2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
31 #include <asm/processor.h>
32 #include <asm/machdep.h>
35 #include <asm/pgtable.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cputable.h>
38 #include <asm/sections.h>
39 #include <asm/iommu.h>
40 #include <asm/firmware.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iSeries/HvCallHpt.h>
49 #include <asm/iSeries/HvLpConfig.h>
50 #include <asm/iSeries/HvCallEvent.h>
51 #include <asm/iSeries/HvCallXm.h>
52 #include <asm/iSeries/ItLpQueue.h>
53 #include <asm/iSeries/mf.h>
54 #include <asm/iSeries/HvLpEvent.h>
55 #include <asm/iSeries/LparMap.h>
59 #include "vpd_areas.h"
60 #include "processor_vpd.h"
61 #include "main_store.h"
64 extern void hvlog(char *fmt, ...);
67 #define DBG(fmt...) hvlog(fmt)
72 /* Function Prototypes */
73 extern void ppcdbg_initialize(void);
75 static void build_iSeries_Memory_Map(void);
76 static int iseries_shared_idle(void);
77 static int iseries_dedicated_idle(void);
79 extern void iSeries_pci_final_fixup(void);
81 static void iSeries_pci_final_fixup(void) { }
84 /* Global Variables */
85 int piranha_simulator;
87 extern int rd_size; /* Defined in drivers/block/rd.c */
88 extern unsigned long klimit;
89 extern unsigned long embedded_sysmap_start;
90 extern unsigned long embedded_sysmap_end;
92 extern unsigned long iSeries_recal_tb;
93 extern unsigned long iSeries_recal_titan;
95 static int mf_initialized;
98 unsigned long absStart;
100 unsigned long logicalStart;
101 unsigned long logicalEnd;
105 * Process the main store vpd to determine where the holes in memory are
106 * and return the number of physical blocks and fill in the array of
109 static unsigned long iSeries_process_Condor_mainstore_vpd(
110 struct MemoryBlock *mb_array, unsigned long max_entries)
112 unsigned long holeFirstChunk, holeSizeChunks;
113 unsigned long numMemoryBlocks = 1;
114 struct IoHriMainStoreSegment4 *msVpd =
115 (struct IoHriMainStoreSegment4 *)xMsVpd;
116 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
117 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
118 unsigned long holeSize = holeEnd - holeStart;
120 printk("Mainstore_VPD: Condor\n");
122 * Determine if absolute memory has any
123 * holes so that we can interpret the
124 * access map we get back from the hypervisor
127 mb_array[0].logicalStart = 0;
128 mb_array[0].logicalEnd = 0x100000000;
129 mb_array[0].absStart = 0;
130 mb_array[0].absEnd = 0x100000000;
134 holeStart = holeStart & 0x000fffffffffffff;
135 holeStart = addr_to_chunk(holeStart);
136 holeFirstChunk = holeStart;
137 holeSize = addr_to_chunk(holeSize);
138 holeSizeChunks = holeSize;
139 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
140 holeFirstChunk, holeSizeChunks );
141 mb_array[0].logicalEnd = holeFirstChunk;
142 mb_array[0].absEnd = holeFirstChunk;
143 mb_array[1].logicalStart = holeFirstChunk;
144 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
145 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
146 mb_array[1].absEnd = 0x100000000;
148 return numMemoryBlocks;
151 #define MaxSegmentAreas 32
152 #define MaxSegmentAdrRangeBlocks 128
153 #define MaxAreaRangeBlocks 4
155 static unsigned long iSeries_process_Regatta_mainstore_vpd(
156 struct MemoryBlock *mb_array, unsigned long max_entries)
158 struct IoHriMainStoreSegment5 *msVpdP =
159 (struct IoHriMainStoreSegment5 *)xMsVpd;
160 unsigned long numSegmentBlocks = 0;
161 u32 existsBits = msVpdP->msAreaExists;
162 unsigned long area_num;
164 printk("Mainstore_VPD: Regatta\n");
166 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
167 unsigned long numAreaBlocks;
168 struct IoHriMainStoreArea4 *currentArea;
170 if (existsBits & 0x80000000) {
171 unsigned long block_num;
173 currentArea = &msVpdP->msAreaArray[area_num];
174 numAreaBlocks = currentArea->numAdrRangeBlocks;
175 printk("ms_vpd: processing area %2ld blocks=%ld",
176 area_num, numAreaBlocks);
177 for (block_num = 0; block_num < numAreaBlocks;
179 /* Process an address range block */
180 struct MemoryBlock tempBlock;
184 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
186 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
187 tempBlock.logicalStart = 0;
188 tempBlock.logicalEnd = 0;
189 printk("\n block %ld absStart=%016lx absEnd=%016lx",
190 block_num, tempBlock.absStart,
193 for (i = 0; i < numSegmentBlocks; ++i) {
194 if (mb_array[i].absStart ==
198 if (i == numSegmentBlocks) {
199 if (numSegmentBlocks == max_entries)
200 panic("iSeries_process_mainstore_vpd: too many memory blocks");
201 mb_array[numSegmentBlocks] = tempBlock;
204 printk(" (duplicate)");
210 /* Now sort the blocks found into ascending sequence */
211 if (numSegmentBlocks > 1) {
214 for (m = 0; m < numSegmentBlocks - 1; ++m) {
215 for (n = numSegmentBlocks - 1; m < n; --n) {
216 if (mb_array[n].absStart <
217 mb_array[n-1].absStart) {
218 struct MemoryBlock tempBlock;
220 tempBlock = mb_array[n];
221 mb_array[n] = mb_array[n-1];
222 mb_array[n-1] = tempBlock;
228 * Assign "logical" addresses to each block. These
229 * addresses correspond to the hypervisor "bitmap" space.
