2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
57 * Alan Cox : Tidied tcp_data to avoid a potential
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
215 * Description of States:
217 * TCP_SYN_SENT sent a connection request, waiting for ack
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
222 * TCP_ESTABLISHED connection established
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
247 * TCP_CLOSE socket is finished
250 #include <linux/module.h>
251 #include <linux/types.h>
252 #include <linux/fcntl.h>
253 #include <linux/poll.h>
254 #include <linux/init.h>
255 #include <linux/fs.h>
256 #include <linux/random.h>
257 #include <linux/bootmem.h>
258 #include <linux/cache.h>
259 #include <linux/err.h>
260 #include <linux/crypto.h>
262 #include <net/icmp.h>
264 #include <net/xfrm.h>
266 #include <net/netdma.h>
268 #include <asm/uaccess.h>
269 #include <asm/ioctls.h>
271 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
273 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
275 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
277 EXPORT_SYMBOL_GPL(tcp_orphan_count);
279 int sysctl_tcp_mem[3] __read_mostly;
280 int sysctl_tcp_wmem[3] __read_mostly;
281 int sysctl_tcp_rmem[3] __read_mostly;
283 EXPORT_SYMBOL(sysctl_tcp_mem);
284 EXPORT_SYMBOL(sysctl_tcp_rmem);
285 EXPORT_SYMBOL(sysctl_tcp_wmem);
287 atomic_t tcp_memory_allocated; /* Current allocated memory. */
288 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 EXPORT_SYMBOL(tcp_sockets_allocated);
294 * Pressure flag: try to collapse.
295 * Technical note: it is used by multiple contexts non atomically.
296 * All the sk_stream_mem_schedule() is of this nature: accounting
297 * is strict, actions are advisory and have some latency.
299 int tcp_memory_pressure __read_mostly;
301 EXPORT_SYMBOL(tcp_memory_pressure);
303 void tcp_enter_memory_pressure(void)
305 if (!tcp_memory_pressure) {
306 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
307 tcp_memory_pressure = 1;
311 EXPORT_SYMBOL(tcp_enter_memory_pressure);
314 * Wait for a TCP event.
316 * Note that we don't need to lock the socket, as the upper poll layers
317 * take care of normal races (between the test and the event) and we don't
318 * go look at any of the socket buffers directly.
320 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
323 struct sock *sk = sock->sk;
324 struct tcp_sock *tp = tcp_sk(sk);
326 poll_wait(file, sk->sk_sleep, wait);
327 if (sk->sk_state == TCP_LISTEN)
328 return inet_csk_listen_poll(sk);
330 /* Socket is not locked. We are protected from async events
331 by poll logic and correct handling of state changes
332 made by another threads is impossible in any case.
340 * POLLHUP is certainly not done right. But poll() doesn't
341 * have a notion of HUP in just one direction, and for a
342 * socket the read side is more interesting.
344 * Some poll() documentation says that POLLHUP is incompatible
345 * with the POLLOUT/POLLWR flags, so somebody should check this
346 * all. But careful, it tends to be safer to return too many
347 * bits than too few, and you can easily break real applications
348 * if you don't tell them that something has hung up!
352 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
353 * our fs/select.c). It means that after we received EOF,
354 * poll always returns immediately, making impossible poll() on write()
355 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
356 * if and only if shutdown has been made in both directions.
357 * Actually, it is interesting to look how Solaris and DUX
358 * solve this dilemma. I would prefer, if PULLHUP were maskable,
359 * then we could set it on SND_SHUTDOWN. BTW examples given
360 * in Stevens' books assume exactly this behaviour, it explains
361 * why PULLHUP is incompatible with POLLOUT. --ANK
363 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
364 * blocking on fresh not-connected or disconnected socket. --ANK
366 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
368 if (sk->sk_shutdown & RCV_SHUTDOWN)
369 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
372 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
373 /* Potential race condition. If read of tp below will
374 * escape above sk->sk_state, we can be illegally awaken
375 * in SYN_* states. */
376 if ((tp->rcv_nxt != tp->copied_seq) &&
377 (tp->urg_seq != tp->copied_seq ||
378 tp->rcv_nxt != tp->copied_seq + 1 ||
379 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
380 mask |= POLLIN | POLLRDNORM;
382 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
383 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
384 mask |= POLLOUT | POLLWRNORM;
385 } else { /* send SIGIO later */
386 set_bit(SOCK_ASYNC_NOSPACE,
387 &sk->sk_socket->flags);
388 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
390 /* Race breaker. If space is freed after
391 * wspace test but before the flags are set,
392 * IO signal will be lost.
