adapter->net_stats.multicast = adapter->stats.mprc;
2966 adapter->net_stats.collisions = adapter->stats.colc;
2970 /* RLEC on some newer hardware can be incorrect so build
2971 * our own version based on RUC and ROC */
2972 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2973 adapter->stats.crcerrs + adapter->stats.algnerrc +
2974 adapter->stats.ruc + adapter->stats.roc +
2975 adapter->stats.cexterr;
2976 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2978 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2979 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2980 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2983 adapter->net_stats.tx_errors = adapter->stats.ecol +
2984 adapter->stats.latecol;
2985 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2986 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2987 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2989 /* Tx Dropped needs to be maintained elsewhere */
2992 if (hw->phy.media_type == e1000_media_type_copper) {
2993 if ((adapter->link_speed == SPEED_1000) &&
2994 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2996 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2997 adapter->phy_stats.idle_errors += phy_tmp;
3001 /* Management Stats */
3002 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3003 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3004 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3008 static irqreturn_t igb_msix_other(int irq, void *data)
3010 struct net_device *netdev = data;
3011 struct igb_adapter *adapter = netdev_priv(netdev);
3012 struct e1000_hw *hw = &adapter->hw;
3014 /* disable interrupts from the "other" bit, avoid re-entry */
3015 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3017 eicr = rd32(E1000_EICR);
3019 if (eicr & E1000_EIMS_OTHER) {
3020 u32 icr = rd32(E1000_ICR);
3021 /* reading ICR causes bit 31 of EICR to be cleared */
3022 if (!(icr & E1000_ICR_LSC))
3023 goto no_link_interrupt;
3024 hw->mac.get_link_status = 1;
3025 /* guard against interrupt when we're going down */
3026 if (!test_bit(__IGB_DOWN, &adapter->state))
3027 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3031 wr32(E1000_IMS, E1000_IMS_LSC);
3032 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3037 static irqreturn_t igb_msix_tx(int irq, void *data)
3039 struct igb_ring *tx_ring = data;
3040 struct igb_adapter *adapter = tx_ring->adapter;
3041 struct e1000_hw *hw = &adapter->hw;
3043 if (!tx_ring->itr_val)
3044 wr32(E1000_EIMC, tx_ring->eims_value);
3046 tx_ring->total_bytes = 0;
3047 tx_ring->total_packets = 0;
3048 if (!igb_clean_tx_irq(adapter, tx_ring))
3049 /* Ring was not completely cleaned, so fire another interrupt */
3050 wr32(E1000_EICS, tx_ring->eims_value);
3052 if (!tx_ring->itr_val)
3053 wr32(E1000_EIMS, tx_ring->eims_value);
3057 static irqreturn_t igb_msix_rx(int irq, void *data)
3059 struct igb_ring *rx_ring = data;
3060 struct igb_adapter *adapter = rx_ring->adapter;
3061 struct e1000_hw *hw = &adapter->hw;
3063 if (!rx_ring->itr_val)
3064 wr32(E1000_EIMC, rx_ring->eims_value);
3066 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3067 rx_ring->total_bytes = 0;
3068 rx_ring->total_packets = 0;
3069 rx_ring->no_itr_adjust = 0;
3070 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3072 if (!rx_ring->no_itr_adjust) {
3073 igb_lower_rx_eitr(adapter, rx_ring);
3074 rx_ring->no_itr_adjust = 1;
3083 * igb_intr_msi - Interrupt Handler
3084 * @irq: interrupt number
3085 * @data: pointer to a network interface device structure
3087 static irqreturn_t igb_intr_msi(int irq, void *data)
3089 struct net_device *netdev = data;
3090 struct igb_adapter *adapter = netdev_priv(netdev);
3091 struct napi_struct *napi = &adapter->napi;
3092 struct e1000_hw *hw = &adapter->hw;
3093 /* read ICR disables interrupts using IAM */
3094 u32 icr = rd32(E1000_ICR);
3096 /* Write the ITR value calculated at the end of the
3097 * previous interrupt.