230 * Convert all addresses into units of 256K chunks.
233 unsigned long i, nextBitmapAddress;
235 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
236 nextBitmapAddress = 0;
237 for (i = 0; i < numSegmentBlocks; ++i) {
238 unsigned long length = mb_array[i].absEnd -
239 mb_array[i].absStart;
241 mb_array[i].logicalStart = nextBitmapAddress;
242 mb_array[i].logicalEnd = nextBitmapAddress + length;
243 nextBitmapAddress += length;
244 printk(" Bitmap range: %016lx - %016lx\n"
245 " Absolute range: %016lx - %016lx\n",
246 mb_array[i].logicalStart,
247 mb_array[i].logicalEnd,
248 mb_array[i].absStart, mb_array[i].absEnd);
249 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
251 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
253 mb_array[i].logicalStart =
254 addr_to_chunk(mb_array[i].logicalStart);
255 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
259 return numSegmentBlocks;
262 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
263 unsigned long max_entries)
266 unsigned long mem_blocks = 0;
268 if (cpu_has_feature(CPU_FTR_SLB))
269 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
272 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
275 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
276 for (i = 0; i < mem_blocks; ++i) {
277 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
278 " abs chunks %016lx - %016lx\n",
279 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
280 mb_array[i].absStart, mb_array[i].absEnd);
285 static void __init iSeries_get_cmdline(void)
289 /* copy the command line parameter from the primary VSP */
290 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
291 HvLpDma_Direction_RemoteToLocal);
296 if (!*p || *p == '\n')
303 static void __init iSeries_init_early(void)
305 extern unsigned long memory_limit;
307 DBG(" -> iSeries_init_early()\n");
309 ppc64_firmware_features = FW_FEATURE_ISERIES;
313 ppc64_interrupt_controller = IC_ISERIES;
315 #if defined(CONFIG_BLK_DEV_INITRD)
317 * If the init RAM disk has been configured and there is
318 * a non-zero starting address for it, set it up
321 initrd_start = (unsigned long)__va(naca.xRamDisk);
322 initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE;
323 initrd_below_start_ok = 1; // ramdisk in kernel space
324 ROOT_DEV = Root_RAM0;
325 if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize)
326 rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024;
328 #endif /* CONFIG_BLK_DEV_INITRD */
330 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
333 iSeries_recal_tb = get_tb();
334 iSeries_recal_titan = HvCallXm_loadTod();
337 * Initialize the hash table management pointers
342 * Initialize the DMA/TCE management
344 iommu_init_early_iSeries();
346 iSeries_get_cmdline();
348 /* Save unparsed command line copy for /proc/cmdline */
349 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
351 /* Parse early parameters, in particular mem=x */
355 if (memory_limit < systemcfg->physicalMemorySize)
356 systemcfg->physicalMemorySize = memory_limit;
358 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit);
363 /* Initialize machine-dependency vectors */
367 if (itLpNaca.xPirEnvironMode == 0)
368 piranha_simulator = 1;
370 /* Associate Lp Event Queue 0 with processor 0 */
371 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
377 /* If we were passed an initrd, set the ROOT_DEV properly if the values
378 * look sensible. If not, clear initrd reference.