394 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
395 mask |= POLLOUT | POLLWRNORM;
399 if (tp->urg_data & TCP_URG_VALID)
405 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
407 struct tcp_sock *tp = tcp_sk(sk);
412 if (sk->sk_state == TCP_LISTEN)
416 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
418 else if (sock_flag(sk, SOCK_URGINLINE) ||
420 before(tp->urg_seq, tp->copied_seq) ||
421 !before(tp->urg_seq, tp->rcv_nxt)) {
422 answ = tp->rcv_nxt - tp->copied_seq;
424 /* Subtract 1, if FIN is in queue. */
425 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
427 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
429 answ = tp->urg_seq - tp->copied_seq;
433 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
436 if (sk->sk_state == TCP_LISTEN)
439 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
442 answ = tp->write_seq - tp->snd_una;
448 return put_user(answ, (int __user *)arg);
451 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
453 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
454 tp->pushed_seq = tp->write_seq;
457 static inline int forced_push(struct tcp_sock *tp)
459 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
462 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
464 struct tcp_sock *tp = tcp_sk(sk);
465 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468 tcb->seq = tcb->end_seq = tp->write_seq;
469 tcb->flags = TCPCB_FLAG_ACK;
471 skb_header_release(skb);
472 tcp_add_write_queue_tail(sk, skb);
473 sk_charge_skb(sk, skb);
474 if (tp->nonagle & TCP_NAGLE_PUSH)
475 tp->nonagle &= ~TCP_NAGLE_PUSH;
478 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
481 if (flags & MSG_OOB) {
483 tp->snd_up = tp->write_seq;
484 TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
488 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
491 struct tcp_sock *tp = tcp_sk(sk);
493 if (tcp_send_head(sk)) {
494 struct sk_buff *skb = tcp_write_queue_tail(sk);
495 if (!(flags & MSG_MORE) || forced_push(tp))
496 tcp_mark_push(tp, skb);
497 tcp_mark_urg(tp, flags, skb);
498 __tcp_push_pending_frames(sk, mss_now,
499 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
503 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
504 size_t psize, int flags)
506 struct tcp_sock *tp = tcp_sk(sk);
507 int mss_now, size_goal;
510 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
512 /* Wait for a connection to finish. */
513 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
514 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
517 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
519 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
520 size_goal = tp->xmit_size_goal;
524 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
528 struct sk_buff *skb = tcp_write_queue_tail(sk);
529 struct page *page = pages[poffset / PAGE_SIZE];
530 int copy, i, can_coalesce;
531 int offset = poffset % PAGE_SIZE;
532 int size = min_t(size_t, psize, PAGE_SIZE - offset);
534 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
536 if (!sk_stream_memory_free(sk))
537 goto wait_for_sndbuf;
539 skb = sk_stream_alloc_pskb(sk, 0, 0,
542 goto wait_for_memory;
551 i = skb_shinfo(skb)->nr_frags;
552 can_coalesce = skb_can_coalesce(skb, i, page, offset);
553 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
554 tcp_mark_push(tp, skb);
557 if (!sk_stream_wmem_schedule(sk, copy))
558 goto wait_for_memory;
561 skb_shinfo(skb)->frags[i - 1].size += copy;
564 skb_fill_page_desc(skb, i, page, offset, copy);
568 skb->data_len += copy;
569 skb->truesize += copy;
570 sk->sk_wmem_queued += copy;
571 sk->sk_forward_alloc -= copy;
572 skb->ip_summed = CHECKSUM_PARTIAL;
573 tp->write_seq += copy;
574 TCP_SKB_CB(skb)->end_seq += copy;
575 skb_shinfo(skb)->gso_segs = 0;
578 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
582 if (!(psize -= copy))
585 if (skb->len < mss_now || (flags & MSG_OOB))
588 if (forced_push(tp)) {
589 tcp_mark_push(tp, skb);
590 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
591 } else if (skb == tcp_send_head(sk))
592 tcp_push_one(sk, mss_now);
596 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
599 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
601 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
604 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
605 size_goal = tp->xmit_size_goal;
610 tcp_push(sk, flags, mss_now, tp->nonagle);
617 return sk_stream_error(sk, flags, err);
620 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
621 size_t size, int flags)
624 struct sock *sk = sock->sk;
626 if (!(sk->sk_route_caps & NETIF_F_SG) ||
627 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
628 return sock_no_sendpage(sock, page, offset, size, flags);
632 res = do_tcp_sendpages(sk, &page, offset, size, flags);
638 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
639 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
641 static inline int select_size(struct sock *sk)
643 struct tcp_sock *tp = tcp_sk(sk);
644 int tmp = tp->mss_cache;
646 if (sk->sk_route_caps & NETIF_F_SG) {
650 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
652 if (tmp >= pgbreak &&
653 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
661 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
664 struct sock *sk = sock->sk;
666 struct tcp_sock *tp = tcp_sk(sk);
669 int mss_now, size_goal;
676 flags = msg->msg_flags;
677 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
679 /* Wait for a connection to finish. */
680 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
681 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
684 /* This should be in poll */
685 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
687 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
688 size_goal = tp->xmit_size_goal;
690 /* Ok commence sending. */
691 iovlen = msg->msg_iovlen;
696 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
699 while (--iovlen >= 0) {
700 int seglen = iov->iov_len;
701 unsigned char __user *from = iov->iov_base;
708 skb = tcp_write_queue_tail(sk);
710 if (!tcp_send_head(sk) ||
711 (copy = size_goal - skb->len) <= 0) {
714 /* Allocate new segment. If the interface is SG,
715 * allocate skb fitting to single page.
717 if (!sk_stream_memory_free(sk))
718 goto wait_for_sndbuf;
720 skb = sk_stream_alloc_pskb(sk, select_size(sk),
721 0, sk->sk_allocation);
723 goto wait_for_memory;
726 * Check whether we can use HW checksum.
728 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
729 skb->ip_summed = CHECKSUM_PARTIAL;
735 /* Try to append data to the end of skb. */
739 /* Where to copy to? */
740 if (skb_tailroom(skb) > 0) {
741 /* We have some space in skb head. Superb! */
742 if (copy > skb_tailroom(skb))
743 copy = skb_tailroom(skb);
744 if ((err = skb_add_data(skb, from, copy)) != 0)
748 int i = skb_shinfo(skb)->nr_frags;
749 struct page *page = TCP_PAGE(sk);
750 int off = TCP_OFF(sk);
752 if (skb_can_coalesce(skb, i, page, off) &&
754 /* We can extend the last page
757 } else if (i == MAX_SKB_FRAGS ||
759 !(sk->sk_route_caps & NETIF_F_SG))) {
760 /* Need to add new fragment and cannot
761 * do this because interface is non-SG,
762 * or because all the page slots are
764 tcp_mark_push(tp, skb);
767 if (off == PAGE_SIZE) {
769 TCP_PAGE(sk) = page = NULL;
775 if (copy > PAGE_SIZE - off)
776 copy = PAGE_SIZE - off;
778 if (!sk_stream_wmem_schedule(sk, copy))
779 goto wait_for_memory;
782 /* Allocate new cache page. */
783 if (!(page = sk_stream_alloc_page(sk)))
784 goto wait_for_memory;
787 /* Time to copy data. We are close to
789 err = skb_copy_to_page(sk, from, skb, page,
792 /* If this page was new, give it to the
793 * socket so it does not get leaked.
802 /* Update the skb. */
804 skb_shinfo(skb)->frags[i - 1].size +=
807 skb_fill_page_desc(skb, i, page, off, copy);
810 } else if (off + copy < PAGE_SIZE) {
816 TCP_OFF(sk) = off + copy;
820 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
822 tp->write_seq += copy;
823 TCP_SKB_CB(skb)->end_seq += copy;
824 skb_shinfo(skb)->gso_segs = 0;
828 if ((seglen -= copy) == 0 && iovlen == 0)
831 if (skb->len < mss_now || (flags & MSG_OOB))
834 if (forced_push(tp)) {
835 tcp_mark_push(tp, skb);
836 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
837 } else if (skb == tcp_send_head(sk))
838 tcp_push_one(sk, mss_now);
842 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
845 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
847 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
850 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
851 size_goal = tp->xmit_size_goal;
857 tcp_push(sk, flags, mss_now, tp->nonagle);
864 tcp_unlink_write_queue(skb, sk);
865 /* It is the one place in all of TCP, except connection
866 * reset, where we can be unlinking the send_head.