3099 if (adapter->set_itr) {
3101 1000000000 / (adapter->itr * 256));
3102 adapter->set_itr = 0;
3105 /* read ICR disables interrupts using IAM */
3106 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3107 hw->mac.get_link_status = 1;
3108 if (!test_bit(__IGB_DOWN, &adapter->state))
3109 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3112 if (netif_rx_schedule_prep(netdev, napi)) {
3113 adapter->tx_ring->total_bytes = 0;
3114 adapter->tx_ring->total_packets = 0;
3115 adapter->rx_ring->total_bytes = 0;
3116 adapter->rx_ring->total_packets = 0;
3117 __netif_rx_schedule(netdev, napi);
3124 * igb_intr - Interrupt Handler
3125 * @irq: interrupt number
3126 * @data: pointer to a network interface device structure
3128 static irqreturn_t igb_intr(int irq, void *data)
3130 struct net_device *netdev = data;
3131 struct igb_adapter *adapter = netdev_priv(netdev);
3132 struct napi_struct *napi = &adapter->napi;
3133 struct e1000_hw *hw = &adapter->hw;
3134 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3135 * need for the IMC write */
3136 u32 icr = rd32(E1000_ICR);
3139 return IRQ_NONE; /* Not our interrupt */
3141 /* Write the ITR value calculated at the end of the
3142 * previous interrupt.
3144 if (adapter->set_itr) {
3146 1000000000 / (adapter->itr * 256));
3147 adapter->set_itr = 0;
3150 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3151 * not set, then the adapter didn't send an interrupt */
3152 if (!(icr & E1000_ICR_INT_ASSERTED))
3155 eicr = rd32(E1000_EICR);
3157 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3158 hw->mac.get_link_status = 1;
3159 /* guard against interrupt when we're going down */
3160 if (!test_bit(__IGB_DOWN, &adapter->state))
3161 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3164 if (netif_rx_schedule_prep(netdev, napi)) {
3165 adapter->tx_ring->total_bytes = 0;
3166 adapter->rx_ring->total_bytes = 0;
3167 adapter->tx_ring->total_packets = 0;
3168 adapter->rx_ring->total_packets = 0;
3169 __netif_rx_schedule(netdev, napi);
3176 * igb_clean - NAPI Rx polling callback
3177 * @adapter: board private structure
3179 static int igb_clean(struct napi_struct *napi, int budget)
3181 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3183 struct net_device *netdev = adapter->netdev;
3184 int tx_clean_complete = 1, work_done = 0;
3187 /* Must NOT use netdev_priv macro here. */
3188 adapter = netdev->priv;
3190 /* Keep link state information with original netdev */
3191 if (!netif_carrier_ok(netdev))
3194 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3195 * being cleaned by multiple cpus simultaneously. A failure obtaining
3196 * the lock means tx_ring[i] is currently being cleaned anyway. */
3197 for (i = 0; i < adapter->num_tx_queues; i++) {
3198 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3199 tx_clean_complete &= igb_clean_tx_irq(adapter,
3200 &adapter->tx_ring[i]);
3201 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3205 for (i = 0; i < adapter->num_rx_queues; i++)
3206 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3207 adapter->rx_ring[i].napi.weight);
3209 /* If no Tx and not enough Rx work done, exit the polling mode */
3210 if ((tx_clean_complete && (work_done < budget)) ||
3211 !netif_running(netdev)) {
3213 if (adapter->itr_setting & 3)
3214 igb_set_itr(adapter, E1000_ITR, false);
3215 netif_rx_complete(netdev, napi);
3216 if (!test_bit(__IGB_DOWN, &adapter->state))
3217 igb_irq_enable(adapter);
3224 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3226 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3227 struct igb_adapter *adapter = rx_ring->adapter;
3228 struct e1000_hw *hw = &adapter->hw;
3229 struct net_device *netdev = adapter->netdev;
3232 /* Keep link state information with original netdev */
3233 if (!netif_carrier_ok(netdev))
3236 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3239 /* If not enough Rx work done, exit the polling mode */
3240 if ((work_done == 0) || !netif_running(netdev)) {
3242 netif_rx_complete(netdev, napi);
3244 wr32(E1000_EIMS, rx_ring->eims_value);