380 #ifdef CONFIG_BLK_DEV_INITRD
381 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
382 initrd_end > initrd_start)
383 ROOT_DEV = Root_RAM0;
385 initrd_start = initrd_end = 0;
386 #endif /* CONFIG_BLK_DEV_INITRD */
388 DBG(" <- iSeries_init_early()\n");
391 struct mschunks_map mschunks_map = {
392 /* XXX We don't use these, but Piranha might need them. */
393 .chunk_size = MSCHUNKS_CHUNK_SIZE,
394 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
395 .chunk_mask = MSCHUNKS_OFFSET_MASK,
397 EXPORT_SYMBOL(mschunks_map);
399 void mschunks_alloc(unsigned long num_chunks)
401 klimit = _ALIGN(klimit, sizeof(u32));
402 mschunks_map.mapping = (u32 *)klimit;
403 klimit += num_chunks * sizeof(u32);
404 mschunks_map.num_chunks = num_chunks;
408 * The iSeries may have very large memories ( > 128 GB ) and a partition
409 * may get memory in "chunks" that may be anywhere in the 2**52 real
410 * address space. The chunks are 256K in size. To map this to the
411 * memory model Linux expects, the AS/400 specific code builds a
412 * translation table to translate what Linux thinks are "physical"
413 * addresses to the actual real addresses. This allows us to make
414 * it appear to Linux that we have contiguous memory starting at
415 * physical address zero while in fact this could be far from the truth.
416 * To avoid confusion, I'll let the words physical and/or real address
417 * apply to the Linux addresses while I'll use "absolute address" to
418 * refer to the actual hardware real address.
420 * build_iSeries_Memory_Map gets information from the Hypervisor and
421 * looks at the Main Store VPD to determine the absolute addresses
422 * of the memory that has been assigned to our partition and builds
423 * a table used to translate Linux's physical addresses to these
424 * absolute addresses. Absolute addresses are needed when
425 * communicating with the hypervisor (e.g. to build HPT entries)
428 static void __init build_iSeries_Memory_Map(void)
430 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
432 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
433 u32 totalChunks,moreChunks;
434 u32 currChunk, thisChunk, absChunk;
438 struct MemoryBlock mb[32];
439 unsigned long numMemoryBlocks, curBlock;
441 /* Chunk size on iSeries is 256K bytes */
442 totalChunks = (u32)HvLpConfig_getMsChunks();
443 mschunks_alloc(totalChunks);
446 * Get absolute address of our load area
447 * and map it to physical address 0
448 * This guarantees that the loadarea ends up at physical 0
449 * otherwise, it might not be returned by PLIC as the first
453 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
454 loadAreaSize = itLpNaca.xLoadAreaChunks;
457 * Only add the pages already mapped here.
458 * Otherwise we might add the hpt pages
459 * The rest of the pages of the load area
460 * aren't in the HPT yet and can still
461 * be assigned an arbitrary physical address
463 if ((loadAreaSize * 64) > HvPagesToMap)
464 loadAreaSize = HvPagesToMap / 64;
466 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
469 * TODO Do we need to do something if the HPT is in the 64MB load area?
470 * This would be required if the itLpNaca.xLoadAreaChunks includes
474 printk("Mapping load area - physical addr = 0000000000000000\n"
475 " absolute addr = %016lx\n",
476 chunk_to_addr(loadAreaFirstChunk));
477 printk("Load area size %dK\n", loadAreaSize * 256);
479 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
480 mschunks_map.mapping[nextPhysChunk] =
481 loadAreaFirstChunk + nextPhysChunk;
484 * Get absolute address of our HPT and remember it so
485 * we won't map it to any physical address
487 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
488 hptSizePages = (u32)HvCallHpt_getHptPages();
489 hptSizeChunks = hptSizePages >> (MSCHUNKS_CHUNK_SHIFT - PAGE_SHIFT);
490 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
492 printk("HPT absolute addr = %016lx, size = %dK\n",
493 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
495 ppc64_pft_size = __ilog2(hptSizePages * PAGE_SIZE);
498 * The actual hashed page table is in the hypervisor,
499 * we have no direct access
504 * Determine if absolute memory has any
505 * holes so that we can interpret the
506 * access map we get back from the hypervisor
509 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
512 * Process the main store access map from the hypervisor
513 * to build up our physical -> absolute translation table
518 moreChunks = totalChunks;
521 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
523 thisChunk = currChunk;