868 tcp_check_send_head(sk, skb);
869 sk_stream_free_skb(sk, skb);
876 err = sk_stream_error(sk, flags, err);
883 * Handle reading urgent data. BSD has very simple semantics for
884 * this, no blocking and very strange errors 8)
887 static int tcp_recv_urg(struct sock *sk, long timeo,
888 struct msghdr *msg, int len, int flags,
891 struct tcp_sock *tp = tcp_sk(sk);
893 /* No URG data to read. */
894 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
895 tp->urg_data == TCP_URG_READ)
896 return -EINVAL; /* Yes this is right ! */
898 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
901 if (tp->urg_data & TCP_URG_VALID) {
903 char c = tp->urg_data;
905 if (!(flags & MSG_PEEK))
906 tp->urg_data = TCP_URG_READ;
908 /* Read urgent data. */
909 msg->msg_flags |= MSG_OOB;
912 if (!(flags & MSG_TRUNC))
913 err = memcpy_toiovec(msg->msg_iov, &c, 1);
916 msg->msg_flags |= MSG_TRUNC;
918 return err ? -EFAULT : len;
921 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
924 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
925 * the available implementations agree in this case:
926 * this call should never block, independent of the
927 * blocking state of the socket.
928 * Mike <pall@rz.uni-karlsruhe.de>
933 /* Clean up the receive buffer for full frames taken by the user,
934 * then send an ACK if necessary. COPIED is the number of bytes
935 * tcp_recvmsg has given to the user so far, it speeds up the
936 * calculation of whether or not we must ACK for the sake of
939 void tcp_cleanup_rbuf(struct sock *sk, int copied)
941 struct tcp_sock *tp = tcp_sk(sk);
945 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
947 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
950 if (inet_csk_ack_scheduled(sk)) {
951 const struct inet_connection_sock *icsk = inet_csk(sk);
952 /* Delayed ACKs frequently hit locked sockets during bulk
954 if (icsk->icsk_ack.blocked ||
955 /* Once-per-two-segments ACK was not sent by tcp_input.c */
956 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
958 * If this read emptied read buffer, we send ACK, if
959 * connection is not bidirectional, user drained
960 * receive buffer and there was a small segment
964 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
965 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
966 !icsk->icsk_ack.pingpong)) &&
967 !atomic_read(&sk->sk_rmem_alloc)))
971 /* We send an ACK if we can now advertise a non-zero window
972 * which has been raised "significantly".
974 * Even if window raised up to infinity, do not send window open ACK
975 * in states, where we will not receive more. It is useless.
977 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
978 __u32 rcv_window_now = tcp_receive_window(tp);
980 /* Optimize, __tcp_select_window() is not cheap. */
981 if (2*rcv_window_now <= tp->window_clamp) {
982 __u32 new_window = __tcp_select_window(sk);
984 /* Send ACK now, if this read freed lots of space
985 * in our buffer. Certainly, new_window is new window.
986 * We can advertise it now, if it is not less than current one.
987 * "Lots" means "at least twice" here.
989 if (new_window && new_window >= 2 * rcv_window_now)
997 static void tcp_prequeue_process(struct sock *sk)
1000 struct tcp_sock *tp = tcp_sk(sk);
1002 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1004 /* RX process wants to run with disabled BHs, though it is not
1007 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1008 sk->sk_backlog_rcv(sk, skb);
1011 /* Clear memory counter. */
1012 tp->ucopy.memory = 0;
1015 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1017 struct sk_buff *skb;
1020 skb_queue_walk(&sk->sk_receive_queue, skb) {
1021 offset = seq - TCP_SKB_CB(skb)->seq;
1022 if (tcp_hdr(skb)->syn)
1024 if (offset < skb->len || tcp_hdr(skb)->fin) {
1033 * This routine provides an alternative to tcp_recvmsg() for routines
1034 * that would like to handle copying from skbuffs directly in 'sendfile'
1037 * - It is assumed that the socket was locked by the caller.
1038 * - The routine does not block.
1039 * - At present, there is no support for reading OOB data
1040 * or for 'peeking' the socket using this routine
1041 * (although both would be easy to implement).
1043 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1044 sk_read_actor_t recv_actor)
1046 struct sk_buff *skb;
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 u32 seq = tp->copied_seq;
1052 if (sk->sk_state == TCP_LISTEN)
1054 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1055 if (offset < skb->len) {
1058 len = skb->len - offset;
1059 /* Stop reading if we hit a patch of urgent data */
1061 u32 urg_offset = tp->urg_seq - seq;
1062 if (urg_offset < len)
1067 used = recv_actor(desc, skb, offset, len);
1072 } else if (used <= len) {
1077 if (offset != skb->len)
1080 if (tcp_hdr(skb)->fin) {
1081 sk_eat_skb(sk, skb, 0);
1085 sk_eat_skb(sk, skb, 0);
1089 tp->copied_seq = seq;
1091 tcp_rcv_space_adjust(sk);
1093 /* Clean up data we have read: This will do ACK frames. */
1095 tcp_cleanup_rbuf(sk, copied);
1100 * This routine copies from a sock struct into the user buffer.
1102 * Technical note: in 2.3 we work on _locked_ socket, so that
1103 * tricks with *seq access order and skb->users are not required.
1104 * Probably, code can be easily improved even more.