3245 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3246 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3247 int mean_size = rx_ring->total_bytes /
3248 rx_ring->total_packets;
3249 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3250 igb_raise_rx_eitr(adapter, rx_ring);
3251 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3252 igb_lower_rx_eitr(adapter, rx_ring);
3260 static inline u32 get_head(struct igb_ring *tx_ring)
3262 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3263 return le32_to_cpu(*(volatile __le32 *)end);
3267 * igb_clean_tx_irq - Reclaim resources after transmit completes
3268 * @adapter: board private structure
3269 * returns true if ring is completely cleaned
3271 static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3272 struct igb_ring *tx_ring)
3274 struct net_device *netdev = adapter->netdev;
3275 struct e1000_hw *hw = &adapter->hw;
3276 struct e1000_tx_desc *tx_desc;
3277 struct igb_buffer *buffer_info;
3278 struct sk_buff *skb;
3281 unsigned int count = 0;
3282 bool cleaned = false;
3284 unsigned int total_bytes = 0, total_packets = 0;
3287 head = get_head(tx_ring);
3288 i = tx_ring->next_to_clean;
3292 tx_desc = E1000_TX_DESC(*tx_ring, i);
3293 buffer_info = &tx_ring->buffer_info[i];
3294 skb = buffer_info->skb;
3297 unsigned int segs, bytecount;
3298 /* gso_segs is currently only valid for tcp */
3299 segs = skb_shinfo(skb)->gso_segs ?: 1;
3300 /* multiply data chunks by size of headers */
3301 bytecount = ((segs - 1) * skb_headlen(skb)) +
3303 total_packets += segs;
3304 total_bytes += bytecount;
3307 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3308 tx_desc->upper.data = 0;
3311 if (i == tx_ring->count)
3315 if (count == IGB_MAX_TX_CLEAN) {
3322 head = get_head(tx_ring);
3323 if (head == oldhead)
3328 tx_ring->next_to_clean = i;
3330 if (unlikely(cleaned &&
3331 netif_carrier_ok(netdev) &&
3332 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3333 /* Make sure that anybody stopping the queue after this
3334 * sees the new next_to_clean.
3337 if (netif_queue_stopped(netdev) &&
3338 !(test_bit(__IGB_DOWN, &adapter->state))) {
3339 netif_wake_queue(netdev);
3340 ++adapter->restart_queue;
3344 if (tx_ring->detect_tx_hung) {
3345 /* Detect a transmit hang in hardware, this serializes the
3346 * check with the clearing of time_stamp and movement of i */
3347 tx_ring->detect_tx_hung = false;
3348 if (tx_ring->buffer_info[i].time_stamp &&
3349 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3350 (adapter->tx_timeout_factor * HZ))
3351 && !(rd32(E1000_STATUS) &
3352 E1000_STATUS_TXOFF)) {
3354 tx_desc = E1000_TX_DESC(*tx_ring, i);
3355 /* detected Tx unit hang */
3356 dev_err(&adapter->pdev->dev,
3357 "Detected Tx Unit Hang\n"
3361 " next_to_use <%x>\n"
3362 " next_to_clean <%x>\n"
3364 "buffer_info[next_to_clean]\n"
3365 " time_stamp <%lx>\n"
3367 " desc.status <%x>\n",
3368 (unsigned long)((tx_ring - adapter->tx_ring) /
3369 sizeof(struct igb_ring)),
3370 readl(adapter->hw.hw_addr + tx_ring->head),
3371 readl(adapter->hw.hw_addr + tx_ring->tail),
3372 tx_ring->next_to_use,
3373 tx_ring->next_to_clean,
3375 tx_ring->buffer_info[i].time_stamp,
3377 tx_desc->upper.fields.status);
3378 netif_stop_queue(netdev);
3381 tx_ring->total_bytes += total_bytes;
3382 tx_ring->total_packets += total_packets;
3383 adapter->net_stats.tx_bytes += total_bytes;
3384 adapter->net_stats.tx_packets += total_packets;
3390 * igb_receive_skb - helper function to handle rx indications
3391 * @adapter: board private structure
3392 * @status: descriptor status field as written by hardware
3393 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3394 * @skb: pointer to sk_buff to be indicated to stack
3396 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
3397 struct sk_buff *skb)
3399 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3400 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3402 E1000_RXD_SPC_VLAN_MASK);
3404 netif_receive_skb(skb);
3408 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3409 u32 status_err, struct sk_buff *skb)
3411 skb->ip_summed = CHECKSUM_NONE;