525 chunkBit = map >> 63;
529 while (thisChunk >= mb[curBlock].logicalEnd) {
531 if (curBlock >= numMemoryBlocks)
532 panic("out of memory blocks");
534 if (thisChunk < mb[curBlock].logicalStart)
535 panic("memory block error");
537 absChunk = mb[curBlock].absStart +
538 (thisChunk - mb[curBlock].logicalStart);
539 if (((absChunk < hptFirstChunk) ||
540 (absChunk > hptLastChunk)) &&
541 ((absChunk < loadAreaFirstChunk) ||
542 (absChunk > loadAreaLastChunk))) {
543 mschunks_map.mapping[nextPhysChunk] =
555 * main store size (in chunks) is
556 * totalChunks - hptSizeChunks
557 * which should be equal to
560 systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
566 static void __init iSeries_setup_arch(void)
568 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
570 if (get_paca()->lppaca.shared_proc) {
571 ppc_md.idle_loop = iseries_shared_idle;
572 printk(KERN_INFO "Using shared processor idle loop\n");
574 ppc_md.idle_loop = iseries_dedicated_idle;
575 printk(KERN_INFO "Using dedicated idle loop\n");
578 /* Setup the Lp Event Queue */
579 setup_hvlpevent_queue();
581 printk("Max logical processors = %d\n",
582 itVpdAreas.xSlicMaxLogicalProcs);
583 printk("Max physical processors = %d\n",
584 itVpdAreas.xSlicMaxPhysicalProcs);
586 systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
587 printk("Processor version = %x\n", systemcfg->processor);
590 static void iSeries_get_cpuinfo(struct seq_file *m)
592 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
599 static int iSeries_get_irq(struct pt_regs *regs)
601 /* -2 means ignore this interrupt */
608 static void iSeries_restart(char *cmd)
616 static void iSeries_power_off(void)
624 static void iSeries_halt(void)
629 static void __init iSeries_progress(char * st, unsigned short code)
631 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
632 if (!piranha_simulator && mf_initialized) {
634 mf_display_progress(code);
640 static void __init iSeries_fixup_klimit(void)
643 * Change klimit to take into account any ram disk
644 * that may be included
647 klimit = KERNELBASE + (u64)naca.xRamDisk +
648 (naca.xRamDiskSize * PAGE_SIZE);
651 * No ram disk was included - check and see if there
652 * was an embedded system map. Change klimit to take
653 * into account any embedded system map
655 if (embedded_sysmap_end)
656 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
661 static int __init iSeries_src_init(void)
663 /* clear the progress line */
664 ppc_md.progress(" ", 0xffff);
668 late_initcall(iSeries_src_init);
670 static inline void process_iSeries_events(void)
672 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
675 static void yield_shared_processor(void)
679 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
685 /* Compute future tb value when yield should expire */
686 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
689 * The decrementer stops during the yield. Force a fake decrementer
690 * here and let the timer_interrupt code sort out the actual time.
692 get_paca()->lppaca.int_dword.fields.decr_int = 1;
693 process_iSeries_events();
696 static int iseries_shared_idle(void)
699 while (!need_resched() && !hvlpevent_is_pending()) {
701 ppc64_runlatch_off();
703 /* Recheck with irqs off */
704 if (!need_resched() && !hvlpevent_is_pending())
705 yield_shared_processor();
713 if (hvlpevent_is_pending())
714 process_iSeries_events();
722 static int iseries_dedicated_idle(void)
727 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
730 set_thread_flag(TIF_POLLING_NRFLAG);
732 while (!need_resched()) {
733 ppc64_runlatch_off();
736 if (hvlpevent_is_pending()) {
739 process_iSeries_events();
744 clear_thread_flag(TIF_POLLING_NRFLAG);
757 void __init iSeries_init_IRQ(void) { }
760 static int __init iseries_probe(int platform)
762 return PLATFORM_ISERIES_LPAR == platform;
765 struct machdep_calls __initdata iseries_md = {
766 .setup_arch = iSeries_setup_arch,
767 .get_cpuinfo = iSeries_get_cpuinfo,
768 .init_IRQ = iSeries_init_IRQ,
769 .get_irq = iSeries_get_irq,
770 .init_early = iSeries_init_early,
771 .pcibios_fixup = iSeries_pci_final_fixup,
772 .restart = iSeries_restart,
773 .power_off = iSeries_power_off,
774 .halt = iSeries_halt,
775 .get_boot_time = iSeries_get_boot_time,
776 .set_rtc_time = iSeries_set_rtc_time,
777 .get_rtc_time = iSeries_get_rtc_time,
778 .calibrate_decr = generic_calibrate_decr,
779 .progress = iSeries_progress,
780 .probe = iseries_probe,
781 /* XXX Implement enable_pmcs for iSeries */
785 unsigned char data[PAGE_SIZE];
789 struct iseries_flat_dt {
790 struct boot_param_header header;