1107 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1108 size_t len, int nonblock, int flags, int *addr_len)
1110 struct tcp_sock *tp = tcp_sk(sk);
1116 int target; /* Read at least this many bytes */
1118 struct task_struct *user_recv = NULL;
1119 int copied_early = 0;
1120 struct sk_buff *skb;
1124 TCP_CHECK_TIMER(sk);
1127 if (sk->sk_state == TCP_LISTEN)
1130 timeo = sock_rcvtimeo(sk, nonblock);
1132 /* Urgent data needs to be handled specially. */
1133 if (flags & MSG_OOB)
1136 seq = &tp->copied_seq;
1137 if (flags & MSG_PEEK) {
1138 peek_seq = tp->copied_seq;
1142 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1144 #ifdef CONFIG_NET_DMA
1145 tp->ucopy.dma_chan = NULL;
1147 skb = skb_peek_tail(&sk->sk_receive_queue);
1152 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1153 if ((available < target) &&
1154 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1155 !sysctl_tcp_low_latency &&
1156 __get_cpu_var(softnet_data).net_dma) {
1157 preempt_enable_no_resched();
1158 tp->ucopy.pinned_list =
1159 dma_pin_iovec_pages(msg->msg_iov, len);
1161 preempt_enable_no_resched();
1169 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1170 if (tp->urg_data && tp->urg_seq == *seq) {
1173 if (signal_pending(current)) {
1174 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1179 /* Next get a buffer. */
1181 skb = skb_peek(&sk->sk_receive_queue);
1186 /* Now that we have two receive queues this
1189 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1190 printk(KERN_INFO "recvmsg bug: copied %X "
1191 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1194 offset = *seq - TCP_SKB_CB(skb)->seq;
1195 if (tcp_hdr(skb)->syn)
1197 if (offset < skb->len)
1199 if (tcp_hdr(skb)->fin)
1201 BUG_TRAP(flags & MSG_PEEK);
1203 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1205 /* Well, if we have backlog, try to process it now yet. */
1207 if (copied >= target && !sk->sk_backlog.tail)
1212 sk->sk_state == TCP_CLOSE ||
1213 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1215 signal_pending(current) ||
1219 if (sock_flag(sk, SOCK_DONE))
1223 copied = sock_error(sk);
1227 if (sk->sk_shutdown & RCV_SHUTDOWN)
1230 if (sk->sk_state == TCP_CLOSE) {
1231 if (!sock_flag(sk, SOCK_DONE)) {
1232 /* This occurs when user tries to read
1233 * from never connected socket.
1246 if (signal_pending(current)) {
1247 copied = sock_intr_errno(timeo);
1252 tcp_cleanup_rbuf(sk, copied);
1254 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1255 /* Install new reader */
1256 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1257 user_recv = current;
1258 tp->ucopy.task = user_recv;
1259 tp->ucopy.iov = msg->msg_iov;
1262 tp->ucopy.len = len;
1264 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1265 (flags & (MSG_PEEK | MSG_TRUNC)));
1267 /* Ugly... If prequeue is not empty, we have to
1268 * process it before releasing socket, otherwise
1269 * order will be broken at second iteration.
1270 * More elegant solution is required!!!
1272 * Look: we have the following (pseudo)queues:
1274 * 1. packets in flight
1279 * Each queue can be processed only if the next ones
1280 * are empty. At this point we have empty receive_queue.
1281 * But prequeue _can_ be not empty after 2nd iteration,
1282 * when we jumped to start of loop because backlog
1283 * processing added something to receive_queue.
1284 * We cannot release_sock(), because backlog contains
1285 * packets arrived _after_ prequeued ones.
1287 * Shortly, algorithm is clear --- to process all
1288 * the queues in order. We could make it more directly,
1289 * requeueing packets from backlog to prequeue, if
1290 * is not empty. It is more elegant, but eats cycles,
1293 if (!skb_queue_empty(&tp->ucopy.prequeue))
1296 /* __ Set realtime policy in scheduler __ */
1299 if (copied >= target) {
1300 /* Do not sleep, just process backlog. */
1304 sk_wait_data(sk, &timeo);
1306 #ifdef CONFIG_NET_DMA
1307 tp->ucopy.wakeup = 0;
1313 /* __ Restore normal policy in scheduler __ */
1315 if ((chunk = len - tp->ucopy.len) != 0) {
1316 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1321 if (tp->rcv_nxt == tp->copied_seq &&
1322 !skb_queue_empty(&tp->ucopy.prequeue)) {
1324 tcp_prequeue_process(sk);
1326 if ((chunk = len - tp->ucopy.len) != 0) {
1327 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1333 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1334 if (net_ratelimit())
1335 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1336 current->comm, current->pid);
1337 peek_seq = tp->copied_seq;
1342 /* Ok so how much can we use? */
1343 used = skb->len - offset;
1347 /* Do we have urgent data here? */
1349 u32 urg_offset = tp->urg_seq - *seq;
1350 if (urg_offset < used) {
1352 if (!sock_flag(sk, SOCK_URGINLINE)) {
1364 if (!(flags & MSG_TRUNC)) {
1365 #ifdef CONFIG_NET_DMA
1366 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1367 tp->ucopy.dma_chan = get_softnet_dma();
1369 if (tp->ucopy.dma_chan) {
1370 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1371 tp->ucopy.dma_chan, skb, offset,
1373 tp->ucopy.pinned_list);
1375 if (tp->ucopy.dma_cookie < 0) {
1377 printk(KERN_ALERT "dma_cookie < 0\n");
1379 /* Exception. Bailout! */
1384 if ((offset + used) == skb->len)
1390 err = skb_copy_datagram_iovec(skb, offset,
1391 msg->msg_iov, used);
1393 /* Exception. Bailout! */
1405 tcp_rcv_space_adjust(sk);
1408 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1410 tcp_fast_path_check(sk);
1412 if (used + offset < skb->len)
1415 if (tcp_hdr(skb)->fin)
1417 if (!(flags & MSG_PEEK)) {
1418 sk_eat_skb(sk, skb, copied_early);
1424 /* Process the FIN. */
1426 if (!(flags & MSG_PEEK)) {
1427 sk_eat_skb(sk, skb, copied_early);
1434 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1437 tp->ucopy.len = copied > 0 ? len : 0;
1439 tcp_prequeue_process(sk);
1441 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1442 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1448 tp->ucopy.task = NULL;
1452 #ifdef CONFIG_NET_DMA
1453 if (tp->ucopy.dma_chan) {
1454 dma_cookie_t done, used;
1456 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1458 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1459 tp->ucopy.dma_cookie, &done,
1460 &used) == DMA_IN_PROGRESS) {
1461 /* do partial cleanup of sk_async_wait_queue */
1462 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1463 (dma_async_is_complete(skb->dma_cookie, done,
1464 used) == DMA_SUCCESS)) {
1465 __skb_dequeue(&sk->sk_async_wait_queue);
1470 /* Safe to free early-copied skbs now */
1471 __skb_queue_purge(&sk->sk_async_wait_queue);
1472 dma_chan_put(tp->ucopy.dma_chan);
1473 tp->ucopy.dma_chan = NULL;
1475 if (tp->ucopy.pinned_list) {
1476 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1477 tp->ucopy.pinned_list = NULL;
1481 /* According to UNIX98, msg_name/msg_namelen are ignored
1482 * on connected socket. I was just happy when found this 8) --ANK
1485 /* Clean up data we have read: This will do ACK frames. */
1486 tcp_cleanup_rbuf(sk, copied);
1488 TCP_CHECK_TIMER(sk);
1493 TCP_CHECK_TIMER(sk);
1498 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1503 * State processing on a close. This implements the state shift for
1504 * sending our FIN frame. Note that we only send a FIN for some
1505 * states. A shutdown() may have already sent the FIN, or we may be
1509 static const unsigned char new_state[16] = {
1510 /* current state: new state: action: */
1511 /* (Invalid) */ TCP_CLOSE,
1512 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1513 /* TCP_SYN_SENT */ TCP_CLOSE,
1514 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1515 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1516 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1517 /* TCP_TIME_WAIT */ TCP_CLOSE,
1518 /* TCP_CLOSE */ TCP_CLOSE,
1519 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1520 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1521 /* TCP_LISTEN */ TCP_CLOSE,
1522 /* TCP_CLOSING */ TCP_CLOSING,
1525 static int tcp_close_state(struct sock *sk)
1527 int next = (int)new_state[sk->sk_state];
1528 int ns = next & TCP_STATE_MASK;
1530 tcp_set_state(sk, ns);
1532 return next & TCP_ACTION_FIN;
1536 * Shutdown the sending side of a connection. Much like close except
1537 * that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1540 void tcp_shutdown(struct sock *sk, int how)
1542 /* We need to grab some memory, and put together a FIN,
1543 * and then put it into the queue to be sent.