3413 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3414 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3416 /* TCP/UDP checksum error bit is set */
3418 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3419 /* let the stack verify checksum errors */
3420 adapter->hw_csum_err++;
3423 /* It must be a TCP or UDP packet with a valid checksum */
3424 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3425 skb->ip_summed = CHECKSUM_UNNECESSARY;
3427 adapter->hw_csum_good++;
3430 static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3431 struct igb_ring *rx_ring,
3432 int *work_done, int budget)
3434 struct net_device *netdev = adapter->netdev;
3435 struct pci_dev *pdev = adapter->pdev;
3436 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3437 struct igb_buffer *buffer_info , *next_buffer;
3438 struct sk_buff *skb;
3440 u32 length, hlen, staterr;
3441 bool cleaned = false;
3442 int cleaned_count = 0;
3443 unsigned int total_bytes = 0, total_packets = 0;
3445 i = rx_ring->next_to_clean;
3446 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3447 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3449 while (staterr & E1000_RXD_STAT_DD) {
3450 if (*work_done >= budget)
3453 buffer_info = &rx_ring->buffer_info[i];
3455 /* HW will not DMA in data larger than the given buffer, even
3456 * if it parses the (NFS, of course) header to be larger. In
3457 * that case, it fills the header buffer and spills the rest
3460 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3461 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3462 if (hlen > adapter->rx_ps_hdr_size)
3463 hlen = adapter->rx_ps_hdr_size;
3465 length = le16_to_cpu(rx_desc->wb.upper.length);
3469 if (rx_ring->pending_skb != NULL) {
3470 skb = rx_ring->pending_skb;
3471 rx_ring->pending_skb = NULL;
3472 j = rx_ring->pending_skb_page;
3474 skb = buffer_info->skb;
3475 prefetch(skb->data - NET_IP_ALIGN);
3476 buffer_info->skb = NULL;
3478 pci_unmap_single(pdev, buffer_info->dma,
3479 adapter->rx_ps_hdr_size +
3481 PCI_DMA_FROMDEVICE);
3484 pci_unmap_single(pdev, buffer_info->dma,
3485 adapter->rx_buffer_len +
3487 PCI_DMA_FROMDEVICE);
3488 skb_put(skb, length);
3495 pci_unmap_page(pdev, buffer_info->page_dma,
3496 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3497 buffer_info->page_dma = 0;
3498 skb_fill_page_desc(skb, j, buffer_info->page,
3500 buffer_info->page = NULL;
3503 skb->data_len += length;
3504 skb->truesize += length;
3505 rx_desc->wb.upper.status_error = 0;
3506 if (staterr & E1000_RXD_STAT_EOP)
3512 if (i == rx_ring->count)
3515 buffer_info = &rx_ring->buffer_info[i];
3516 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3518 length = le16_to_cpu(rx_desc->wb.upper.length);
3519 if (!(staterr & E1000_RXD_STAT_DD)) {
3520 rx_ring->pending_skb = skb;
3521 rx_ring->pending_skb_page = j;
3526 pskb_trim(skb, skb->len - 4);
3528 if (i == rx_ring->count)
3530 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3532 next_buffer = &rx_ring->buffer_info[i];
3534 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3535 dev_kfree_skb_irq(skb);
3538 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3540 total_bytes += skb->len;
3543 igb_rx_checksum_adv(adapter, staterr, skb);
3545 skb->protocol = eth_type_trans(skb, netdev);
3547 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3549 netdev->last_rx = jiffies;
3552 rx_desc->wb.upper.status_error = 0;
3554 /* return some buffers to hardware, one at a time is too slow */
3555 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3556 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3561 /* use prefetched values */
3563 buffer_info = next_buffer;
3565 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3568 rx_ring->next_to_clean = i;
3569 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3572 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3574 rx_ring->total_packets += total_packets;
3575 rx_ring->total_bytes += total_bytes;
3576 rx_ring->rx_stats.packets += total_packets;
3577 rx_ring->rx_stats.bytes += total_bytes;
3578 adapter->net_stats.rx_bytes += total_bytes;