796 struct iseries_flat_dt iseries_dt;
798 void dt_init(struct iseries_flat_dt *dt)
800 dt->header.off_mem_rsvmap =
801 offsetof(struct iseries_flat_dt, reserve_map);
802 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
803 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
804 dt->header.totalsize = sizeof(struct iseries_flat_dt);
805 dt->header.dt_strings_size = sizeof(struct blob);
807 /* There is no notion of hardware cpu id on iSeries */
808 dt->header.boot_cpuid_phys = smp_processor_id();
810 dt->dt.next = (unsigned long)&dt->dt.data;
811 dt->strings.next = (unsigned long)&dt->strings.data;
813 dt->header.magic = OF_DT_HEADER;
814 dt->header.version = 0x10;
815 dt->header.last_comp_version = 0x10;
817 dt->reserve_map[0] = 0;
818 dt->reserve_map[1] = 0;
821 void dt_check_blob(struct blob *b)
823 if (b->next >= (unsigned long)&b->next) {
824 DBG("Ran out of space in flat device tree blob!\n");
829 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
831 *((u32*)dt->dt.next) = value;
832 dt->dt.next += sizeof(u32);
834 dt_check_blob(&dt->dt);
837 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
839 *((u64*)dt->dt.next) = value;
840 dt->dt.next += sizeof(u64);
842 dt_check_blob(&dt->dt);
845 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
847 unsigned long start = blob->next - (unsigned long)blob->data;
849 memcpy((char *)blob->next, data, len);
850 blob->next = _ALIGN(blob->next + len, 4);
857 void dt_start_node(struct iseries_flat_dt *dt, char *name)
859 dt_push_u32(dt, OF_DT_BEGIN_NODE);
860 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
863 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
865 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
867 unsigned long offset;
869 dt_push_u32(dt, OF_DT_PROP);
871 /* Length of the data */
872 dt_push_u32(dt, len);
874 /* Put the property name in the string blob. */
875 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
877 /* The offset of the properties name in the string blob. */
878 dt_push_u32(dt, (u32)offset);
880 /* The actual data. */
881 dt_push_bytes(&dt->dt, data, len);
884 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
886 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
889 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
891 dt_prop(dt, name, (char *)&data, sizeof(u32));
894 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
896 dt_prop(dt, name, (char *)&data, sizeof(u64));
899 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
901 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
904 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
906 dt_prop(dt, name, NULL, 0);
909 void dt_cpus(struct iseries_flat_dt *dt)
911 unsigned char buf[32];
913 unsigned int i, index;
914 struct IoHriProcessorVpd *d;
917 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
918 p = strchr(buf, ' ');
919 if (!p) p = buf + strlen(buf);
921 dt_start_node(dt, "cpus");
922 dt_prop_u32(dt, "#address-cells", 1);
923 dt_prop_u32(dt, "#size-cells", 0);
925 for (i = 0; i < NR_CPUS; i++) {
926 if (paca[i].lppaca.dyn_proc_status >= 2)
929 snprintf(p, 32 - (p - buf), "@%d", i);
930 dt_start_node(dt, buf);
932 dt_prop_str(dt, "device_type", "cpu");
934 index = paca[i].lppaca.dyn_hv_phys_proc_index;
935 d = &xIoHriProcessorVpd[index];
937 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
938 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
940 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
941 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
943 /* magic conversions to Hz copied from old code */
944 dt_prop_u32(dt, "clock-frequency",
945 ((1UL << 34) * 1000000) / d->xProcFreq);
946 dt_prop_u32(dt, "timebase-frequency",
947 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
949 dt_prop_u32(dt, "reg", i);
957 void build_flat_dt(struct iseries_flat_dt *dt)
963 dt_start_node(dt, "");
965 dt_prop_u32(dt, "#address-cells", 2);
966 dt_prop_u32(dt, "#size-cells", 2);
969 dt_start_node(dt, "memory@0");
970 dt_prop_str(dt, "name", "memory");
971 dt_prop_str(dt, "device_type", "memory");
973 tmp[1] = systemcfg->physicalMemorySize;
974 dt_prop_u64_list(dt, "reg", tmp, 2);
978 dt_start_node(dt, "chosen");
979 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
986 dt_push_u32(dt, OF_DT_END);
989 void * __init iSeries_early_setup(void)
991 iSeries_fixup_klimit();
994 * Initialize the table which translate Linux physical addresses to
995 * AS/400 absolute addresses
997 build_iSeries_Memory_Map();
999 build_flat_dt(&iseries_dt);
1001 return (void *) __pa(&iseries_dt);