1544 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1546 if (!(how & SEND_SHUTDOWN))
1549 /* If we've already sent a FIN, or it's a closed state, skip this. */
1550 if ((1 << sk->sk_state) &
1551 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1552 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1553 /* Clear out any half completed packets. FIN if needed. */
1554 if (tcp_close_state(sk))
1559 void tcp_close(struct sock *sk, long timeout)
1561 struct sk_buff *skb;
1562 int data_was_unread = 0;
1566 sk->sk_shutdown = SHUTDOWN_MASK;
1568 if (sk->sk_state == TCP_LISTEN) {
1569 tcp_set_state(sk, TCP_CLOSE);
1572 inet_csk_listen_stop(sk);
1574 goto adjudge_to_death;
1577 /* We need to flush the recv. buffs. We do this only on the
1578 * descriptor close, not protocol-sourced closes, because the
1579 * reader process may not have drained the data yet!
1581 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1582 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1584 data_was_unread += len;
1588 sk_stream_mem_reclaim(sk);
1590 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1591 * data was lost. To witness the awful effects of the old behavior of
1592 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1593 * GET in an FTP client, suspend the process, wait for the client to
1594 * advertise a zero window, then kill -9 the FTP client, wheee...
1595 * Note: timeout is always zero in such a case.
1597 if (data_was_unread) {
1598 /* Unread data was tossed, zap the connection. */
1599 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1600 tcp_set_state(sk, TCP_CLOSE);
1601 tcp_send_active_reset(sk, GFP_KERNEL);
1602 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1603 /* Check zero linger _after_ checking for unread data. */
1604 sk->sk_prot->disconnect(sk, 0);
1605 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1606 } else if (tcp_close_state(sk)) {
1607 /* We FIN if the application ate all the data before
1608 * zapping the connection.
1611 /* RED-PEN. Formally speaking, we have broken TCP state
1612 * machine. State transitions:
1614 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1615 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1616 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1618 * are legal only when FIN has been sent (i.e. in window),
1619 * rather than queued out of window. Purists blame.
1621 * F.e. "RFC state" is ESTABLISHED,
1622 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1624 * The visible declinations are that sometimes
1625 * we enter time-wait state, when it is not required really
1626 * (harmless), do not send active resets, when they are
1627 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1628 * they look as CLOSING or LAST_ACK for Linux)
1629 * Probably, I missed some more holelets.
1635 sk_stream_wait_close(sk, timeout);
1638 state = sk->sk_state;
1641 atomic_inc(sk->sk_prot->orphan_count);
1643 /* It is the last release_sock in its life. It will remove backlog. */
1647 /* Now socket is owned by kernel and we acquire BH lock
1648 to finish close. No need to check for user refs.
1652 BUG_TRAP(!sock_owned_by_user(sk));
1654 /* Have we already been destroyed by a softirq or backlog? */
1655 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1658 /* This is a (useful) BSD violating of the RFC. There is a
1659 * problem with TCP as specified in that the other end could
1660 * keep a socket open forever with no application left this end.