3579 adapter->net_stats.rx_packets += total_packets;
3585 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3586 * @adapter: address of board private structure
3588 static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3589 struct igb_ring *rx_ring,
3592 struct net_device *netdev = adapter->netdev;
3593 struct pci_dev *pdev = adapter->pdev;
3594 union e1000_adv_rx_desc *rx_desc;
3595 struct igb_buffer *buffer_info;
3596 struct sk_buff *skb;
3599 i = rx_ring->next_to_use;
3600 buffer_info = &rx_ring->buffer_info[i];
3602 while (cleaned_count--) {
3603 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3605 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3606 buffer_info->page = alloc_page(GFP_ATOMIC);
3607 if (!buffer_info->page) {
3608 adapter->alloc_rx_buff_failed++;
3611 buffer_info->page_dma =
3615 PCI_DMA_FROMDEVICE);
3618 if (!buffer_info->skb) {
3621 if (adapter->rx_ps_hdr_size)
3622 bufsz = adapter->rx_ps_hdr_size;
3624 bufsz = adapter->rx_buffer_len;
3625 bufsz += NET_IP_ALIGN;
3626 skb = netdev_alloc_skb(netdev, bufsz);
3629 adapter->alloc_rx_buff_failed++;
3633 /* Make buffer alignment 2 beyond a 16 byte boundary
3634 * this will result in a 16 byte aligned IP header after
3635 * the 14 byte MAC header is removed
3637 skb_reserve(skb, NET_IP_ALIGN);
3639 buffer_info->skb = skb;
3640 buffer_info->dma = pci_map_single(pdev, skb->data,
3642 PCI_DMA_FROMDEVICE);
3645 /* Refresh the desc even if buffer_addrs didn't change because
3646 * each write-back erases this info. */
3647 if (adapter->rx_ps_hdr_size) {
3648 rx_desc->read.pkt_addr =
3649 cpu_to_le64(buffer_info->page_dma);
3650 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3652 rx_desc->read.pkt_addr =
3653 cpu_to_le64(buffer_info->dma);
3654 rx_desc->read.hdr_addr = 0;
3658 if (i == rx_ring->count)
3660 buffer_info = &rx_ring->buffer_info[i];
3664 if (rx_ring->next_to_use != i) {
3665 rx_ring->next_to_use = i;
3667 i = (rx_ring->count - 1);
3671 /* Force memory writes to complete before letting h/w
3672 * know there are new descriptors to fetch. (Only
3673 * applicable for weak-ordered memory model archs,
3674 * such as IA-64). */
3676 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3686 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3688 struct igb_adapter *adapter = netdev_priv(netdev);
3689 struct mii_ioctl_data *data = if_mii(ifr);
3691 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3696 data->phy_id = adapter->hw.phy.addr;
3699 if (!capable(CAP_NET_ADMIN))
3701 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3703 & 0x1F, &data->val_out))
3719 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3725 return igb_mii_ioctl(netdev, ifr, cmd);
3731 static void igb_vlan_rx_register(struct net_device *netdev,
3732 struct vlan_group *grp)
3734 struct igb_adapter *adapter = netdev_priv(netdev);
3735 struct e1000_hw *hw = &adapter->hw;
3738 igb_irq_disable(adapter);
3739 adapter->vlgrp = grp;
3742 /* enable VLAN tag insert/strip */
3743 ctrl = rd32(E1000_CTRL);
3744 ctrl |= E1000_CTRL_VME;
3745 wr32(E1000_CTRL, ctrl);
3747 /* enable VLAN receive filtering */
3748 rctl = rd32(E1000_RCTL);
3749 rctl |= E1000_RCTL_VFE;
3750 rctl &= ~E1000_RCTL_CFIEN;
3751 wr32(E1000_RCTL, rctl);
3752 igb_update_mng_vlan(adapter);
3754 adapter->max_frame_size + VLAN_TAG_SIZE);
3756 /* disable VLAN tag insert/strip */
3757 ctrl = rd32(E1000_CTRL);
3758 ctrl &= ~E1000_CTRL_VME;
3759 wr32(E1000_CTRL, ctrl);
3761 /* disable VLAN filtering */
3762 rctl = rd32(E1000_RCTL);
3763 rctl &= ~E1000_RCTL_VFE;
3764 wr32(E1000_RCTL, rctl);
3765 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3766 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3767 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3770 adapter->max_frame_size);
3773 if (!test_bit(__IGB_DOWN, &adapter->state))
3774 igb_irq_enable(adapter);
3777 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3779 struct igb_adapter *adapter = netdev_priv(netdev);
3780 struct e1000_hw *hw = &adapter->hw;
3783 if ((adapter->hw.mng_cookie.status &
3784 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3785 (vid == adapter->mng_vlan_id))
3787 /* add VID to filter table */
3788 index = (vid >> 5) & 0x7F;
3789 vfta = array_rd32(E1000_VFTA, index);
3790 vfta |= (1 << (vid & 0x1F));
3791 igb_write_vfta(&adapter->hw, index, vfta);
3794 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3796 struct igb_adapter *adapter = netdev_priv(netdev);
3797 struct e1000_hw *hw = &adapter->hw;
3800 igb_irq_disable(adapter);
3801 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3803 if (!test_bit(__IGB_DOWN, &adapter->state))
3804 igb_irq_enable(adapter);
3806 if ((adapter->hw.mng_cookie.status &
3807 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3808 (vid == adapter->mng_vlan_id)) {
3809 /* release control to f/w */
3810 igb_release_hw_control(adapter);
3814 /* remove VID from filter table */
3815 index = (vid >> 5) & 0x7F;
3816 vfta = array_rd32(E1000_VFTA, index);
3817 vfta &= ~(1 << (vid & 0x1F));
3818 igb_write_vfta(&adapter->hw, index, vfta);
3821 static void igb_restore_vlan(struct igb_adapter *adapter)
3823 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3825 if (adapter->vlgrp) {
3827 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3828 if (!vlan_group_get_device(adapter->vlgrp, vid))
3830 igb_vlan_rx_add_vid(adapter->netdev, vid);
3835 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3837 struct e1000_mac_info *mac = &adapter->hw.mac;
3841 /* Fiber NICs only allow 1000 gbps Full duplex */
3842 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3843 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3844 dev_err(&adapter->pdev->dev,
3845 "Unsupported Speed/Duplex configuration\n");
3850 case SPEED_10 + DUPLEX_HALF:
3851 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3853 case SPEED_10 + DUPLEX_FULL:
3854 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3856 case SPEED_100 + DUPLEX_HALF:
3857 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3859 case SPEED_100 + DUPLEX_FULL:
3860 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3862 case SPEED_1000 + DUPLEX_FULL:
3864 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3866 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3868 dev_err(&adapter->pdev->dev,
3869 "Unsupported Speed/Duplex configuration\n");
3876 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3878 struct net_device *netdev = pci_get_drvdata(pdev);
3879 struct igb_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881 u32 ctrl, ctrl_ext, rctl, status;
3882 u32 wufc = adapter->wol;
3887 netif_device_detach(netdev);
3889 if (netif_running(netdev)) {
3890 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3892 igb_free_irq(adapter);
3896 retval = pci_save_state(pdev);
3901 status = rd32(E1000_STATUS);
3902 if (status & E1000_STATUS_LU)
3903 wufc &= ~E1000_WUFC_LNKC;
3906 igb_setup_rctl(adapter);
3907 igb_set_multi(netdev);
3909 /* turn on all-multi mode if wake on multicast is enabled */
3910 if (wufc & E1000_WUFC_MC) {
3911 rctl = rd32(E1000_RCTL);
3912 rctl |= E1000_RCTL_MPE;
3913 wr32(E1000_RCTL, rctl);
3916 ctrl = rd32(E1000_CTRL);
3917 /* advertise wake from D3Cold */
3918 #define E1000_CTRL_ADVD3WUC 0x00100000
3919 /* phy power management enable */
3920 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3921 ctrl |= E1000_CTRL_ADVD3WUC;
3922 wr32(E1000_CTRL, ctrl);
3924 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3925 adapter->hw.phy.media_type ==
3926 e1000_media_type_internal_serdes) {
3927 /* keep the laser running in D3 */
3928 ctrl_ext = rd32(E1000_CTRL_EXT);
3929 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3930 wr32(E1000_CTRL_EXT, ctrl_ext);
3933 /* Allow time for pending master requests to run */
3934 igb_disable_pcie_master(&adapter->hw);
3936 wr32(E1000_WUC, E1000_WUC_PME_EN);
3937 wr32(E1000_WUFC, wufc);
3938 pci_enable_wake(pdev, PCI_D3hot, 1);
3939 pci_enable_wake(pdev, PCI_D3cold, 1);
3942 wr32(E1000_WUFC, 0);
3943 pci_enable_wake(pdev, PCI_D3hot, 0);
3944 pci_enable_wake(pdev, PCI_D3cold, 0);
3947 /* make sure adapter isn't asleep if manageability is enabled */
3948 if (adapter->en_mng_pt) {