1661 * We use a 3 minute timeout (about the same as BSD) then kill
1662 * our end. If they send after that then tough - BUT: long enough
1663 * that we won't make the old 4*rto = almost no time - whoops
1666 * Nope, it was not mistake. It is really desired behaviour
1667 * f.e. on http servers, when such sockets are useless, but
1668 * consume significant resources. Let's do it with special
1669 * linger2 option. --ANK
1672 if (sk->sk_state == TCP_FIN_WAIT2) {
1673 struct tcp_sock *tp = tcp_sk(sk);
1674 if (tp->linger2 < 0) {
1675 tcp_set_state(sk, TCP_CLOSE);
1676 tcp_send_active_reset(sk, GFP_ATOMIC);
1677 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1679 const int tmo = tcp_fin_time(sk);
1681 if (tmo > TCP_TIMEWAIT_LEN) {
1682 inet_csk_reset_keepalive_timer(sk,
1683 tmo - TCP_TIMEWAIT_LEN);
1685 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1690 if (sk->sk_state != TCP_CLOSE) {
1691 sk_stream_mem_reclaim(sk);
1692 if (tcp_too_many_orphans(sk,
1693 atomic_read(sk->sk_prot->orphan_count))) {
1694 if (net_ratelimit())
1695 printk(KERN_INFO "TCP: too many of orphaned "
1697 tcp_set_state(sk, TCP_CLOSE);
1698 tcp_send_active_reset(sk, GFP_ATOMIC);
1699 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1703 if (sk->sk_state == TCP_CLOSE)
1704 inet_csk_destroy_sock(sk);
1705 /* Otherwise, socket is reprieved until protocol close. */
1713 /* These states need RST on ABORT according to RFC793 */
1715 static inline int tcp_need_reset(int state)
1717 return (1 << state) &
1718 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1719 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1722 int tcp_disconnect(struct sock *sk, int flags)
1724 struct inet_sock *inet = inet_sk(sk);
1725 struct inet_connection_sock *icsk = inet_csk(sk);
1726 struct tcp_sock *tp = tcp_sk(sk);
1728 int old_state = sk->sk_state;
1730 if (old_state != TCP_CLOSE)
1731 tcp_set_state(sk, TCP_CLOSE);
1733 /* ABORT function of RFC793 */
1734 if (old_state == TCP_LISTEN) {
1735 inet_csk_listen_stop(sk);
1736 } else if (tcp_need_reset(old_state) ||
1737 (tp->snd_nxt != tp->write_seq &&
1738 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1739 /* The last check adjusts for discrepancy of Linux wrt. RFC
1742 tcp_send_active_reset(sk, gfp_any());
1743 sk->sk_err = ECONNRESET;
1744 } else if (old_state == TCP_SYN_SENT)
1745 sk->sk_err = ECONNRESET;
1747 tcp_clear_xmit_timers(sk);
1748 __skb_queue_purge(&sk->sk_receive_queue);
1749 tcp_write_queue_purge(sk);
1750 __skb_queue_purge(&tp->out_of_order_queue);
1751 #ifdef CONFIG_NET_DMA
1752 __skb_queue_purge(&sk->sk_async_wait_queue);
1757 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1758 inet_reset_saddr(sk);
1760 sk->sk_shutdown = 0;
1761 sock_reset_flag(sk, SOCK_DONE);
1763 if ((tp->write_seq += tp->max_window + 2) == 0)
1765 icsk->icsk_backoff = 0;
1767 icsk->icsk_probes_out = 0;
1768 tp->packets_out = 0;
1769 tp->snd_ssthresh = 0x7fffffff;
1770 tp->snd_cwnd_cnt = 0;
1771 tp->bytes_acked = 0;
1772 tcp_set_ca_state(sk, TCP_CA_Open);
1773 tcp_clear_retrans(tp);
1774 inet_csk_delack_init(sk);
1775 tcp_init_send_head(sk);
1776 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1779 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1781 sk->sk_error_report(sk);
1786 * Socket option code for TCP.
1788 static int do_tcp_setsockopt(struct sock *sk, int level,
1789 int optname, char __user *optval, int optlen)
1791 struct tcp_sock *tp = tcp_sk(sk);
1792 struct inet_connection_sock *icsk = inet_csk(sk);
1796 /* This is a string value all the others are int's */
1797 if (optname == TCP_CONGESTION) {
1798 char name[TCP_CA_NAME_MAX];
1803 val = strncpy_from_user(name, optval,
1804 min(TCP_CA_NAME_MAX-1, optlen));
1810 err = tcp_set_congestion_control(sk, name);
1815 if (optlen < sizeof(int))
1818 if (get_user(val, (int __user *)optval))
1825 /* Values greater than interface MTU won't take effect. However
1826 * at the point when this call is done we typically don't yet
1827 * know which interface is going to be used */
1828 if (val < 8 || val > MAX_TCP_WINDOW) {
1832 tp->rx_opt.user_mss = val;
1837 /* TCP_NODELAY is weaker than TCP_CORK, so that
1838 * this option on corked socket is remembered, but
1839 * it is not activated until cork is cleared.
1841 * However, when TCP_NODELAY is set we make
1842 * an explicit push, which overrides even TCP_CORK
1843 * for currently queued segments.
1845 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
1846 tcp_push_pending_frames(sk);
1848 tp->nonagle &= ~TCP_NAGLE_OFF;
1853 /* When set indicates to always queue non-full frames.
1854 * Later the user clears this option and we transmit
1855 * any pending partial frames in the queue. This is
1856 * meant to be used alongside sendfile() to get properly
1857 * filled frames when the user (for example) must write
1858 * out headers with a write() call first and then use
1859 * sendfile to send out the data parts.
1861 * TCP_CORK can be set together with TCP_NODELAY and it is
1862 * stronger than TCP_NODELAY.
1865 tp->nonagle |= TCP_NAGLE_CORK;
1867 tp->nonagle &= ~TCP_NAGLE_CORK;
1868 if (tp->nonagle&TCP_NAGLE_OFF)
1869 tp->nonagle |= TCP_NAGLE_PUSH;
1870 tcp_push_pending_frames(sk);
1875 if (val < 1 || val > MAX_TCP_KEEPIDLE)
1878 tp->keepalive_time = val * HZ;
1879 if (sock_flag(sk, SOCK_KEEPOPEN) &&
1880 !((1 << sk->sk_state) &
1881 (TCPF_CLOSE | TCPF_LISTEN))) {
1882 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
1883 if (tp->keepalive_time > elapsed)
1884 elapsed = tp->keepalive_time - elapsed;
1887 inet_csk_reset_keepalive_timer(sk, elapsed);
1892 if (val < 1 || val > MAX_TCP_KEEPINTVL)
1895 tp->keepalive_intvl = val * HZ;
1898 if (val < 1 || val > MAX_TCP_KEEPCNT)
1901 tp->keepalive_probes = val;
1904 if (val < 1 || val > MAX_TCP_SYNCNT)
1907 icsk->icsk_syn_retries = val;
1913 else if (val > sysctl_tcp_fin_timeout / HZ)
1916 tp->linger2 = val * HZ;
1919 case TCP_DEFER_ACCEPT:
1920 icsk->icsk_accept_queue.rskq_defer_accept = 0;
1922 /* Translate value in seconds to number of
1924 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
1925 val > ((TCP_TIMEOUT_INIT / HZ) <<
1926 icsk->icsk_accept_queue.rskq_defer_accept))
1927 icsk->icsk_accept_queue.rskq_defer_accept++;
1928 icsk->icsk_accept_queue.rskq_defer_accept++;
1932 case TCP_WINDOW_CLAMP:
1934 if (sk->sk_state != TCP_CLOSE) {
1938 tp->window_clamp = 0;
1940 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
1941 SOCK_MIN_RCVBUF / 2 : val;
1946 icsk->icsk_ack.pingpong = 1;
1948 icsk->icsk_ack.pingpong = 0;
1949 if ((1 << sk->sk_state) &
1950 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
1951 inet_csk_ack_scheduled(sk)) {
1952 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1953 tcp_cleanup_rbuf(sk, 1);
1955 icsk->icsk_ack.pingpong = 1;
1960 #ifdef CONFIG_TCP_MD5SIG
1962 /* Read the IP->Key mappings from userspace */
1963 err = tp->af_specific->md5_parse(sk, optval, optlen);
1976 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
1979 struct inet_connection_sock *icsk = inet_csk(sk);
1981 if (level != SOL_TCP)
1982 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1984 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1987 #ifdef CONFIG_COMPAT
1988 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
1989 char __user *optval, int optlen)
1991 if (level != SOL_TCP)
1992 return inet_csk_compat_setsockopt(sk, level, optname,
1994 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1997 EXPORT_SYMBOL(compat_tcp_setsockopt);
2000 /* Return information about state of tcp endpoint in API format. */
2001 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 const struct inet_connection_sock *icsk = inet_csk(sk);
2005 u32 now = tcp_time_stamp;
2007 memset(info, 0, sizeof(*info));
2009 info->tcpi_state = sk->sk_state;
2010 info->tcpi_ca_state = icsk->icsk_ca_state;
2011 info->tcpi_retransmits = icsk->icsk_retransmits;
2012 info->tcpi_probes = icsk->icsk_probes_out;
2013 info->tcpi_backoff = icsk->icsk_backoff;
2015 if (tp->rx_opt.tstamp_ok)
2016 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2017 if (tp->rx_opt.sack_ok)
2018 info->tcpi_options |= TCPI_OPT_SACK;
2019 if (tp->rx_opt.wscale_ok) {
2020 info->tcpi_options |= TCPI_OPT_WSCALE;
2021 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2022 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2025 if (tp->ecn_flags&TCP_ECN_OK)
2026 info->tcpi_options |= TCPI_OPT_ECN;
2028 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2029 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2030 info->tcpi_snd_mss = tp->mss_cache;
2031 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2033 info->tcpi_unacked = tp->packets_out;
2034 info->tcpi_sacked = tp->sacked_out;
2035 info->tcpi_lost = tp->lost_out;
2036 info->tcpi_retrans = tp->retrans_out;
2037 info->tcpi_fackets = tp->fackets_out;
2039 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2040 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2041 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2043 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2044 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2045 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2046 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2047 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2048 info->tcpi_snd_cwnd = tp->snd_cwnd;
2049 info->tcpi_advmss = tp->advmss;
2050 info->tcpi_reordering = tp->reordering;
2052 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2053 info->tcpi_rcv_space = tp->rcvq_space.space;
2055 info->tcpi_total_retrans = tp->total_retrans;
2058 EXPORT_SYMBOL_GPL(tcp_get_info);
2060 static int do_tcp_getsockopt(struct sock *sk, int level,
2061 int optname, char __user *optval, int __user *optlen)
2063 struct inet_connection_sock *icsk = inet_csk(sk);
2064 struct tcp_sock *tp = tcp_sk(sk);
2067 if (get_user(len, optlen))
2070 len = min_t(unsigned int, len, sizeof(int));
2077 val = tp->mss_cache;
2078 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2079 val = tp->rx_opt.user_mss;
2082 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2085 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2088 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2091 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2094 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2097 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2102 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2104 case TCP_DEFER_ACCEPT:
2105 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2106 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2108 case TCP_WINDOW_CLAMP:
2109 val = tp->window_clamp;
2112 struct tcp_info info;
2114 if (get_user(len, optlen))
2117 tcp_get_info(sk, &info);
2119 len = min_t(unsigned int, len, sizeof(info));
2120 if (put_user(len, optlen))
2122 if (copy_to_user(optval, &info, len))
2127 val = !icsk->icsk_ack.pingpong;
2130 case TCP_CONGESTION:
2131 if (get_user(len, optlen))
2133 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2134 if (put_user(len, optlen))
2136 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2140 return -ENOPROTOOPT;
2143 if (put_user(len, optlen))
2145 if (copy_to_user(optval, &val, len))
2150 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2153 struct inet_connection_sock *icsk = inet_csk(sk);
2155 if (level != SOL_TCP)
2156 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2158 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2161 #ifdef CONFIG_COMPAT
2162 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2163 char __user *optval, int __user *optlen)
2165 if (level != SOL_TCP)
2166 return inet_csk_compat_getsockopt(sk, level, optname,
2168 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2171 EXPORT_SYMBOL(compat_tcp_getsockopt);
2174 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2176 struct sk_buff *segs = ERR_PTR(-EINVAL);
2181 unsigned int oldlen;
2184 if (!pskb_may_pull(skb, sizeof(*th)))
2188 thlen = th->doff * 4;
2189 if (thlen < sizeof(*th))
2192 if (!pskb_may_pull(skb, thlen))
2195 oldlen = (u16)~skb->len;
2196 __skb_pull(skb, thlen);
2198 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2199 /* Packet is from an untrusted source, reset gso_segs. */
2200 int type = skb_shinfo(skb)->gso_type;
2209 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2212 mss = skb_shinfo(skb)->gso_size;
2213 skb_shinfo(skb)->gso_segs = (skb->len + mss - 1) / mss;
2219 segs = skb_segment(skb, features);
2223 len = skb_shinfo(skb)->gso_size;
2224 delta = htonl(oldlen + (thlen + len));
2228 seq = ntohl(th->seq);
2231 th->fin = th->psh = 0;
2233 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2234 (__force u32)delta));
2235 if (skb->ip_summed != CHECKSUM_PARTIAL)
2237 csum_fold(csum_partial(skb_transport_header(skb),
2244 th->seq = htonl(seq);
2246 } while (skb->next);
2248 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2250 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2251 (__force u32)delta));
2252 if (skb->ip_summed != CHECKSUM_PARTIAL)
2253 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2259 EXPORT_SYMBOL(tcp_tso_segment);
2261 #ifdef CONFIG_TCP_MD5SIG
2262 static unsigned long tcp_md5sig_users;