3949 pci_enable_wake(pdev, PCI_D3hot, 1);
3950 pci_enable_wake(pdev, PCI_D3cold, 1);
3953 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3954 * would have already happened in close and is redundant. */
3955 igb_release_hw_control(adapter);
3957 pci_disable_device(pdev);
3959 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3965 static int igb_resume(struct pci_dev *pdev)
3967 struct net_device *netdev = pci_get_drvdata(pdev);
3968 struct igb_adapter *adapter = netdev_priv(netdev);
3969 struct e1000_hw *hw = &adapter->hw;
3972 pci_set_power_state(pdev, PCI_D0);
3973 pci_restore_state(pdev);
3974 err = pci_enable_device(pdev);
3977 "igb: Cannot enable PCI device from suspend\n");
3980 pci_set_master(pdev);
3982 pci_enable_wake(pdev, PCI_D3hot, 0);
3983 pci_enable_wake(pdev, PCI_D3cold, 0);
3985 if (netif_running(netdev)) {
3986 err = igb_request_irq(adapter);
3991 /* e1000_power_up_phy(adapter); */
3994 wr32(E1000_WUS, ~0);
3996 igb_init_manageability(adapter);
3998 if (netif_running(netdev))
4001 netif_device_attach(netdev);
4003 /* let the f/w know that the h/w is now under the control of the
4005 igb_get_hw_control(adapter);
4011 static void igb_shutdown(struct pci_dev *pdev)
4013 igb_suspend(pdev, PMSG_SUSPEND);
4016 #ifdef CONFIG_NET_POLL_CONTROLLER
4018 * Polling 'interrupt' - used by things like netconsole to send skbs
4019 * without having to re-enable interrupts. It's not called while
4020 * the interrupt routine is executing.
4022 static void igb_netpoll(struct net_device *netdev)
4024 struct igb_adapter *adapter = netdev_priv(netdev);
4028 igb_irq_disable(adapter);
4029 for (i = 0; i < adapter->num_tx_queues; i++)
4030 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4032 for (i = 0; i < adapter->num_rx_queues; i++)
4033 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4035 adapter->rx_ring[i].napi.weight);
4037 igb_irq_enable(adapter);
4039 #endif /* CONFIG_NET_POLL_CONTROLLER */
4042 * igb_io_error_detected - called when PCI error is detected
4043 * @pdev: Pointer to PCI device
4044 * @state: The current pci connection state
4046 * This function is called after a PCI bus error affecting
4047 * this device has been detected.
4049 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4050 pci_channel_state_t state)
4052 struct net_device *netdev = pci_get_drvdata(pdev);
4053 struct igb_adapter *adapter = netdev_priv(netdev);
4055 netif_device_detach(netdev);
4057 if (netif_running(netdev))
4059 pci_disable_device(pdev);
4061 /* Request a slot slot reset. */
4062 return PCI_ERS_RESULT_NEED_RESET;
4066 * igb_io_slot_reset - called after the pci bus has been reset.
4067 * @pdev: Pointer to PCI device
4069 * Restart the card from scratch, as if from a cold-boot. Implementation
4070 * resembles the first-half of the igb_resume routine.
4072 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4074 struct net_device *netdev = pci_get_drvdata(pdev);
4075 struct igb_adapter *adapter = netdev_priv(netdev);
4076 struct e1000_hw *hw = &adapter->hw;
4078 if (pci_enable_device(pdev)) {
4080 "Cannot re-enable PCI device after reset.\n");
4081 return PCI_ERS_RESULT_DISCONNECT;
4083 pci_set_master(pdev);
4084 pci_restore_state(pdev);
4086 pci_enable_wake(pdev, PCI_D3hot, 0);
4087 pci_enable_wake(pdev, PCI_D3cold, 0);
4090 wr32(E1000_WUS, ~0);
4092 return PCI_ERS_RESULT_RECOVERED;
4096 * igb_io_resume - called when traffic can start flowing again.
4097 * @pdev: Pointer to PCI device
4099 * This callback is called when the error recovery driver tells us that
4100 * its OK to resume normal operation. Implementation resembles the
4101 * second-half of the igb_resume routine.
4103 static void igb_io_resume(struct pci_dev *pdev)
4105 struct net_device *netdev = pci_get_drvdata(pdev);
4106 struct igb_adapter *adapter = netdev_priv(netdev);
4108 igb_init_manageability(adapter);
4110 if (netif_running(netdev)) {
4111 if (igb_up(adapter)) {
4112 dev_err(&pdev->dev, "igb_up failed after reset\n");
4117 netif_device_attach(netdev);
4119 /* let the f/w know that the h/w is now under the control of the
4121 igb_get_hw_control(adapter);