2263 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2264 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2266 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2269 for_each_possible_cpu(cpu) {
2270 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2272 if (p->md5_desc.tfm)
2273 crypto_free_hash(p->md5_desc.tfm);
2281 void tcp_free_md5sig_pool(void)
2283 struct tcp_md5sig_pool **pool = NULL;
2285 spin_lock_bh(&tcp_md5sig_pool_lock);
2286 if (--tcp_md5sig_users == 0) {
2287 pool = tcp_md5sig_pool;
2288 tcp_md5sig_pool = NULL;
2290 spin_unlock_bh(&tcp_md5sig_pool_lock);
2292 __tcp_free_md5sig_pool(pool);
2295 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2297 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2300 struct tcp_md5sig_pool **pool;
2302 pool = alloc_percpu(struct tcp_md5sig_pool *);
2306 for_each_possible_cpu(cpu) {
2307 struct tcp_md5sig_pool *p;
2308 struct crypto_hash *hash;
2310 p = kzalloc(sizeof(*p), GFP_KERNEL);
2313 *per_cpu_ptr(pool, cpu) = p;
2315 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2316 if (!hash || IS_ERR(hash))
2319 p->md5_desc.tfm = hash;
2323 __tcp_free_md5sig_pool(pool);
2327 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2329 struct tcp_md5sig_pool **pool;
2333 spin_lock_bh(&tcp_md5sig_pool_lock);
2334 pool = tcp_md5sig_pool;
2335 if (tcp_md5sig_users++ == 0) {
2337 spin_unlock_bh(&tcp_md5sig_pool_lock);
2340 spin_unlock_bh(&tcp_md5sig_pool_lock);
2344 spin_unlock_bh(&tcp_md5sig_pool_lock);
2347 /* we cannot hold spinlock here because this may sleep. */
2348 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2349 spin_lock_bh(&tcp_md5sig_pool_lock);
2352 spin_unlock_bh(&tcp_md5sig_pool_lock);
2355 pool = tcp_md5sig_pool;
2357 /* oops, it has already been assigned. */
2358 spin_unlock_bh(&tcp_md5sig_pool_lock);
2359 __tcp_free_md5sig_pool(p);
2361 tcp_md5sig_pool = pool = p;
2362 spin_unlock_bh(&tcp_md5sig_pool_lock);
2368 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2370 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2372 struct tcp_md5sig_pool **p;
2373 spin_lock_bh(&tcp_md5sig_pool_lock);
2374 p = tcp_md5sig_pool;
2377 spin_unlock_bh(&tcp_md5sig_pool_lock);
2378 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2381 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2383 void __tcp_put_md5sig_pool(void)
2385 tcp_free_md5sig_pool();
2388 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2391 void tcp_done(struct sock *sk)
2393 if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2394 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2396 tcp_set_state(sk, TCP_CLOSE);
2397 tcp_clear_xmit_timers(sk);
2399 sk->sk_shutdown = SHUTDOWN_MASK;
2401 if (!sock_flag(sk, SOCK_DEAD))
2402 sk->sk_state_change(sk);
2404 inet_csk_destroy_sock(sk);
2406 EXPORT_SYMBOL_GPL(tcp_done);
2408 extern void __skb_cb_too_small_for_tcp(int, int);
2409 extern struct tcp_congestion_ops tcp_reno;
2411 static __initdata unsigned long thash_entries;
2412 static int __init set_thash_entries(char *str)
2416 thash_entries = simple_strtoul(str, &str, 0);
2419 __setup("thash_entries=", set_thash_entries);
2421 void __init tcp_init(void)
2423 struct sk_buff *skb = NULL;
2424 unsigned long limit;
2425 int order, i, max_share;
2427 if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
2428 __skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
2431 tcp_hashinfo.bind_bucket_cachep =
2432 kmem_cache_create("tcp_bind_bucket",
2433 sizeof(struct inet_bind_bucket), 0,
2434 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2436 /* Size and allocate the main established and bind bucket
2439 * The methodology is similar to that of the buffer cache.
2441 tcp_hashinfo.ehash =
2442 alloc_large_system_hash("TCP established",
2443 sizeof(struct inet_ehash_bucket),
2445 (num_physpages >= 128 * 1024) ?
2448 &tcp_hashinfo.ehash_size,
2451 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2452 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2453 rwlock_init(&tcp_hashinfo.ehash[i].lock);
2454 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2455 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2458 tcp_hashinfo.bhash =
2459 alloc_large_system_hash("TCP bind",
2460 sizeof(struct inet_bind_hashbucket),
2461 tcp_hashinfo.ehash_size,
2462 (num_physpages >= 128 * 1024) ?
2465 &tcp_hashinfo.bhash_size,
2468 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2469 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2470 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2471 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2474 /* Try to be a bit smarter and adjust defaults depending
2475 * on available memory.
2477 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2478 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2482 tcp_death_row.sysctl_max_tw_buckets = 180000;
2483 sysctl_tcp_max_orphans = 4096 << (order - 4);
2484 sysctl_max_syn_backlog = 1024;
2485 } else if (order < 3) {
2486 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2487 sysctl_tcp_max_orphans >>= (3 - order);
2488 sysctl_max_syn_backlog = 128;
2491 /* Set the pressure threshold to be a fraction of global memory that
2492 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2493 * memory, with a floor of 128 pages.
2495 limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2496 limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2497 limit = max(limit, 128UL);
2498 sysctl_tcp_mem[0] = limit / 4 * 3;
2499 sysctl_tcp_mem[1] = limit;
2500 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2502 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2503 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2504 max_share = min(4UL*1024*1024, limit);
2506 sysctl_tcp_wmem[0] = SK_STREAM_MEM_QUANTUM;
2507 sysctl_tcp_wmem[1] = 16*1024;
2508 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2510 sysctl_tcp_rmem[0] = SK_STREAM_MEM_QUANTUM;
2511 sysctl_tcp_rmem[1] = 87380;
2512 sysctl_tcp_rmem[2] = max(87380, max_share);
2514 printk(KERN_INFO "TCP: Hash tables configured "
2515 "(established %d bind %d)\n",
2516 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2518 tcp_register_congestion_control(&tcp_reno);
2521 EXPORT_SYMBOL(tcp_close);
2522 EXPORT_SYMBOL(tcp_disconnect);
2523 EXPORT_SYMBOL(tcp_getsockopt);
2524 EXPORT_SYMBOL(tcp_ioctl);
2525 EXPORT_SYMBOL(tcp_poll);
2526 EXPORT_SYMBOL(tcp_read_sock);
2527 EXPORT_SYMBOL(tcp_recvmsg);
2528 EXPORT_SYMBOL(tcp_sendmsg);
2529 EXPORT_SYMBOL(tcp_sendpage);
2530 EXPORT_SYMBOL(tcp_setsockopt);
2531 EXPORT_SYMBOL(tcp_shutdown);
2532 EXPORT_SYMBOL(tcp_statistics);